Design and Validity of a Smart Healthcare and Control System for Electric Bikes
Abstract
:1. Introduction
- Concentrate and analyze physiological data.
- Retrieve and program a medical prescription for physical training.
- Communicate with an e-bike and regulate electrical assistance.
- Monitor subjects in completing prescribed workouts in a healthy and safe environment, in indoor conditions (as in medical centers) or outdoors (not available at the time of this publication).
2. Materials and Methods
2.1. Embedded System
2.1.1. Electronic System
2.1.2. Algorithms
2.2. Smartphone Application
2.3. Home Trainer
2.4. Test Protocols
3. Results
3.1. Indoors
3.2. Outdoors
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.-P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.-M.; Shiroma, E.J.; Lobelo, F.; Puska, P.; Blair, S.N.; Katzmarzyk, P.T. Effect of physical inactivity on major non-communicable diseases worldwide: An analysis of burden of disease and life expectancy. Lancet 2012, 380, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Mctiernan, A.; Friedenreich, C.M.; Katzmarzyk, P.T.; Powell, K.E.; Macko, R.; Buchner, D.; Pescatello, L.S.; Bloodgood, B.; Tennant, B.; Vaux-Bjerke, A.; et al. Physical Activity in Cancer Prevention and Survival: A Systematic Review. Med. Sci. Sports Exerc. 2019, 51, 1252–1261. [Google Scholar] [CrossRef] [PubMed]
- Schuch, F.B.; Vancampfort, D.; Richards, J.; Rosenbaum, S.; Ward, P.B.; Stubbs, B. Exercise as a treatment for depression: A meta-analysis adjusting for publication bias. J. Psychiatr. Res. 2016, 77, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Livingston, G.; Sommerlad, A.; Orgeta, V.; Costafreda, S.G.; Huntley, J.; Ames, D.; Ballard, C.; Banerjee, S.; Burns, A.; Cohen-Mansfield, J.; et al. Dementia prevention, intervention, and care. Lancet 2017, 390, 2673–2734. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization Physical Activity. 2020. Available online: https://www.who.int/news-room/fact-sheets/detail/physical-activity (accessed on 8 July 2022).
- Das, P.; Horton, R. Rethinking our approach to physical activity. Lancet 2012, 380, 189–190. [Google Scholar] [CrossRef] [PubMed]
- De Maio, M.; Bratta, C.; Iannaccone, A.; Castellani, L.; Foster, C.; Cortis, C.; Fusco, A. Home-Based Physical Activity as a Healthy Aging Booster before and during COVID-19 Outbreak. Int. J. Environ. Res. Public Health 2022, 19, 4317. [Google Scholar] [CrossRef] [PubMed]
- El-Tamawy, M.S.; Darwish, M.H.; Basheer, M.A.; Reda, A.M.; Elzanaty, M.; Khalifa, H.A. Effect of cycling exercise on motor excitability and gait abnormalities in stroke patients. Egypt. J. Neurol. Psychiatry Neurosurg. 2021, 57, 2. [Google Scholar] [CrossRef]
- Leskinen, T.; Stenholm, S.; Aalto, V.; Head, J.; Kivimäki, M.; Vahtera, J. Physical activity level as a predictor of healthy and chronic disease-free life expectancy between ages 50 and 75. Age Ageing 2018, 47, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Dhana, K.; Koolhaas, C.M.; Berghout, M.A.; Peeters, A.; Ikram, M.A.; Tiemeier, H.; Hofman, A.; Nusselder, W.; Franco, O.H. Physical activity types and life expectancy with and without cardiovascular disease: The Rotterdam Study. J. Public Health 2016, 39, e209–e218. [Google Scholar] [CrossRef] [PubMed]
- Chudasama, Y.V.; Khunti, K.; Gillies, C.L.; Dhalwani, N.N.; Davies, M.J.; Yates, T.; Zaccardi, F. Healthy lifestyle and life expectancy in people with multimorbidity in the UK Biobank: A longitudinal cohort study. PLoS Med. 2020, 17, e1003332. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention about Chronic Diseases|CDC. Centers for Disease Control and Prevention. 2021. Available online: https://www.cdc.gov/chronicdisease/about/index.htm (accessed on 24 January 2023).
- Haute Autorité de Santé. Consultation et Prescription Médicale D’Activité Physique à des Fins de Santé. Available online: https://www.has-sante.fr/jcms/c_2876862/fr/consultation-et-prescription-medicale-d-activite-physique-a-des-fins-de-sante (accessed on 24 January 2023).
- Mahé, G.; Boge, G.; Bura-Rivière, A.; Chakfé, N.; Constans, J.; Goueffic, Y.; Lacroix, P.; Le Hello, C.; Pernod, G.; Perez-Martin, A.; et al. Disparities Between International Guidelines (AHA/ESC/ESVS/ESVM/SVS) Concerning Lower Extremity Arterial Disease: Consensus of the French Society of Vascular Medicine (SFMV) and the French Society for Vascular and Endovascular Surgery (SCVE). Ann. Vasc. Surg. 2021, 72, 1–56. [Google Scholar] [CrossRef] [PubMed]
- Institut National de la Santé et de la Recherche Médicale. Activité Physique: Prévention et Traitement des Maladies Chroniques. Available online: https://www.inserm.fr/expertise-collective/activite-physique-prevention-et-traitement-maladies-chroniques/ (accessed on 24 January 2023).
- Grappe, F. Cyclisme et Optimisation de la Performance, 4th ed.; Sciences et Pratiques du Sport; De Boeck Supérieur: Louvain-la-Neuve, Belgium; Paris, France, 2022; ISBN 978-2-8073-3648-3. (in French) [Google Scholar]
- Cleveland Clinic Exercise Heart Rate Zones Explained. 2021. Available online: https://health.clevelandclinic.org/exercise-heart-rate-zones-explained/ (accessed on 24 January 2023).
- Centers for Disease Control and Prevention. Target Heart Rate and Estimated Maximum Heart Rate. Available online: https://www.cdc.gov/physicalactivity/basics/measuring/heartrate.htm (accessed on 24 January 2023).
- Polar Running Heart Rate Zones|The Basics. Polar Blog. 2016. Available online: https://www.polar.com/blog/running-heart-rate-zones-basics/ (accessed on 24 January 2023).
- Philips, I.; Anable, J.; Chatterton, T. E-bikes and their capability to reduce car CO2 emissions. Transp. Policy 2022, 116, 11–23. [Google Scholar] [CrossRef]
- De Vos, J. The effect of COVID-19 and subsequent social distancing on travel behavior. Transp. Res. Interdiscip. Perspect. 2020, 5, 100121. [Google Scholar] [CrossRef] [PubMed]
- McVicar, J.; Keske, M.A.; Daryabeygi-Khotbehsara, R.; Betik, A.C.; Parker, L.; Maddison, R. Systematic review and meta-analysis evaluating the effects electric bikes have on physiological parameters. Scand. J. Med. Sci. Sports 2022, 32, 1076–1088. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Yin, D. A control approach adaptive to load and road slope for electric power assisted bicycle. In Proceedings of the 2017 36th Chinese Control Conference (CCC), Dalian, China, 26–28 July 2017; pp. 3414–3418. [Google Scholar]
- Lee, J.-S.; Jiang, J.-W.; Sun, Y.-H. Design and simulation of control systems for electric-assist bikes. In Proceedings of the 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA), Hefei, China, 5–7 June 2016; pp. 1736–1740. [Google Scholar] [CrossRef]
- Chandraprabha Dissanayake, V.S.; Kannangara, R.E.; Bigumjith Dias, M.U.; Kulasekera, A.L.; Jayaweera, N. An Intelligent Control System for an Electrically Power Assisted Cycle (EPAC). Am. J. Eng. Appl. Sci. 2018, 11, 986–995. [Google Scholar] [CrossRef]
- Makarova, I.; Buyvol, P.; Shubenkova, K.; Tsybunov, E.; Boyko, A. Development of Intelligent Smart Bicycle Control System. In Proceedings of the 2018 IEEE East-West Design & Test Symposium (EWDTS), Kazan, Russia, 14–17 September 2018; pp. 1–8. [Google Scholar]
- Chen, P.-C.; Chuang, H.-S.; Hsiao, C.-C.; Chang, S.-B. The velocity control with disturbance estimation for the E-Bike systems. In Proceedings of the 2011 International Conference on System Science and Engineering, Macau, China, 8–10 June 2011; pp. 171–176. [Google Scholar]
- Bergmann, L.; Leonhardt, S.; Greven, D.; Misgeld, B.J.E. Optimal assistive control of a pedal-electric drive unit. Control Eng. Pract. 2021, 110, 104765. [Google Scholar] [CrossRef]
- Maier, O.; Krause, M.; Krauth, S.; Langer, N.; Pascher, P.; Wrede, J. Potential benefit of regenerative braking on electric bicycles. In Proceedings of the 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Banff, AB, Canada, 12–15 July 2016; pp. 1417–1423. [Google Scholar]
- Sreehari, M.D.; Manikandan, K.; Pranjith, K.; Adithya, V.; Jayanth Ram, M.B.; Indu, V.; Dharmana, M.M. Design and Analysis of E-Bike with Electrical Regeneration and Self-Balancing Assist. In Proceedings of the 2020 4th International Conference on Trends in Electronics and Informatics (ICOEI) (48184), Tirunelveli, India, 15–17 June 2020; pp. 119–124. [Google Scholar]
- Vijyalakshmi, K.; Sandhiya, S.; Bhuvaneswari, C. High efficiency bi-directional converter with regenerative concept for E-bike. In Proceedings of the 2017 International Conference on Computation of Power, Energy Information and Commuincation (ICCPEIC), Melmaruvathur, India, 22–23 March 2017; pp. 668–671. [Google Scholar]
- Sweeney, S.; Ordonez-Hurtado, R.; Pilla, F.; Russo, G.; Timoney, D.; Shorten, R. A Context-Aware E-Bike System to Reduce Pollution Inhalation While Cycling. IEEE Trans. Intell. Transp. Syst. 2019, 20, 704–715. [Google Scholar] [CrossRef]
- Venkatanarayanan, A.; Vijayavel, A.; Rajagopal, A.; Nagaradjane, P. Design of sensor system for air pollution and human vital monitoring for connected cyclists. IET Commun. 2019, 13, 3181–3186. [Google Scholar] [CrossRef]
- Liu, X.; Li, B.; Jiang, A.; Qi, S.; Xiang, C.; Xu, N. A bicycle-borne sensor for monitoring air pollution near roadways. In Proceedings of the 2015 IEEE International Conference on Consumer Electronics, Taipei, Taiwan, 6–8 June 2015; pp. 166–167. [Google Scholar]
- Shen, S.; Lv, C.; Xu, X.; Liu, X. A Bicycle-Borne Sensor Node for Monitoring Air Pollution Based on NB-IoT. In Machine Learning and Intelligent Communications; Zhai, X.B., Chen, B., Zhu, K., Eds.; Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering; Springer International Publishing: Cham, Switzerland, 2019; Volume 294, pp. 325–332. ISBN 978-3-030-32387-5. [Google Scholar]
- Avina-Bravo, E.G.; Cassirame, J.; Escriba, C.; Acco, P.; Fourniols, J.-Y.; Soto-Romero, G. Smart Electrically Assisted Bicycles as Health Monitoring Systems: A Review. Sensors 2022, 22, 468. [Google Scholar] [CrossRef] [PubMed]
Pathology | Frequency (Days a Week) | Duration (min) | Intensity |
---|---|---|---|
Stroke | 3–5 | 20–60 | Moderate |
Lower extremity arterial disease [15,16] | 2–3 | 30–60 | Light or High |
Asthma | 5 | 30–45 | Light |
Chronic obstructive pulmonary disease | 3–5 | 20–60 | Moderate or High |
Depression | >3 | >30 | Moderate or High |
Breast, colorectal, and prostate cancer | 3–5 | 150 for moderate intensity and 75 for high intensity | Moderate or High |
Type 2 Diabetes | 3–7 | 150/week, if improvement is seen then 300/week | Moderate or High |
High blood pressure | 3–7 | >30 | Moderate or High |
Chronic heart failure | >5 | 30 | Moderate |
Parkinson disease | 3–5 | 150 for moderate intensity and 75 for high intensity | Moderate or High |
Overweight and obesity in adults | >5 | 150/week, if improve then 300/week | Moderate or High |
Acute coronary syndrome | 3–5 | 20–60 | Very light or Light |
Intensity | HAS [14] | Cleveland Clinic [18] | CDC [19] | Polar [20] | ESIE [17] |
---|---|---|---|---|---|
Very Light | 50–60% | 50–60% | <75% | ||
Light | 40–55% | 60–70% | 75–85% | ||
Moderate | 55–70% | 60–70% | 64–76% | 70–80% | 85–92% |
High | 70–90% | 70–80% | 77–93% | 80–90% | 92–96% |
Very High | >90% | 90–100% | >96% |
Modules | Communication Protocols | Sensors | Communication Protocols |
---|---|---|---|
IMU (accelerometer) | I2C | Heart rate chest trap * (Garmin, KS, USA) | BLE, ANT+ |
SD card | SPI | Power meter pedals (Assioma DUO, Favero, Italy) | ANT+ |
GPS | UART | Cadence (Garmin, KS, USA) | ANT+ |
PSoC 6 | SPI | Speed (Garmin, KS, KS, USA) | ANT+ |
nRF52840 | SPI, BLE, ANT+ |
Age (N = 4) | Height (cm) | Weight (kg) | BMI (kg/m2) |
---|---|---|---|
35 ± 13 | 180 ± 2 | 81 ± 10 | 24.9 ± 2.5 |
500 W | 900 W (Until 700 W) | 650 W | |
---|---|---|---|
Heart Rate (BPM) | 126 ± 2 | 131 ± 4 | 133 ± 2 |
Muscular Power (W) | 148 ± 6 | 185 ± 21 | 173 ± 11 |
Electrical Assistance (%) | 25 ± 3 | 32 ± 4 | 31 ± 1 |
Time w/Assistance (min) | 6.3 ± 0.26 (54% *) | 8.09 ± 0.71 (70% *) | 10.58 ± 0.46 (73% *) |
1st | 2nd | 3rd | |
---|---|---|---|
Heart Rate (BPM) | 129 ± 12 | 132 ± 4 | 132 ± 11 |
Muscular Power (W) | 164 ± 28 | 152 ± 38 | 158 ± 20 |
Time w/Assistance (min) | 3.28 ± 1.23 | 3.25 ± 1.08 | 3.19 ± 1.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avina-Bravo, E.G.; Sodre Ferreira de Sousa, F.A.; Escriba, C.; Acco, P.; Giraud, F.; Fourniols, J.-Y.; Soto-Romero, G. Design and Validity of a Smart Healthcare and Control System for Electric Bikes. Sensors 2023, 23, 4079. https://doi.org/10.3390/s23084079
Avina-Bravo EG, Sodre Ferreira de Sousa FA, Escriba C, Acco P, Giraud F, Fourniols J-Y, Soto-Romero G. Design and Validity of a Smart Healthcare and Control System for Electric Bikes. Sensors. 2023; 23(8):4079. https://doi.org/10.3390/s23084079
Chicago/Turabian StyleAvina-Bravo, Eli Gabriel, Felipe Augusto Sodre Ferreira de Sousa, Christophe Escriba, Pascal Acco, Franck Giraud, Jean-Yves Fourniols, and Georges Soto-Romero. 2023. "Design and Validity of a Smart Healthcare and Control System for Electric Bikes" Sensors 23, no. 8: 4079. https://doi.org/10.3390/s23084079