Assessing Virtual Reality Spaces for Elders Using Image-Based Sentiment Analysis and Stress Level Detection
Abstract
:1. Introduction
2. Literature Review
2.1. VR Environments for Elders
2.2. Image Sentiment Analysis Approaches
3. Materials and Methods
3.1. Subjects
3.2. Image Sentiment Analysis
3.2.1. Our Dataset
3.2.2. The Method Used
3.3. Behavioural Analysis
Algorithm 1 Computation of moving time | |||
Data: User’s trajectory data (pos = (x, y), array), timestamps (t, array) | |||
Results: Moving time (mv) feature | |||
1 | move_time_array ← [], i = 1 | ||
2 | while i < length(pos) do | ||
3 | v ← √(posi(x) − posi-1(x))2 + (posi(y) − posi-1(y))2/(ti − ti−1) | ||
4 | if v > 0.2 then: | ||
5 | move_time_array ← (ti − ti−1) | ||
6 | end | ||
7 | end | ||
8 | mv ← mean(move_time_array) | ||
9 | end |
Algorithm 2 Computation of track spread | ||
Data: User’s trajectory data (pos = (x, y), array) | ||
Results: Track spread (ts) feature | ||
1 | track_spread_array ← [], i = 1 | |
2 | track_center ← (mean (pos(x)), mean (pos(y))) | |
3 | while i < length(pos) do | |
4 | distance ← √(posi(x) − track_center(x))2 + (posi(y) − track_center(y))2 | |
5 | track_spread_array ← (ti − ti−1) | |
6 | end | |
7 | ts ← max (track_spread_array) | |
8 | end |
Algorithm 3 Computation of wandering style | ||
Data: User’s trajectory data (pos = (x, y), array) | ||
Results: Wandering style (ws) feature | ||
1 | cells ← unique((round (pos(x)), round(pos(y)))) | |
2 | i = 1, trajectory_length = 0 | |
3 | while i < length(pos) do | |
4 | distance ← √(posi x) − posi−1(x))2 + (posi(y) − posi−1(y))2 | |
5 | trajectory_length ← trajectory_length + distance | |
6 | end | |
7 | if trajectory_length > 0 then | |
8 | ws ← length (cells)/trajectory_length | |
9 | else | |
10 | ws ← 0 | |
11 | end | |
12 | end |
Algorithm 4 Computation of hotspot spread | |
Data: User’s trajectory data (pos = (x, y), array) | |
Results: Hotspot spread (hs) feature | |
1 | cells ← unique((round (pos(x)), round (pos(y)))) |
2 | hs_center ← (mean (cells(x)), mean (cells(y))) |
3 | track_center ← (mean (pos(x)), mean (pos(y))) |
4 | hs ← √(track_center(x) − hs_center(x))2 + (track_center(y) − hs_center(y))2 |
5 | end |
3.4. Fusion of Sentiment Arousal and Behavioural Stress
3.5. Cap de Ballon
4. Results
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Bruin, E.D.; Schoene, D.; Pichierri, G.; Smith, S.T. Use of virtual reality technique for the training of motor control in the elderly. Z. Gerontol. Geriatr. 2010, 43, 229–234. [Google Scholar] [CrossRef]
- Flynn, S.; Palma, P.; Bender, A. Feasibility of using the Sony PlayStation 2 gaming platform for an individual poststroke: A case report. J. Neurol. Phys. Ther. 2007, 31, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Mirelman, A.; Patritti, B.L.; Bonato, P.; Deutsch, J.E. Effects of virtual reality training on gait biomechanics of individuals post-stroke. Gait Posture 2010, 31, 433–437. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Jang, S.H.; Kim, C.S.; Jung, J.H.; You, J.H. Use of virtual reality to enhance balance and ambulation in chronic stroke: A double-blind, randomized controlled study. Am. J. Phys. Med. Rehabil. 2009, 88, 693–701. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; He, Z.; Yuan, J.; Lin, H.; Fu, C.; Zhang, Y.; Wang, N.; Li, G.; Bu, J.; Chen, M.; et al. Application of Immersive Virtual-Reality-Based Puzzle Games in Elderly Patients with Post-Stroke Cognitive Impairment: A Pilot Study. Brain Sci. 2023, 13, 79. [Google Scholar] [CrossRef]
- Chen, Y.P.; Kang, L.J.; Chuang, T.Y.; Doong, J.L.; Lee, S.J.; Tsai, M.W.; Sung, W.H. Use of virtual reality to improve upper-extremity control in children with cerebral palsy: A single-subject design. Phys. Ther. 2007, 87, 1441–1457. [Google Scholar] [CrossRef] [PubMed]
- Brepohl, P.C.A.; Leite, H. Virtual reality applied to physiotherapy: A review of current knowledge. Virtual Real. 2023, 27, 71–95. [Google Scholar] [CrossRef]
- Bürger, D.; Pastel, S.; Chen, C.H.; Petri, K.; Schmitz, M.; Wischerath, L.; Witte, K. Suitability test of virtual reality applications for older people considering the spatial orientation ability. Virtual Real. 2023, 1–14. [Google Scholar] [CrossRef]
- Schuler, T.; Brütsch, K.; Müller, R.; van Hedel, H.J.; Meyer-Heim, A. Virtual realities as motivational tools for robotic assisted gait training in children: A surface electromyography study. NeuroRehabilitation 2011, 28, 401–411. [Google Scholar] [CrossRef]
- García-Betances, R.I.; Arredondo Waldmeyer, M.T.; Fico, G.; Cabrera-Umpiérrez, M.F. A succinct overview of virtual reality technology use in Alzheimer’s disease. Front. Aging Neurosci. 2015, 7, 80. [Google Scholar]
- Clay, F.; Howett, D.; FitzGerald, J.; Fletcher, P.; Chan, D.; Price, A. Use of immersive virtual reality in the assessment and treatment of Alzheimer’s disease: A systematic review. J. Alzheimer’s Dis. 2020, 75, 23–43. [Google Scholar] [CrossRef]
- Lazar, I.A.M.; Ramachandran, I.A.S. Effect of immersive virtual reality on balance in elderly population. NeuroQuantology 2023, 21, 418. [Google Scholar]
- National Academies of Sciences, Engineering, and Medicine. Social Isolation and Loneliness in Older Adults: Opportunities for the Health Care System; National Academies Press: Washington, DC, USA, 2020. [Google Scholar]
- Cacioppo, S.; Grippo, A.J.; London, S.; Goossens, L.; Cacioppo, J.T. Loneliness: Clinical import and interventions. Perspect. Psychol. Sci. 2015, 10, 238–249. [Google Scholar] [CrossRef]
- Coyle, C.E.; Dugan, E. Social isolation, loneliness and health among older adults. J. Aging Health 2012, 24, 1346–1363. [Google Scholar] [CrossRef]
- Cornwell, E.Y.; Waite, L.J. Social disconnectedness, perceived isolation, and health among older adults. J. Health Soc. Behav. 2009, 50, 31–48. [Google Scholar] [CrossRef]
- Altschul, D.; Iveson, M.; Deary, I.J. Generational differences in loneliness and its psychological and sociodemographic predictors: An exploratory and confirmatory machine learning study. Psychol. Med. 2021, 51, 991–1000. [Google Scholar] [CrossRef]
- Montoliu, T.; Hidalgo, V.; Salvador, A. The relationship between loneliness and cognition in healthy older men and women: The role of cortisol. Psychoneuroendocrinology 2019, 107, 270–279. [Google Scholar] [CrossRef] [PubMed]
- Asante, S.; Tuffour, G. Social Isolation and Loneliness in Older Adults: Why Proper Conceptualization Matters. J. Ageing Longev. 2022, 2, 206–213. [Google Scholar] [CrossRef]
- Kupczik, L.; Farrelly, W.; Wilson, S. Appraising Virtual Technologies’ Impact on Older Citizens’ Mental Health—A Comparative between 360° Video and Virtual Reality. Int. J. Environ. Res. Public Health 2022, 19, 11250. [Google Scholar] [CrossRef] [PubMed]
- Anastasiadou, Z.; Lanitis, A. Development and Evaluation of a Prototype VR Application for the Elderly, that can Help to Prevent Effects Related to Social Isolation. In Proceedings of the International Conference on Interactive Media, Smart Systems and Emerging Technologies (IMET), Limassol, Cyprus, 4–7 October 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Akkuzukaya, G. Sentiment Analysis on the Metaverse: Twitter Data. Sak. Univ. J. Comput. Inf. Sci. 2022, 5, 147–156. [Google Scholar] [CrossRef]
- Hu, M.; Roberts, J. Built environment evaluation in virtual reality environments—A cognitive neuroscience approach. Urban Sci. 2020, 4, 48. [Google Scholar] [CrossRef]
- Chatzistavros, K.; Pistola, T.; Diplaris, S.; Ioannidis, K.; Vrochidis, S.; Kompatsiaris, I. Sentiment analysis on 2D images of urban and indoor spaces using deep learning architectures. In Proceedings of the 19th International Conference on Content-Based Multimedia Indexing, Graz, Austria, 14–16 September 2022; pp. 43–49. [Google Scholar]
- Restout, J.; Bernache-Assollant, I.; Morizio, C.; Boujut, A.; Angelini, L.; Tchalla, A.; Perrochon, A. Fully Immersive Virtual Reality Using 360° Videos to Manage Well-Being in Older Adults: A Scoping Review. J. Am. Med. Dir. Assoc. 2023, 24, 564–572. [Google Scholar] [CrossRef]
- Rose, V.; Stewart, I.; Jenkins, K.G.; Tabbaa, L.; Ang, C.S.; Matsangidou, M. Bringing the outside in: The feasibility of virtual reality with people with dementia in an inpatient psychiatric care setting. Dementia 2021, 20, 106–129. [Google Scholar] [CrossRef] [PubMed]
- Matsangidou, M.; Schiza, E.M.; Hadjiaros, K.; Neokleous, C.; Avraamides, M.; Papayianni, E.; Frangoudes, F.; Pattichis, C.S. Dementia: I am physically fading. can virtual reality help? Physical training for people with dementia in confined mental health units. In Proceedings of the International Conference on Human-Computer Interaction, Copenhagen, Denmark, 19–24 July 2020; pp. 366–382. [Google Scholar]
- Syed-Abdul, S.; Malwade, S.; Nursetyo, A.A.; Sood, M.; Bhatia, M.; Barsasella, D.; Liu, M.F.; Chang, C.C.; Srinivasan, K.; Li, Y.C.J. Virtual reality among the elderly: A usefulness and acceptance study from Taiwan. BMC Geriatr. 2019, 19, 223. [Google Scholar] [CrossRef]
- Baker, S.; Waycott, J.; Robertson, E.; Carrasco, R.; Neves, B.B.; Hampson, R.; Vetere, F. Evaluating the use of interactive virtual reality technology with older adults living in residential aged care. Inf. Process. Manag. 2020, 57, 102105. [Google Scholar] [CrossRef]
- Kalantari, S.; Xu, T.B.; Mostafavi, A.; Dilanchian, A.; Kim, B.; Boot, W.; Czaja, S. Using Immersive Virtual Reality to Enhance Social Interaction among Older Adults: A Multi-site Study. arXiv 2022, arXiv:2210.04954. [Google Scholar]
- Lin, X.X.C. Designing Virtual Reality (VR) Experience for Older Adults and Determine Its Impact on Their Overall Well-Being. Doctoral Dissertation, Massachusetts Institute of Technology, Cambridge, MA, USA, 2017. [Google Scholar]
- Ortis, A.; Farinella, G.M.; Battiato, S. An Overview on Image Sentiment Analysis: Methods, Datasets and Current Challenges. In Proceedings of the 16th International Joint Conference on e-Business and Telecommunications (ICETE 2019), Prague, Czech Republic, 26–28 July 2019; pp. 296–306. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258. [Google Scholar]
- Russell, J.A. A circumplex model of affect. J. Personal. Soc. Psychol. 1980, 39, 1161–1178. [Google Scholar] [CrossRef]
- Xu, C.; Cetintas, S.; Lee, K.; Li, L. Visual Sentiment Prediction with Deep Convolutional Neural Networks. arXiv 2014, arXiv:1411.5731. [Google Scholar]
- Plutchik, R. Emotion, a Psychoevolutionary Synthesis; Harper Row: New York, NY, USA, 1980. [Google Scholar]
- Ekman, P.; Friesen, W.V.; O’Sullivan, M.; Chan, A.; Diacoyanni-Tarlatzis, I.; Heider, K.; Krause, R.; LeCompte, W.A.; Pitcairn, T.; Ricci-Bitti, P.E.; et al. Universals and cultural differences in the judgments of facial expressions of emotion. J. Personal. Soc. Psychol. 1987, 53, 712–717. [Google Scholar] [CrossRef] [PubMed]
- Borth, D.; Ji, R.; Chen, T.; Breuel, T.; Chang, S.F. Large-scale visual sentiment ontology and detectors using adjective noun pairs. In Proceedings of the 21st ACM International Conference on Multimedia, Barcelona, Spain, 21–25 October 2013; pp. 223–232. [Google Scholar]
- Yuan, J.; Mcdonough, S.; You, Q.; Luo, J. Sentribute: Image sentiment analysis from a mid-level perspective. In Proceedings of the Second International Workshop on Issues of Sentiment Discovery and Opinion Mining—WISDOM ’13, Chicago, IL, USA, 11 August 2013; pp. 1–8. [Google Scholar]
- Zhao, Z.; Zhu, H.; Xue, Z.; Liu, Z.; Tian, J.; Chua, M.C.H.; Liu, M. An image-text consistency driven multimodal sentiment analysis approach for social media. Inf. Process. Manag. 2019, 56, 102097. [Google Scholar] [CrossRef]
- Fernandez, D.; Woodward, A.; Campos, V.; Giro-i-Nieto, X.; Jou, B.; Chang, S.-F. More cat than cute? Interpretable Prediction of Adjective-Noun Pairs. In Proceedings of the Workshop on Multimodal Understanding of Social, Affective and Subjective Attributes, Mountain View, CA, USA, 23–27 October 2017; pp. 61–69. [Google Scholar]
- Yang, J.; She, D.; Sun, M.; Cheng, M.-M.; Rosin, P.L.; Wang, L. Visual Sentiment Prediction Based on Automatic Discovery of Affective Regions. IEEE Trans. Multimed. 2018, 20, 2513–2525. [Google Scholar] [CrossRef]
- Wang, J.; Fu, J.; Xu, Y.; Mei, T. Beyond Object Recognition: Visual Sentiment Analysis with Deep Coupled Adjective and Noun Neural Networks. In Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16), New York, NY, USA, 9–15 July 2016; pp. 3484–3490. [Google Scholar]
- Patterson, G.; Xu, C.; Su, H.; Hays, J. The sun attribute database: Beyond categories for deeper scene understanding. Int. J. Comput. Vis. 2014, 108, 59–81. [Google Scholar] [CrossRef]
- Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271. [Google Scholar]
- Oliveira, W.B.D.; Dorini, L.B.; Minetto, R.; Silva, T.H. Outdoorsent: Sentiment analysis of urban outdoor images by using semantic and deep features. ACM Trans. Inf. Syst. (TOIS) 2020, 38, 1–28. [Google Scholar] [CrossRef]
- Zhou, B.; Lapedriza, A.; Khosla, A.; Oliva, A.; Torralba, A. Places: A 10 million image database for scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 1452–1464. [Google Scholar] [CrossRef] [PubMed]
- You, Q.; Luo, J.; Jin, H.; Yang, J. Robust image sentiment analysis using progressively trained and domain transferred deep networks. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, AAAI’15, Austin, TX, USA, 25–30 January 2015; AAAI Press: Washington, DC, USA, 2015; pp. 381–388. [Google Scholar]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826. [Google Scholar]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 10012–10022. [Google Scholar]
- Pistola, T.; Georgakopoulou, N.; Shvets, A.; Chatzistavros, K.; Xefteris, V.R.; García, A.T.; Koulalis, I.; Diplaris, S.; Wanner, L.; Vrochidis, S.; et al. Imageability-based multi-modal analysis of urban environments for architects and artists. In Image Analysis and Processing, Proceedings of the ICIAP 2022 Workshops: ICIAP International Workshops, Lecce, Italy, 23–27 May 2022; Revised Selected Papers, Part I; Springer International Publishing: Cham, Switzerland, 2022; pp. 198–209. [Google Scholar]
- Vildjiounaite, E.; Huotari, V.; Kallio, J.; Kyllönen, V.; Mäkelä, S.M.; Gimel’farb, G. Unobtrusive assessment of stress of office workers via analysis of their motion trajectories. Pervasive Mob. Comput. 2019, 58, 101028. [Google Scholar] [CrossRef]
- Gall, D.; Roth, D.; Stauffert, J.P.; Zarges, J.; Latoschik, M.E. Embodiment in virtual reality intensifies emotional responses to virtual stimuli. Front. Psychol. 2021, 12, 674179. [Google Scholar] [CrossRef]
V_1 | V_2 | V_3 | V_4 | V_5 | Mean | SD | |
---|---|---|---|---|---|---|---|
Subject_1 | 0.500 | 0.375 | 0.750 | 0.750 | 0.500 | 0.575 | 0.150 |
Subject_2 | 0.625 | 0.000 | 0.000 | 0.000 | 0.125 | 0.150 | 0.242 |
Subject_3 | 0.750 | 0.500 | 0.375 | 0.875 | 1.000 | 0.700 | 0.232 |
Subject_4 | 0.875 | 0.500 | 0.875 | 0.625 | 0.375 | 0.650 | 0.200 |
Subject_5 | 0.000 | 0.625 | 0.500 | 0.875 | 0.000 | 0.400 | 0.348 |
Subject_6 | 0.125 | 0.125 | 0.125 | 0.500 | 0.000 | 0.175 | 0.170 |
Subject_7 | 0.125 | 0.000 | 0.625 | 0.500 | 0.375 | 0.325 | 0.232 |
Subject_8 | 0.500 | 0.375 | 0.625 | 0.500 | 0.500 | 0.500 | 0.079 |
Subject_9 | 0.250 | 0.750 | 0.625 | 0.125 | 0.750 | 0.500 | 0.262 |
Subject_10 | 0.500 | 0.125 | 0.500 | 0.000 | 0.625 | 0.350 | 0.242 |
Mean Over Subjects | 0.425 | 0.338 | 0.500 | 0.475 | 0.425 |
A_1 | A_2 | Al_3 | Al_4 | A_5 | Mean | SD | |
---|---|---|---|---|---|---|---|
Subject_1 | 0.163 | 0.225 | 0.100 | 0.163 | 0.000 | 0.130 | 0.076 |
Subject_2 | 0.523 | 0.291 | 0.293 | 0.294 | 0.641 | 0.408 | 0.147 |
Subject_3 | 0.350 | 0.225 | 0.350 | 0.350 | 0.350 | 0.325 | 0.050 |
Subject_4 | 0.225 | 0.225 | 0.162 | 0.225 | 0.163 | 0.200 | 0.031 |
Subject_5 | 0.825 | 0.350 | 0.438 | 0.350 | 0.350 | 0.463 | 0.184 |
Subject_6 | 0.625 | 0.625 | 0.288 | 0.100 | 0.288 | 0.385 | 0.208 |
Subject_7 | 0.475 | 0.813 | 0.163 | 0.100 | 0.225 | 0.355 | 0.262 |
Subject_8 | 0.688 | 0.288 | 0.225 | 0.225 | 0.225 | 0.330 | 0.180 |
Subject_9 | 0.561 | 0.100 | 0.000 | 0.425 | 0.163 | 0.250 | 0.210 |
Subject_10 | 0.288 | 0.100 | 0.163 | 0.288 | 0.225 | 0.213 | 0.073 |
Mean Over Subjects | 0.472 | 0.324 | 0.218 | 0.252 | 0.263 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kosti, M.V.; Georgakopoulou, N.; Diplaris, S.; Pistola, T.; Chatzistavros, K.; Xefteris, V.-R.; Tsanousa, A.; Vrochidis, S.; Kompatsiaris, I. Assessing Virtual Reality Spaces for Elders Using Image-Based Sentiment Analysis and Stress Level Detection. Sensors 2023, 23, 4130. https://doi.org/10.3390/s23084130
Kosti MV, Georgakopoulou N, Diplaris S, Pistola T, Chatzistavros K, Xefteris V-R, Tsanousa A, Vrochidis S, Kompatsiaris I. Assessing Virtual Reality Spaces for Elders Using Image-Based Sentiment Analysis and Stress Level Detection. Sensors. 2023; 23(8):4130. https://doi.org/10.3390/s23084130
Chicago/Turabian StyleKosti, Makrina Viola, Nefeli Georgakopoulou, Sotiris Diplaris, Theodora Pistola, Konstantinos Chatzistavros, Vasileios-Rafail Xefteris, Athina Tsanousa, Stefanos Vrochidis, and Ioannis Kompatsiaris. 2023. "Assessing Virtual Reality Spaces for Elders Using Image-Based Sentiment Analysis and Stress Level Detection" Sensors 23, no. 8: 4130. https://doi.org/10.3390/s23084130
APA StyleKosti, M. V., Georgakopoulou, N., Diplaris, S., Pistola, T., Chatzistavros, K., Xefteris, V.-R., Tsanousa, A., Vrochidis, S., & Kompatsiaris, I. (2023). Assessing Virtual Reality Spaces for Elders Using Image-Based Sentiment Analysis and Stress Level Detection. Sensors, 23(8), 4130. https://doi.org/10.3390/s23084130