Development of a Stable Oxygen Sensor Using a 761 nm DFB Laser and Multi-Pass Absorption Spectroscopy for Field Measurements
Abstract
:1. Introduction
2. Theory and Simulation
2.1. Theory of WMS-2f/1f Technology
2.2. Selection of O2 Absorption Line
2.3. Simulation
3. System Design
3.1. System Structure
3.2. LabVIEW-Based Data Processing and Signal Generation Platform
4. Sensor Performance
4.1. Modulation Amplitude Optimization
4.2. Calibration and Fitting
4.3. Response Time and Stability
5. Atmospheric O2 Detection
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- 1910.146; Occupational Safety and Health Standards. U.S. Department of Labor: Washington, DC, USA, 2013.
- Smith, P.A.; Lockhart, B.; Besser, B.W.; Michalski, M.A. Exposure of unsuspecting workers to deadly atmospheres in below-ground confined spaces and investigation of related whole-air sample composition using adsorption gas chromatography. J. Occup. Environ. Hyg. 2014, 11, 800–808. [Google Scholar] [CrossRef]
- Wei, Y.B.; Chang, J.; Lian, J.; Liu, T.Y. Multi-point optical fibre oxygen sensor based on laser absorption spectroscopy. Optik 2015, 126, 2394–2397. [Google Scholar] [CrossRef]
- Inaba, T.; Saji, K. Low temperature operation of thin-film limiting-current type oxygen sensor using graded-composition layer electrodes. Photoacoustics 2008, 129, 874–880. [Google Scholar] [CrossRef]
- Lee, H.J.; Kim, H.M.; Park, J.H.; Lee, S.K. Fabrication and characterization of micro dissolved oxygen sensor activated on demand using electrolysis. Sens. Actuators B Chem. 2017, 241, 923–930. [Google Scholar] [CrossRef]
- Wei, Y.G.; Jiao, Y.S.; An, D.; Li, D.L.; Li, W.S.; Wei, Q. Review of dissolved oxygen detection technology: From laboratory analysis to online intelligent detection. Sensors 2019, 19, 3995. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.D.; Liu, Y.H.; Lin, H.Y.; Liu, B.; Gu, X.H.; Li, D.Q.; Huang, B.C.; Wu, Y.C.; Dong, L.P.; Zhu, W.G. Quartz-enhanced photoacoustic spectroscopy employing pilot line manufactured custom tuning forks. Photoacoustics 2020, 17, 100158. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.F.; Hong, Y.H.; Qiao, S.D.; Lang, Z.T.; Liu, X.N. H-shaped acoustic micro-resonator-based quartz-enhanced photoacoustic spectroscopy. Opt. Lett. 2022, 47, 601–604. [Google Scholar] [CrossRef] [PubMed]
- Zhang, E.J.; Brumfield, B.; Wysocki, G. Hybrid Faraday rotation spectrometer for sub-ppm detection of atmospheric O2. Opt. Express 2014, 22, 15957–15968. [Google Scholar] [CrossRef]
- Westberg, J.; Wysocki, G. Cavity ring-down Faraday rotation spectroscopy for oxygen detection. Appl. Phys. B 2017, 123, 168. [Google Scholar] [CrossRef]
- Brecha, R.J.; Pedrotti, L.M.; Krause, D. Magnetic rotation spectroscopy of molecular oxygen with a diode laser. JOSA B 1997, 14, 1921–1930. [Google Scholar] [CrossRef]
- Hodgkinson, J.; Tatam, R.P. Optical gas sensing: A review. Meas. Sci. Technol. 2012, 24, 012004. [Google Scholar] [CrossRef]
- Ren, W.; Luo, L.Q.; Tittel, F.K. Sensitive detection of formaldehyde using an interband cascade laser near 3.6 μm. Sens. Actuators B Chem. 2015, 221, 1062–1068. [Google Scholar] [CrossRef]
- Weldon, V.; O’Gorman, J.; Pérez-Camacho, J.J.; Hegarty, J.; Connolly, J.C.; Morris, N.A. Oxygen sensing using single-frequency DFB laser diodes at λ = 761 nm. Sens. Actuators B Chem. 1997, 42, 163–168. [Google Scholar] [CrossRef]
- Zhang, S.; Dong, F.; Zhang, Z.; Wang, Y.; Kan, R.; Zhang, Y.; Liu, J.; Liu, W. Monitoring of Oxygen Concentration Based on Tunable Diode Laser Absorption Spectroscopy. Spectrosc. Spect. Anal. 2009, 29, 2593–2596. [Google Scholar]
- Zhou, X.; Yu, J.; Wang, L.; Gao, Q.; Zhang, Z.G. Sensitive detection of oxygen using a diffused integrating cavity as a gas absorption cell. Sens. Actuators B Chem. 2017, 241, 1076–1081. [Google Scholar] [CrossRef]
- Luo, Q.; Zhou, J.; Li, W.; Yang, C.; Gui, W. Interference Fringe Suppression for Oxygen Concentration Measurement Using Adaptive Harmonic Feeding Generative Adversarial Network. IEEE Sens. J. 2021, 22, 2419–2429. [Google Scholar] [CrossRef]
- Rieker, G.B.; Jeffries, J.B.; Hanson, R.K. Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments. Appl. Opt. 2009, 48, 5546–5560. [Google Scholar] [CrossRef]
- Du, Y.J.; Peng, Z.M.; Ding, Y.J. Wavelength modulation spectroscopy for recovering absolute absorbance. Opt. Express 2018, 26, 9263–9272. [Google Scholar] [CrossRef] [PubMed]
- Qu, Z.C.; Ghorbani, R.; Valiev, D.; Schmidt, F.M. Calibration-free scanned wavelength modulation spectroscopy–application to H2O and temperature sensing in flames. Opt. Express 2015, 23, 16492–16499. [Google Scholar] [CrossRef]
- Neethu, S.; Verma, R.; Kamble, S.S.; Radhakrishnan, J.K.; Krishnapur, P.P.; Padaki, V.C. Validation of wavelength modulation spectroscopy techniques for oxygen concentration measurement. Sens. Actuators B Chem. 2014, 192, 70–76. [Google Scholar] [CrossRef]
- Li, C.G.; Dong, L.; Zheng, C.T.; Tittel, F.K. Compact TDLAS based optical sensor for ppb-level ethane detection by use of a 3.34 μm room-temperature CW interband cascade laser. Sens. Actuators B Chem. 2016, 232, 188–194. [Google Scholar] [CrossRef]
- He, Q.X.; Dang, P.P.; Liu, Z.W.; Zheng, C.T.; Wang, Y.D. TDLAS–WMS based near-infrared methane sensor system using hollow-core photonic crystal fiber as gas-chamber. Opt. Quantum Electron 2017, 49, 115. [Google Scholar] [CrossRef]
- Guo, X.; Zheng, F.; Li, C.; Yang, X.; Li, N.; Liu, S.; Wei, J.; Qiu, X.; He, Q. A portable sensor for in-situ measurement of ammonia based on near-infrared laser absorption spectroscopy. Opt. Laser Eng. 2019, 115, 243–248. [Google Scholar] [CrossRef]
- Lewen, Z.; Zhirong, Z.; Qianjin, W.; Pengshuai, S.; Bian, W.; Tao, P.; Hua, X.; Sigrist, M.W. A sensitive carbon monoxide sensor for industrial process control based on laser absorption spectroscopy with a 2.3 μm distributed feedback laser. Opt. Laser Eng. 2022, 152, 106950. [Google Scholar] [CrossRef]
- Li, H.; Rieker, G.B.; Liu, X.; Jeffries, J.B.; Hanson, R.K. Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases. Appl. Opt. 2006, 45, 1052–1061. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.J.; Wang, D.; Lv, Y.; Li, P.Y.; Li, D.; Li, Y.S. In-situ laser detection of water vapor based on circular prism array multi-pass cell enhanced near-infrared absorption spectroscopy. Infrared Phys. Technol. 2021, 116, 103811. [Google Scholar] [CrossRef]
- Gordon, I.E.; Rothman, L.S.; Hargreaves, R.J.; Hashemi, R.; Karlovets, E.V.; Skinner, F.M.; Conway, E.K.; Hill, C.; Kochanov, R.V.; Tan, Y.; et al. The HITRAN2020 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2022, 277, 107949. [Google Scholar] [CrossRef]
- Luo, Q.; Yang, C.; Song, C.; Zhou, J.; Gui, W. TDLAS/WMS embedded system for oxygen concentration detection of glass vials with variational mode decomposition. IFAC-Pap. 2020, 53, 11626–11631. [Google Scholar] [CrossRef]
- Jatana, G.S.; Perfetto, A.K.; Geckler, S.C.; Partridge, W.P. Absorption spectroscopy based high-speed oxygen concentration measurements at elevated gas temperatures. Sens. Actuators B Chem. 2019, 293, 173–182. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, J.; He, Q.; Li, M. Development of a Stable Oxygen Sensor Using a 761 nm DFB Laser and Multi-Pass Absorption Spectroscopy for Field Measurements. Sensors 2023, 23, 4274. https://doi.org/10.3390/s23094274
Chang J, He Q, Li M. Development of a Stable Oxygen Sensor Using a 761 nm DFB Laser and Multi-Pass Absorption Spectroscopy for Field Measurements. Sensors. 2023; 23(9):4274. https://doi.org/10.3390/s23094274
Chicago/Turabian StyleChang, Jvqiang, Qixin He, and Mengxin Li. 2023. "Development of a Stable Oxygen Sensor Using a 761 nm DFB Laser and Multi-Pass Absorption Spectroscopy for Field Measurements" Sensors 23, no. 9: 4274. https://doi.org/10.3390/s23094274