Deduced Respiratory Scores on COVID-19 Patients Learning from Exertion-Induced Dyspnea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Data Processing
2.1.1. Experimental Setup
2.1.2. Data Collection from COVID-19 Patients
2.1.3. Healthy Participant Study Protocol
2.2. Statistical Analysis
2.2.1. Data Preprocessing
2.2.2. Channel and Epoch Selection
3. Results
3.1. Feature Analysis and Comparison
3.2. Dyspnea Classification Model
3.3. Correlated Respiratory Scores
4. Discussion
- Presently we only deduced respiratory scores of COVID-19 patients using our previous ML model built on physiologically induced dyspnea on healthy subjects. We had limited ground truth about the dyspnea experienced by COVID-19 patients during the long-term continuous monitoring. In the future, we should gather more clinical information that can help evaluate lung involvement, even if not collected repetitiously. For example, continuous measurements of oxygen saturation (SpO2) and heart rates can be used as indirect references to respiratory conditions.
- SNR of the present wearable sensors in clinical settings needed further improvement. We relied on epoch selection to eliminate noisy periods. Sensor improvement for higher SNR and higher tolerance to subject motion interference should be investigated.
- The population size for this study was relatively small (n = 12). In the future, we should broaden the demographic diversity of the clinical studies to be more statistically significant, with probable inclusion of pneumonia patients from different disorders.
- We can extend the study to patients with various cardiopulmonary disorders of lung involvement to establish the true effectiveness of the proposed respiratory score, for example, COPD, asthma, and other types of pneumonia.
- Feature selection and reduction is still desirable in future studies. To avoid the “curse of dimensionality” and to find the most correlated respiratory features, we can implement feature reduction algorithms before inputting data into the ML model.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lansing, R.W.; Gracely, R.H.; Banzett, R.B. The multiple dimensions of dyspnea: Review and hypotheses. Respir. Physiol. Neurobiol. 2009, 167, 53–60. [Google Scholar] [CrossRef]
- Mahler, D.A.; Weinberg, D.H.; Wells, C.K.; Feinstein, A.R. The measurement of dyspnea: Contents, interobserver agreement, and physiologic correlates of two new clinical indexes. Chest 1984, 85, 751–758. [Google Scholar] [CrossRef]
- Berliner, D.; Schneider, N.; Welte, T.; Bauersachs, J. The differential diagnosis of dyspnea. Dtsch. Arztebl. Int. 2016, 113, 834. [Google Scholar] [CrossRef]
- da Rosa Mesquita, R.; Francelino Silva Junior, L.C.; Santos Santana, F.M.; Farias de Oliveira, T.; Campos Alcântara, R.; Monteiro Arnozo, G.; Rodrigues da Silva Filho, E.; Galdino dos Santos, A.G.; Oliveira da Cunha, E.J.; Salgueiro de Aquino, S.H. Clinical manifestations of COVID-19 in the general population: Systematic review. Wien. Klin. Wochenschr. 2021, 133, 377–382. [Google Scholar] [CrossRef]
- Cohen, P.A.; Hall, L.E.; John, J.N.; Rapoport, A.B. The early natural history of SARS-CoV-2 infection: Clinical observations from an urban, ambulatory COVID-19clinic. In Mayo Clinic Proceedings; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1124–1126. [Google Scholar]
- Shi, L.; Wang, Y.; Wang, Y.; Duan, G.; Yang, H. Dyspnea rather than fever is a risk factor for predicting mortality in patients with COVID-19. J. Infect. 2020, 81, 647–679. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Peng, F.; Xu, B.; Zhao, J.; Liu, H.; Peng, J.; Li, Q.; Jiang, C.; Zhou, Y.; Liu, S. Risk factors of critical & mortal COVID-19 cases: A systematic literature review and meta-analysis. J. Infect. 2020, 81, e16–e25. [Google Scholar]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Lam, G.Y.; Befus, A.D.; Damant, R.W.; Ferrara, G.; Fuhr, D.P.; Stickland, M.K.; Varughese, R.A.; Wong, E.Y.; Smith, M.P. Exertional intolerance and dyspnea with preserved lung function: An emerging long COVID phenotype? Respir. Res. 2021, 22, 222. [Google Scholar] [CrossRef]
- Trillig, A.U.; Ljuslin, M.; Mercier, J.; Harrisson, M.; Vayne-Bossert, P. “I am not the same man…”: A case report of management of post-COVID-19 refractory dyspnea. J. Palliat. Med. 2022, 25, 1606–1609. [Google Scholar] [CrossRef] [PubMed]
- Wirth, K.J.; Scheibenbogen, C. Dyspnea in post-COVID-19 syndrome following mild acute COVID-19infections: Potential causes and consequences for a therapeutic approach. Medicina 2022, 58, 419. [Google Scholar] [CrossRef] [PubMed]
- Luchian, M.-L.; Motoc, A.; Lochy, S.; Magne, J.; Belsack, D.; De Mey, J.; Roosens, B.; Van den Bussche, K.; Boeckstaens, S.; Chameleva, H. Subclinical myocardial dysfunction in patients with persistent dyspnea one year after COVID-19. Diagnostics 2021, 12, 57. [Google Scholar] [CrossRef] [PubMed]
- Curci, C.; Pisano, F.; Bonacci, E.; Camozzi, D.M.; Ceravolo, C.; Bergonzi, R.; De Franceschi, S.; Moro, P.; Guarnieri, R.; Ferrillo, M. Early rehabilitation in post-acute COVID-19 patients: Data from an Italian COVID-19 Rehabilitation Unit and proposal of a treatment protocol. Eur. J. Phys. Rehabil. Med. 2020, 56, 633–641. [Google Scholar] [CrossRef]
- Spiesshoefer, J.; Friedrich, J.; Regmi, B.; Geppert, J.; Jörn, B.; Kersten, A.; Giannoni, A.; Boentert, M.; Marx, G.; Marx, N. Diaphragm dysfunction as a potential determinant of dyspnea on exertion in patients 1 year after COVID-19-related ARDS. Respir. Res. 2022, 23, 187. [Google Scholar] [CrossRef]
- Núñez-Cortés, R.; Rivera-Lillo, G.; Arias-Campoverde, M.; Soto-García, D.; García-Palomera, R.; Torres-Castro, R. Use of sit-to-stand test to assess the physical capacity and exertional desaturation in patients post COVID-19. Chronic Respir. Dis. 2021, 18, 1479973121999205. [Google Scholar] [CrossRef]
- Greenhalgh, T.; Koh, G.C.H.; Car, J. COVID-19: A remote assessment in primary care. BMJ 2020, 368, m1182. [Google Scholar] [CrossRef]
- Bestall, J.; Paul, E.; Garrod, R.; Garnham, R.; Jones, P.; Wedzicha, J. Usefulness of the Medical Research Council (MRC) dyspnoea scale as a measure of disability in patients with chronic obstructive pulmonary disease. Thorax 1999, 54, 581–586. [Google Scholar] [CrossRef]
- Boshuizen, R.C.; Vincent, A.D.; Van Den Heuvel, M.M. Comparison of modified Borg scale and visual analog scale dyspnea scores in predicting re-intervention after drainage of malignant pleural effusion. Support. Care Cancer 2013, 21, 3109–3116. [Google Scholar] [CrossRef]
- Berezin, L.; Zhabokritsky, A.; Andany, N.; Chan, A.K.; Gershon, A.; Lam, P.W.; Leis, J.A.; MacPhee, S.; Mubareka, S.; Simor, A.E. The diagnostic accuracy of subjective dyspnea in detecting hypoxemia among outpatients with COVID-19. medRxiv, 2020; 2020.08.10.20172262. [Google Scholar]
- Balbi, M.; Conti, C.; Imeri, G.; Caroli, A.; Surace, A.; Corsi, A.; Mercanzin, E.; Arrigoni, A.; Villa, G.; Di Marco, F. Post-discharge chest CT findings and pulmonary function tests in severe COVID-19 patients. Eur. J. Radiol. 2021, 138, 109676. [Google Scholar] [CrossRef] [PubMed]
- You, J.; Zhang, L.; Zhang, J.; Hu, F.; Chen, L.; Dong, Y.; Yang, K.; Zhang, B.; Zhang, S. Anormal pulmonary function and residual CT abnormalities in rehabilitating COVID-19 patients after discharge. J. Infect. 2020, 81, e150–e152. [Google Scholar] [CrossRef] [PubMed]
- Hope, M.D.; Raptis, C.A.; Shah, A.; Hammer, M.M.; Henry, T.S. A role for CT in COVID-19? What data really tell us so far. Lancet 2020, 395, 1189–1190. [Google Scholar] [CrossRef]
- Brüllmann, G.; Fritsch, K.; Thurnheer, R.; Bloch, K.E. Respiratory monitoring by inductive plethysmography in unrestrained subjects using position sensor-adjusted calibration. Respiration 2010, 79, 112–120. [Google Scholar] [CrossRef]
- Chu, M.; Nguyen, T.; Pandey, V.; Zhou, Y.; Pham, H.N.; Bar-Yoseph, R.; Radom-Aizik, S.; Jain, R.; Cooper, D.M.; Khine, M. Respiration rate and volume measurements using wearable strain sensors. NPJ Digit. Med. 2019, 2, 8. [Google Scholar] [CrossRef]
- Ferguson, G.T.; Enright, P.L.; Buist, A.S.; Higgins, M.W. Office spirometry for lung health assessment in adults: A consensus statement from the National Lung Health Education Program. Chest 2000, 117, 1146–1161. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Sharma, P.; Conroy, T.B.; Phongtankuel, V.; Kan, E.C. Objective scoring of physiologically induced dyspnea by non-invasive rf sensors. IEEE. Trans. Biomed. Engr. 2021, 69, 432–442. [Google Scholar] [CrossRef]
- Hui, X.; Kan, E.C. Monitoring vital signs over multiplexed radio by near-field coherent sensing. Nat. Electron. 2018, 1, 74–78. [Google Scholar] [CrossRef]
- Zhou, J.; Sharma, P.; Hui, X.; Kan, E.C. A wireless wearable RF sensor for brumation study of chelonians. IEEE J. Electromagn. RF Microw. Med. Biol. 2020, 5, 17–24. [Google Scholar] [CrossRef]
- BowflexStories, “Bowflex® Bodyweight Workout|Five-Minute Cardio Blast Workout,” YouTube, 21-October-2015. Available online: https://www.youtube.com/watch?v=BR0jT6JxH-o (accessed on 6 September 2022).
- Schafer, R.W. What is a Savitzky-Golay filter? [lecture notes]. IEEE Signal Process. Mag. 2011, 28, 111–117. [Google Scholar] [CrossRef]
- Lu, W.; Nystrom, M.M.; Parikh, P.J.; Fooshee, D.R.; Hubenschmidt, J.P.; Bradley, J.D.; Low, D.A. A semi-automatic method for peak and valley detection in free-breathing respiratory waveforms. Med. Phys. 2006, 33, 3634–3636. [Google Scholar] [CrossRef] [PubMed]
- Kullback, S. The Kullback-Leibler distance. Am. Stat. 1987, 41, 340–341. [Google Scholar]
- Lutfiyya, M.N.; Henley, E.; Chang, L.F.; Reyburn, S.W. Diagnosis and treatment of community-acquired pneumonia. Am. Fam. Physician 2006, 73, 442–450. [Google Scholar]
- Anzueto, A.; Miravitlles, M. Pathophysiology of dyspnea in COPD. Postgrad. Med. 2017, 129, 366–374. [Google Scholar] [CrossRef] [PubMed]
(a) | ||||
---|---|---|---|---|
Datasets | Gender | Number | BMI (µ ± σ) | Age (µ ± σ) |
COVID-19 | Male | 8 | 30 ± 7.3 | - |
Female | 4 | 28 ± 6.3 | - | |
Exp 1 | Male | 7 | 23 ± 2.5 | 29 ± 12 |
Female | 6 | 21 ± 3.7 | 21 ± 2 | |
Exp 2 | Male | 14 | 23 ± 2.5 | 28 ± 9 |
Female | 18 | 20 ± 1.3 | 24 ± 2 | |
(b) | ||||
Participants | Recording Time | Sensors | ||
COVID-19 | 12 COVID-19 patients | Continuous 14 h | NCS with accelerometers | |
Exp. 1 | 13 healthy subjects | 1. Normal (30 min) 2. Post-exercise (5 min) | NCS with accelerometers | |
Exp. 2 [26] | 32 healthy subjects | 1. Normal (5 min) 2. Post-exercise (5 min) | Wearable NCS by SDR |
(a) | |||||||
---|---|---|---|---|---|---|---|
Extracted Parameters | Description | ||||||
Breath Rate (BR) | Inverse of the interval between two neighboring minima | ||||||
Peak-to-Peak (PP) | Lung volume estimated by difference in successive peaks | ||||||
Inhalation Interval (IN) | Time difference between a minimum and the next maximum | ||||||
Exhalation Interval (EX) | Time difference between a maximum and the next minimum | ||||||
Inter-Breath Interval (IBI) | Interval between two neighboring maxima | ||||||
In- Ex Ratio (IER) | Inhalation/exhalation interval ratio | ||||||
In- Ex Volume Ratio (IEPP) | Inhalation/exhalation volume ratio | ||||||
(b) | |||||||
µBR | µPP | µIN | µEX | µIBI | µIER | µIEPP | |
σBR | σPP | σIN | σEX | σIBI | σIER | σIEPP | |
CoVBR | CoVPP | CoVIN | CoVEX | CoVIBI | |||
ℜBR | ℜPP | ℜIN | ℜEX | ℜIBI | ℜIER | ℜIEPP | |
ςBR | ςPP | ςIN | ςEX | ςIBI | ςIER | ςIEPP | |
µskew | µkurt | entropy | cycle | ||||
(c) | |||||||
ƞf1 | ƞf2 | ƞf3 | ƞf4 | ||||
ƿf1 | ƿf2 | ƿf3 | ƿf4 | ||||
fBR | SNRBR | ||||||
(d) | |||||||
COVID-19 Acc. | Norm. NCS Exp 1 | Exer. NCS Exp 1 | Norm. Acc. Exp 1 | Exer. Acc. Exp 1 | Norm. NCS Exp 2 | Exer. NCS Exp 2 | |
Cases | 10,131 | 1049 | 188 | 918 | 231 | 256 | 240 |
Ratio (%) | 30.2 | 74.0 | 77.7 | 64.7 | 95.5 | 100 | 100 |
(a) | ||||||
---|---|---|---|---|---|---|
Norm NCS Exp 1 | Exer NCS Exp 1 | Norm ACC Exp 1 | Exer ACC Exp 1 | Norm NCS Exp 2 | Exer NCS Exp 2 | |
µBR | 2.14 | 0.17 | 2.62 | 0.16 | 1.44 | 0.30 |
σBR | 1.71 | 0.69 | 0.68 | 0.72 | 0.49 | 0.91 |
CoVBR | 3.91 | 0.76 | 2.75 | 0.65 | 1.17 | 1.03 |
CoVIBI | 4.79 | 0.99 | 3.37 | 1.08 | 1.66 | 1.33 |
ℜBR | 3.42 | 0.16 | 2.97 | 0.16 | 1.52 | 0.50 |
ℜPP | 2.96 | 0.21 | 2.34 | 0.08 | 0.98 | 0.21 |
ςIBI | 3.87 | 0.44 | 2.61 | 0.68 | 1.32 | 0.73 |
ςIER | 1.82 | 0.26 | 1.34 | 0.16 | 0.43 | 0.17 |
Avg | 3.08 | 0.46 | 2.34 | 0.46 | 1.13 | 0.65 |
(b) | ||||||
µBR | σBR | CoVBR | CoVIBI | |||
Norm | 0.05 | 0.09 | 0.12 | 0.13 | ||
Exer | 0.01 | 0.13 | 0.11 | 0.06 | ||
ℜBR | ℜPP | ςIBI | ςIER | Avg. | ||
Norm | 0.04 | 0.05 | 0.12 | 0.21 | 0.10 | |
Exer | 0.08 | 0.04 | 0.22 | 0.08 | 0.09 | |
(c) | ||||||
Training Set: | Testing Set: | |||||
Healthy Normal Exp 2 | Healthy Exertion Exp 2 | COVID-19 | Healthy Normal Exp 1 | Healthy Exertion Exp 1 | ||
Cases | 256 | 240 | 10,131 | 1049 | 188 | |
Subjects | 32 | 32 | 12 | 13 | 13 | |
Routine /subject | 5 min | 5 min | ~14 h | 30 min | 5 min | |
(d) | ||||||
COVID-19 | Healthy Normal | Healthy Exertion | ||||
Percentage of Dyspnea | 98.05% | 4.24% | 73.63% | |||
(e) | ||||||
COVID-19 vs. Healthy Normal | COVID-19 vs. Healthy Exertion | Healthy Normal vs. Healthy Exertion | ||||
T-statistic | 14.60 | 5.47 | −4.82 | |||
p-value | 4.61 × 10−13 | 2.75 × 10−5 | 1.1 × 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Zhou, J.; Conroy, T.B.; Chung, S.; Choi, J.; Chau, P.; Green, D.B.; Krieger, A.C.; Kan, E.C. Deduced Respiratory Scores on COVID-19 Patients Learning from Exertion-Induced Dyspnea. Sensors 2023, 23, 4733. https://doi.org/10.3390/s23104733
Zhang Z, Zhou J, Conroy TB, Chung S, Choi J, Chau P, Green DB, Krieger AC, Kan EC. Deduced Respiratory Scores on COVID-19 Patients Learning from Exertion-Induced Dyspnea. Sensors. 2023; 23(10):4733. https://doi.org/10.3390/s23104733
Chicago/Turabian StyleZhang, Zijing, Jianlin Zhou, Thomas B. Conroy, Samuel Chung, Justin Choi, Patrick Chau, Daniel B. Green, Ana C. Krieger, and Edwin C. Kan. 2023. "Deduced Respiratory Scores on COVID-19 Patients Learning from Exertion-Induced Dyspnea" Sensors 23, no. 10: 4733. https://doi.org/10.3390/s23104733