Nondestructive Detection of Egg Freshness Based on Infrared Thermal Imaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Thermal Excitation Temperature and Time Optimization Based on Finite Element Analysis of Egg Heat Transfer
2.1.1. Fluid and Heat Transfer Solutions
2.1.2. Geometry and Grid Generation in ANSYS
2.1.3. Initial and Boundary Conditions
2.1.4. Post-Processing Analysis
2.2. Pulsed Thermographic Imaging System
2.2.1. Sample Preparation
2.2.2. Egg Thermal Infrared Image Acquisition System
2.3. Modeling and Classification of Eggs Using Machine Learning
2.3.1. Mathematical Mechanistic Analysis
2.3.2. Thermal Image Processing and Feature Selection
2.3.3. Modeling and Classification
2.4. Modeling and Classification of Eggs Using Deep Learning
2.4.1. Dataset
2.4.2. Convolutional Neural Network
2.4.3. Transfer Learning
2.4.4. VGGNet and SegNet Networks
2.4.5. Neural Network Training and Image Segmentation
2.4.6. Image Feature Extraction after SegNet Segmentation
2.4.7. Support Vector Machine (SVM) Modeling and Classification
3. Results and Discussion
3.1. Thermal Infrared Image of the Egg Blunt End
3.2. Classification by Machine Learning
3.3. Classification by SVM with Deep Learning
3.4. Results Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Karoui, R.; Kemps, B.; Bamelis, F.; De Ketelaere, B.; Merten, K.; Schoonheydt, R.; Decuypere, E.; De Baerdemaeker, J. Development of a rapid method based on front-face fluorescence spectroscopy for the monitoring of egg freshness: 2—Evolution of egg yolk. Eur. Food Res. Technol. 2006, 223, 180–188. [Google Scholar] [CrossRef]
- Yimenu, S.M.; Koo, J.; Kim, J.; Kim, J.; Kim, B. Kinetic modeling impacts of relative humidity, storage temperature, and air flow velocity on various indices of hen egg freshness. Poult. Sci. 2018, 97, 4384–4391. [Google Scholar] [CrossRef]
- Feddern, V.; Prá, M.C.D.; Mores, R.; Nicoloso, R.D.S.; Coldebella, A.; Abreu, P.G.D. Egg quality assessment at different storage conditions, seasons and laying hen strains. Cienc. Agrotecnologia 2017, 41, 322–333. [Google Scholar] [CrossRef] [Green Version]
- Suman, M.; Riani, G.; Dalcanale, E. MOS-based artificial olfactory system for the assessment of egg products freshness. Sens. Actuators B Chem. 2007, 125, 40–47. [Google Scholar] [CrossRef]
- Dutta, R.; Hines, E.L.; Gardner, J.W.; Udrea, D.D.; Boilot, P. Non-destructive egg freshness determination: An electronic nose based approach. Meas. Sci. Technol. 2003, 14, 190–198. [Google Scholar] [CrossRef] [Green Version]
- Yimenu, S.M.; Kim, J.Y.; Kim, B.S. Prediction of egg freshness during storage using electronic nose. Poult. Sci. 2017, 96, 3733–3746. [Google Scholar] [CrossRef]
- Ragni, L.; Cevoli, C.; Berardinelli, A. A waveguide technique for non-destructive determination of egg quality parameters. J. Food Eng. 2010, 100, 343–348. [Google Scholar] [CrossRef]
- Soltani, M.; Omid, M. Detection of poultry egg freshness by dielectric spectroscopy and machine learning techniques. LWT-Food Sci. Technol. 2015, 62, 1034–1042. [Google Scholar] [CrossRef]
- Akbarzadeh, N.; Mireei, S.A.; Askari, G.; Mahdavi, A.H. Microwave spectroscopy based on the waveguide technique for the nondestructive freshness evaluation of egg. Food Chem. 2019, 277, 558–565. [Google Scholar] [CrossRef]
- Suktanarak, S.; Teerachaichayut, S. Non-destructive quality assessment of hens’ eggs using hyperspectral images. J. Food Eng. 2017, 215, 97–103. [Google Scholar] [CrossRef]
- Cavanna, D.; Zanardi, S.; Dall’Asta, C.; Suman, M. Ion mobility spectrometry coupled to gas chromatography: A rapid tool to assess eggs freshness. Food Chem. 2019, 271, 691–696. [Google Scholar] [CrossRef]
- Dai, D.; Jiang, T.; Lu, W.; Shen, X.; Xiu, R.; Zhang, J. Nondestructive detection for egg freshness based on hyperspectral scattering image combined with ensemble learning. Sensors 2020, 20, 5484. [Google Scholar] [CrossRef]
- Sun, L.; Yuan, L.; Cai, J.; Lin, H.; Zhao, J. Egg freshness on-line estimation using machine vision and dynamic weighing. Food Anal. Method 2015, 8, 922–928. [Google Scholar] [CrossRef]
- Harnsoongnoen, S.; Jaroensuk, N. The grades and freshness assessment of eggs based on density detection using machine vision and weighing sensor. Sci. Rep. 2021, 11, 16640. [Google Scholar] [CrossRef]
- Tan, W.; Zhang, Q.; Yang, L.; Tian, L.; Jia, J.; Lu, M.; Liu, X.; Duan, X. Actual time determination of egg freshness: A centroid rate based approach. Food Packag. Shelf Life 2020, 26, 100574. [Google Scholar] [CrossRef]
- Chen, M.; Tang, Y.; Zou, X.; Huang, K.; Huang, Z.; Zhou, H.; Wang, C.; Lian, G. Three-dimensional perception of orchard banana central stock enhanced by adaptive multi-vision technology. Comput. Electron. Agric. 2020, 174, 105508. [Google Scholar] [CrossRef]
- Tang, Y.; Huang, Z.; Chen, Z.; Chen, M.; Zhou, H.; Zhang, H.; Sun, J. Novel visual crack width measurement based on backbone double-scale features for improved detection automation. Eng. Struct. 2023, 274, 115158. [Google Scholar] [CrossRef]
- Tang, Y.; Zhu, M.; Chen, Z.; Wu, C.; Chen, B.; Li, C.; Li, L. Seismic performance evaluation of recycled aggregate concrete-filled steel tubular columns with field strain detected via a novel mark-free vision method. Structures 2022, 37, 426–441. [Google Scholar] [CrossRef]
- Wang, D.; He, D. Channel pruned YOLO V5s-based deep learning approach for rapid and accurate apple fruitlet detection before fruit thinning. Biosyst. Eng. 2021, 210, 271–281. [Google Scholar] [CrossRef]
- Tang, Y.; Qiu, J.; Zhang, Y.; Wu, D.; Cao, Y.; Zhao, K.; Zhu, L. Optimization strategies of fruit detection to overcome the challenge of unstructured background in field orchard environment: A review. Precis. Agric. 2023. [Google Scholar] [CrossRef]
- Zhao, G.; Yang, R.; Jing, X.; Zhang, H.; Wu, Z.; Sun, X.; Jiang, H.; Li, R.; Wei, X.; Fountas, S.; et al. Phenotyping of individual apple tree in modern orchard with novel smartphone-based heterogeneous binocular vision and YOLOv5s. Comput. Electron. Agric. 2023, 209, 107814. [Google Scholar] [CrossRef]
- Tang, Y.; Zhou, H.; Wang, H.; Zhang, Y. Fruit detection and positioning technology for a Camellia oleifera C. Abel orchard based on improved YOLOv4-tiny model and binocular stereo vision. Expert Syst. Appl. 2023, 211, 118573. [Google Scholar] [CrossRef]
- Varith, J.; Hyde, G.M.; Baritelle, A.L.; Fellman, J.K.; Sattabongkot, T. Non-contact bruise detection in apples by thermal imaging. Innov. Food Sci. Emerg. 2003, 4, 211–218. [Google Scholar] [CrossRef]
- Baranowski, P.; Mazurek, W.; Wozniak, J.; Majewska, U. Detection of early bruises in apples using hyperspectral data and thermal imaging. J. Food Eng. 2012, 110, 345–355. [Google Scholar] [CrossRef]
- Kim, G.; Kim, G.; Park, J.; Kim, D.; Cho, B. Application of infrared lock-in thermography for the quantitative evaluation of bruises on pears. Infrared Phys. Technol. 2014, 63, 133–139. [Google Scholar] [CrossRef]
- Kuzy, J.; Jiang, Y.; Li, C. Blueberry bruise detection by pulsed thermographic imaging. Postharvest Biol. Technol. 2018, 136, 166–177. [Google Scholar] [CrossRef]
- Chandel, A.K.; Khot, L.R.; Osroosh, Y.; Peters, T.R. Thermal-RGB imager derived in-field apple surface temperature estimates for sunburn management. Agric. For. Meteorol. 2018, 253–254, 132–140. [Google Scholar] [CrossRef]
- Freni, F.; Quattrocchi, A.; Piccolo, S.A.; Montanini, R. Quantitative evaluation of eggs freshness using flash thermography. Quant. Infrared Thermogr. 2020, 17, 13–25. [Google Scholar] [CrossRef]
- Lin, J.P.S.U.; Puri, V.M.; Anantheswaran, R.C. Strains in Eggshell during cooling of eggs—Measurement and prediction using the finite element method. Trans. ASAE 1996, 39, 1005–1012. [Google Scholar] [CrossRef]
- Sabliov, C.M.; Farkas, B.E.; Keener, K.M.; Curtis, P.A. Cooling of shell eggs with cryogenic carbon dioxide: A finite element analysis of heat transfer. LWT-Food Sci. Technol. 2004, 63, 281–290. [Google Scholar]
- Denys, S.; Pieters, J.G.; Dewettinck, K. Computational fluid dynamics analysis of combined conductive and convective heat transfer in model eggs. J. Food Eng. 2004, 63, 281–290. [Google Scholar] [CrossRef]
- Erdogdu, F.; Ferrua, M.; Singh, S.K.; Paul Singh, R. Air-impingement cooling of boiled eggs: Analysis of flow visualization and heat transfer. J. Food Eng. 2007, 79, 920–928. [Google Scholar] [CrossRef]
- Wan Nurazwin Syazwani, R.; Muhammad Asraf, H.; Megat Syahirul Amin, M.A.; Nur Dalila, K.A. Automated image identification, detection and fruit counting of top-view pineapple crown using machine learning. Alex. Eng. J. 2022, 61, 1265–1276. [Google Scholar] [CrossRef]
- Fleuret, J.; Ebrahimi, S.; Ibarra-Castanedo, C.; Maldague, X. Application of blind image quality assessment metrics to pulsed thermography. Quant. Infrared Thermogr. 2022; ahead-of-print. [Google Scholar] [CrossRef]
- Hakim, A.S.; Awale, R.N. Extraction of hottest blood vessels from breast thermograms using state-of-the-art image segmentation methods. Quant. Infrared Thermogr. 2022, 19, 347–365. [Google Scholar] [CrossRef]
- Zhao, J.; Lin, H.; Chen, Q.; Huang, X.; Sun, Z.; Zhou, F. Identification of egg’s freshness using NIR and support vector data description. J. Food Eng. 2010, 98, 408–414. [Google Scholar] [CrossRef]
- Loffredi, E.; Grassi, S.; Alamprese, C. Spectroscopic approaches for non-destructive shell egg quality and freshness evaluation: Opportunities and challenges. Food Control 2021, 129, 108255. [Google Scholar] [CrossRef]
- Keramat-Jahromi, M.; Mohtasebi, S.S.; Mousazadeh, H.; Ghasemi-Varnamkhasti, M.; Rahimi-Movassagh, M. Real-time moisture ratio study of drying date fruit chips based on on-line image attributes using kNN and random forest regression methods. Measurement 2021, 172, 108899. [Google Scholar] [CrossRef]
- Botta, B.; Gattam, S.S.R.; Datta, A.K. Eggshell crack detection using deep convolutional neural networks. J. Food Eng. 2022, 315, 110798. [Google Scholar] [CrossRef]
- Kolhar, S.; Jagtap, J. Convolutional neural network based encoder-decoder architectures for semantic segmentation of plants. Ecol. Inform. 2021, 64, 101373. [Google Scholar] [CrossRef]
- Nasiri, A.; Omid, M.; Taheri-Garavand, A. An automatic sorting system for unwashed eggs using deep learning. J. Food Eng. 2020, 283, 110036. [Google Scholar] [CrossRef]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, M.H.; Nashat, S.; Anwar, S.A.; Abdullah, M.Z. A framework for crack detection of fresh poultry eggs at visible radiation. Comput. Electron. Agric. 2017, 141, 81–95. [Google Scholar] [CrossRef]
Thermal Conductivity (W/mK) | Specific Heat (J/kg K) | Density (kg/m3) | |
---|---|---|---|
Shell | 0.4560 | 888.0 | 2300.000 |
Air cell | 0.0239 | 1008.5 | 1.265 |
Albumen | 0.5900 | 3560.0 | 1035.000 |
All Accuracy | Boundary Fitting Score | Intersection over Union | |||||
---|---|---|---|---|---|---|---|
Accuracy | Global Accuracy | Mean Accuracy | BF Score | Mean BF Score | IoU | mIoU | |
Background | 0.9862 | 0.9825 | 0.9834 | 0.9868 | 0.9822 | 0.9835 | 0.9626 |
Albumen | 0.9793 | 0.9783 | 0.9502 | ||||
Air cell | 0.9901 | 0.9924 | 0.9527 |
Egg Freshness Detection Model | Training Set Accuracy (%) | Validation Set Accuracy (%) |
---|---|---|
NBM | 86.91 | 86.03 |
KNN | 91.06 | 87.16 |
Decision Tree | 84.96 | 81.82 |
RF | 94.09 | 92.32 |
Egg Freshness Grade | Sample Size | Correct Discriminant | Accuracy (%) |
---|---|---|---|
AA | 62 | 58 | 91.78 |
A | 54 | 51 | |
B | 19 | 16 | |
C | 11 | 9 |
Kernel Function Type | Training Set Accuracy (%) | Verification Set Accuracy (%) |
---|---|---|
Linear | 90.53 | 90.92 |
Polynomial | 72.32 | 72.03 |
Radial Basis Function (RBF) | 98.97 | 95.14 |
Egg Freshness Grade | Sample Size | Correct Discriminant | Accuracy (%) |
---|---|---|---|
AA | 62 | 60 | 94.52 |
A | 54 | 51 | |
B | 18 | 16 | |
C | 12 | 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Lu, W.; Jian, X.; Hu, Q.; Dai, D. Nondestructive Detection of Egg Freshness Based on Infrared Thermal Imaging. Sensors 2023, 23, 5530. https://doi.org/10.3390/s23125530
Zhang J, Lu W, Jian X, Hu Q, Dai D. Nondestructive Detection of Egg Freshness Based on Infrared Thermal Imaging. Sensors. 2023; 23(12):5530. https://doi.org/10.3390/s23125530
Chicago/Turabian StyleZhang, Jingwei, Wei Lu, Xingliang Jian, Qingying Hu, and Dejian Dai. 2023. "Nondestructive Detection of Egg Freshness Based on Infrared Thermal Imaging" Sensors 23, no. 12: 5530. https://doi.org/10.3390/s23125530
APA StyleZhang, J., Lu, W., Jian, X., Hu, Q., & Dai, D. (2023). Nondestructive Detection of Egg Freshness Based on Infrared Thermal Imaging. Sensors, 23(12), 5530. https://doi.org/10.3390/s23125530