Using Deep Learning Architectures for Detection and Classification of Diabetic Retinopathy
Abstract
:1. Introduction
- Hybrid model: This model is a combination of the VGG16 architecture, as the feature detector; and the XGBoost algorithm, as the classifier. By leveraging the strengths of both the DL architecture and the gradient boosting classifier, we aimed to enhance the overall performance of the system.
- DenseNet 121 Model: This model is based on the DenseNet 121 architecture, which is known for its dense connectivity pattern and efficient feature extraction capabilities. We employed this model to further explore its effectiveness in the context of DR detection and classification.
2. Related Studies
3. Dataset Description
4. Methodology
4.1. Image Preprocessing
- First, all images were uniformly resized to a fixed dimension of 224 × 224 pixels, as shown in Figure 7a. This resizing step ensured that all images had the same size, facilitating consistent analysis.
- Additionally, a Gaussian blur filter was applied to reduce noise and enhance image quality.
4.2. Modeling
HybridModel: VGG16 and XGBoost Classifier
4.3. DenseNet 121 Model
4.4. Experimental Details
5. Results and Discussion
Discussion
- Preprocessing: Medical images often require specific preprocessing steps such as normalization, resizing, and data augmentation techniques tailored to the characteristics of the medical imaging data. These preprocessing steps help with improving the robustness and generalization of the model.
- Transfer learning: Given the limited availability of labeled medical image datasets, transfer learning becomes crucial. We leveraged transfer learning by initializing the VGG model with pretrained weights on large-scale image datasets and fine tuning it on our specific medical image dataset. This transfer of knowledge from general image classification tasks to the medical domain helps with learning relevant features and patterns.
- DenseNet architecture: In addition to the VGG model, we also employed the DenseNet architecture, which has shown promising performance in various medical image analysis tasks. DenseNet introduces dense connections between layers, facilitating feature reuse and gradient flow throughout the network. This architecture helps with capturing more intricate details and dependencies within the medical images.
- Class imbalance handling: Class imbalance is a common challenge in medical image classification tasks, where certain classes have significantly fewer samples than others. To address this, we employed techniques such as data augmentation, class weighting, and sampling strategies to balance the class distribution during training, ensuring that the model effectively learned from all classes.
6. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Diabetes-PAHO/WHO Pan American Health Organization. Available online: https://www.paho.org/en/topics/diabetes (accessed on 10 April 2023).
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and Regional Diabetes Prevalence Estimates for 2019 and Projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pradeepa, R.; Mohan, V. Epidemiology of Type 2 Diabetes in India. Indian J. Ophthalmol. 2021, 69, 2932. [Google Scholar] [PubMed]
- IDF Diabetes Atlas. Available online: https://diabetesatlas.org/atlas/ninth-edition (accessed on 27 March 2023).
- Chandrasekharan Kartha, C.; Ramachandran, S.; Pillai, R.M. Mechanisms of Vascular Defects in Diabetes Mellitus; Advances in Biochemistry in Health and Disease; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Sallam, A. Diabetic Retinopathy Update. Egypt. Retin. J. 2014, 2, 1. [Google Scholar] [CrossRef]
- Abramoff, M.D.; Fort, P.E.; Han, I.C.; Jayasundera, K.T.; Sohn, E.H.; Gardner, T.W. Approach for a Clinically Useful Comprehensive Classification of Vascular and Neural Aspects of Diabetic Retinal Disease. Investig. Ophthalmol. Vis. Sci. 2018, 59, 519–527. [Google Scholar] [CrossRef] [PubMed]
- Yadav, P.; Singh, S.V.; Nada, M.; Dahiya, M. Impact of Severity of Diabetic Retinopathy on Quality of Life in Type 2 Indian Diabetic Patients. Int. J. Community Med. Public Health 2021, 8, 207–211. [Google Scholar] [CrossRef]
- Salmon, J.F. Kanski’s Clinical Ophthalmology: A Systematic Approach; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Memari, N.; Abdollahi, S.; Ganzagh, M.M.; Moghbel, M. Computer-assisted Diagnosis (CAD) System for Diabetic Retinopathy Screening using Color Fundus Images using Deep Learning. In Proceedings of the IEEE Student Conference on Research and Development (SCOReD), Online, 27–29 September 2020; pp. 69–73. [Google Scholar]
- Asiri, N.M.; Hussain, M.; Adel, F.A.; Alzaidi, N. Deep Learning based Computer-Aided Diagnosis Systems for Diabetic Retinopathy: A Survey. Artif. Intell. Med. 2019, 99, 101701. [Google Scholar] [CrossRef] [Green Version]
- Carrera, E.V.; González, A.; Carrera, R. Automated Detection of Diabetic Retinopathy using SVM. In Proceedings of the IEEE XXIV International Conference on Electronics, Electrical Engineering and Computing (INTERCON), Cusco, Peru, 15–18 August 2017; pp. 1–4. [Google Scholar]
- Davenport, T.; Kalakota, R. The Potential for Artificial Intelligence in Healthcare. Future Healthc. J. 2019, 6, 94. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Gao, K.; Liu, B.; Pan, C.; Liang, K.; Yan, L.; Ma, J.; He, F.; Zhang, S.; Pan, S.; et al. Advances in Deep Learning-Based Medical Image Analysis. Health Data Sci. 2021, 2021, 8786793. [Google Scholar] [CrossRef]
- Puttagunta, M.; Subban, R. Medical Image Analysis based on Deep Learning Approach. Multimed. Tools Appl. 2021, 80, 24365–24398. [Google Scholar] [CrossRef]
- Basu, S.; Mitra, S.; Saha, N. Deep Learning for Screening COVID-19 using Chest X-ray Images. In Proceedings of the IEEE Symposium Series on Computational Intelligence (SSCI), Canberra, Australia, 1–4 December 2020; pp. 2521–2527. [Google Scholar]
- Chen, W.; Yang, B.; Li, J.; Wang, J. An Approach to Detecting Diabetic Retinopathy Based on Integrated Shallow Convolutional Neural Networks. IEEE Access 2020, 8, 178552–178562. [Google Scholar] [CrossRef]
- Das, S.; Saha, S.K. Diabetic Retinopathy Detection and Classification using CNN tuned by Genetic Algorithm. Multimed. Tools Appl. 2022, 81, 8007–8020. [Google Scholar] [CrossRef]
- Raj, M.A.H.; Al Mamun, M.; Faruk, M.F. CNN Based Diabetic Retinopathy Status Prediction using Fundus Images. In Proceedings of the IEEE Region 10 Symposium (TENSYMP), Dhaka, Bangladesh, 5–7 June 2020; pp. 190–193. [Google Scholar]
- Reguant, R.; Brunak, S.; Saha, S. Understanding Inherent Image Features in CNN-based Assessment of Diabetic Retinopathy. Sci. Rep. 2021, 11, 9704. [Google Scholar] [CrossRef]
- Patel, S. Diabetic Retinopathy Detection and Classification using Pre-trained Convolutional Neural Networks. Int. J. Emerg. Technol. 2020, 11, 1082–1087. [Google Scholar]
- Aatila, M.; Lachgar, M.; Hrimech, H.; Kartit, A. Diabetic Retinopathy Classification Using ResNet50 and VGG-16 Pretrained Networks. Int. J. Comput. Eng. Data Sci. (IJCEDS) 2021, 1, 1–7. [Google Scholar]
- Savvopoulos, A.; Kanavos, A.; Mylonas, P.; Sioutas, S. LSTM Accelerator for Convolutional Object Identification. Algorithms 2018, 11, 157. [Google Scholar] [CrossRef] [Green Version]
- Sharma, C.; Parikh, S. Comparison of CNN and Pre-Trained Models: A Study. 2022. Available online: https://www.researchgate.net/publication/359850786_Comparison_of_CNN_and_Pre-trained_models_A_Study (accessed on 1 May 2023).
- Tuyen, D.N.; Tuan, T.M.; Son, L.H.; Ngan, T.T.; Giang, N.L.; Thong, P.H.; Hieu, V.V.; Gerogiannis, V.C.; Tzimos, D.; Kanavos, A. A Novel Approach Combining Particle Swarm Optimization and Deep Learning for Flash Flood Detection from Satellite Images. Mathematics 2021, 9, 2846. [Google Scholar] [CrossRef]
- Adriman, R.; Muchtar, K.; Maulina, N. Performance Evaluation of Binary Classification of Diabetic Retinopathy through Deep Learning Techniques using Texture Feature. Procedia Comput. Sci. 2021, 179, 88–94. [Google Scholar] [CrossRef]
- Ramchandre, S.; Patil, B.; Pharande, S.; Javali, K.; Pande, H. A Deep Learning Approach for Diabetic Retinopathy detection using Transfer Learning. In Proceedings of the IEEE International Conference for Innovation in Technology (INOCON), Bangluru, India, 6–8 November 2020; pp. 1–5. [Google Scholar]
- Dai, L.; Wu, L.; Li, H.; Cai, C.; Wu, Q.; Kong, H.; Liu, R.; Wang, X.; Hou, X.; Liu, Y.; et al. A Deep Learning System for Detecting Diabetic Retinopathy across the Disease Spectrum. Nat. Commun. 2021, 12, 3242. [Google Scholar] [CrossRef]
- Tymchenko, B.; Marchenko, P.; Spodarets, D. Deep Learning Approach to Diabetic Retinopathy Detection. arXiv 2020, arXiv:2003.02261. [Google Scholar]
- Mateen, M.; Wen, J.; Hassan, M.; Nasrullah, N.; Song, S.; Hayat, S. Automatic Detection of Diabetic Retinopathy: A Review on Datasets, Methods and Evaluation Metrics. IEEE Access 2020, 8, 48784–48811. [Google Scholar] [CrossRef]
- Leopold, H.A.; Orchard, J.; Zelek, J.S.; Lakshminarayanan, V. PixelBNN: Augmenting the PixelCNN with Batch Normalization and the Presentation of a Fast Architecture for Retinal Vessel Segmentation. J. Imaging 2019, 5, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voets, M.; Møllersen, K.; Bongo, L.A. Reproduction Study using Public Data of: Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. PLoS ONE 2019, 14, e0217541. [Google Scholar] [CrossRef] [PubMed]
- Niemeijer, M.; van Ginneken, B.; Cree, M.J.; Mizutani, A.; Quellec, G.; Sánchez, C.I.; Zhang, B.; Hornero, R.; Lamard, M.; Muramatsu, C.; et al. Retinopathy Online Challenge: Automatic Detection of Microaneurysms in Digital Color Fundus Photographs. IEEE Trans. Med Imaging 2010, 29, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Messidor Project. Available online: https://www.adcis.net/en/third-party/messidor (accessed on 10 April 2023).
- APTOS 2019 Blindness Detection. Available online: https://www.kaggle.com/c/aptos2019-blindness-detection (accessed on 10 April 2023).
- Da Rocha, D.A.; Ferreira, F.M.F.; Peixoto, Z.M.A. Diabetic Retinopathy Classification using VGG16 Neural Network. Res. Biomed. Eng. 2022, 38, 761–772. [Google Scholar] [CrossRef]
- Khan, Z.; Khan, F.G.; Khan, A.; Rehman, Z.U.; Shah, S.; Qummar, S.; Ali, F.; Pack, S. Diabetic Retinopathy Detection Using VGG-NIN a Deep Learning Architecture. IEEE Access 2021, 9, 61408–61416. [Google Scholar] [CrossRef]
- Al-Antary, M.T.; Arafa, Y. Multi-Scale Attention Network for Diabetic Retinopathy Classification. IEEE Access 2021, 9, 54190–54200. [Google Scholar] [CrossRef]
- AbdelMaksoud, E.; Barakat, S.I.; Elmogy, M. A Computer-aided Diagnosis System for Detecting various Diabetic Retinopathy Grades based on a Hybrid Deep Learning Technique. Med. Biol. Eng. Comput. 2022, 60, 2015–2038. [Google Scholar] [CrossRef]
- Das, D.; Biswas, S.K.; Bandyopadhyay, S. A Critical Review on Diagnosis of Diabetic Retinopathy using Machine Learning and Deep Learning. Multimed. Tools Appl. 2022, 81, 25613–25655. [Google Scholar] [CrossRef]
- Shaila, S.G.; Lavanya, S.; Rajesh, T.M.; Bhuvana, D.S.; Deshpande, K. Early Detection of Diabetic Retinopathy Using Multimodal Approach. In Computer Vision and Robotics (CVR); Springer: Singapore, 2022; pp. 107–118. [Google Scholar]
- Barman, R.; Biswas, S.K.; Das, D.; Purkayastha, B.; Borah, M.D. Case-Based Expert System for Early Detection of Diabetic Retinopathy. In Intelligent Computing and Communication Systems; Springer: Singapore, 2021; pp. 259–267. [Google Scholar]
- Challa, U.K.; Yellamraju, P.; Bhatt, J.S. A Multi-class Deep All-CNN for Detection of Diabetic Retinopathy Using Retinal Fundus Images. In Proceedings of the 8th International Conference on Pattern Recognition and Machine Intelligence (PReMI), Tezpur, India, 17–20 December 2019; Lecture Notes in Computer Science. Springer: Cham, Switzerland, 2019; Volume 11941, pp. 191–199. [Google Scholar]
- Atwany, M.Z.; Sahyoun, A.; Yaqub, M. Deep Learning Techniques for Diabetic Retinopathy Classification: A Survey. IEEE Access 2022, 10, 28642–28655. [Google Scholar] [CrossRef]
- Wahid, F.F.; Raju, G. Diabetic Retinopathy Detection Using Convolutional Neural Network—A Study. In Data Science and Security (IDSCS); Springer: Singapore, 2021; pp. 127–133. [Google Scholar]
- Zhao, K.; Hu, J.; Shao, H.; Hu, J. Federated multi-source domain adversarial adaptation framework for machinery fault diagnosis with data privacy. Reliab. Eng. Syst. Saf. 2023, 236, 109246. [Google Scholar] [CrossRef]
- Zhao, K.; Jia, F.; Shao, H. A novel conditional weighting transfer Wasserstein auto-encoder for rolling bearing fault diagnosis with multi-source domains. Knowl.-Based Syst. 2023, 262, 110203. [Google Scholar] [CrossRef]
- Jin, B.; Cruz, L.; Gonçalves, N. Deep Facial Diagnosis: Deep Transfer Learning From Face Recognition to Facial Diagnosis. IEEE Access 2020, 8, 123649–123661. [Google Scholar] [CrossRef]
- Wang, S.; Hu, X.; Sun, J.; Liu, J. Hyperspectral anomaly detection using ensemble and robust collaborative representation. Inf. Sci. 2023, 624, 748–760. [Google Scholar] [CrossRef]
- Ban, Y.; Wang, Y.; Liu, S.; Yang, B.; Liu, M.; Yin, L.; Zheng, W. 2D/3D Multimode Medical Image Alignment Based on Spatial Histograms. Appl. Sci. 2022, 12, 8261. [Google Scholar] [CrossRef]
- Lyras, A.; Vernikou, S.; Kanavos, A.; Sioutas, S.; Mylonas, P. Modeling Credibility in Social Big Data using LSTM Neural Networks. In Proceedings of the 17th International Conference on Web Information Systems and Technologies (WEBIST), Online, 26–28 October 2021; pp. 599–606. [Google Scholar]
- Vernikou, S.; Lyras, A.; Kanavos, A. Multiclass sentiment analysis on COVID-19-related tweets using deep learning models. Neural Comput. Appl. 2022, 34, 19615–19627. [Google Scholar] [CrossRef]
- Kanavos, A.; Kounelis, F.; Iliadis, L.; Makris, C. Deep learning models for forecasting aviation demand time series. Neural Comput. Appl. 2021, 33, 16329–16343. [Google Scholar] [CrossRef]
- Mondal, S.; Mian, K.F.; Das, A. Deep Learning-based Diabetic Retinopathy Detection for Multiclass Imbalanced Data. In Recent Trends in Computational Intelligence Enabled Research; Elsevier: Amsterdam, The Netherlands, 2021; pp. 307–316. [Google Scholar]
- Saini, M.; Susan, S. Diabetic Retinopathy Screening using Deep Learning for Multi-class Imbalanced Datasets. Comput. Biol. Med. 2022, 149, 105989. [Google Scholar] [CrossRef]
- Graham, B. Kaggle Diabetic Retinopathy Detection Competition Report; University of Warwick: Coventry, UK, 2015; pp. 24–26. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the 3rd International Conference on Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Step by Step VGG16 Implementation in Keras for Beginners. Available online: https://towardsdatascience.com/step-by-step-vgg16-implementation-in-keras-for-beginners-a833c686ae6c (accessed on 10 April 2023).
- Tammina, S. Transfer Learning using VGG-16 with Deep Convolutional Neural Network for Classifying Images. Int. J. Sci. Res. Publ. (IJSRP) 2019, 9, 143–150. [Google Scholar] [CrossRef]
- What Is XGBoost? Available online: https://www.nvidia.com/en-us/glossary/data-science/xgboost (accessed on 10 April 2023).
- Ren, X.; Guo, H.; Li, S.; Wang, S.; Li, J. A Novel Image Classification Method with CNN-XGBoost Model. In Proceedings of the 16th International Workshop on Digital Forensics and Watermarking (IWDW), Magdeburg, Germany, 23–25 August 2017; Volume 10431, pp. 378–390. [Google Scholar]
- Creating DenseNet 121 with TensorFlow. Available online: https://towardsdatascience.com/creating-densenet-121-with-tensorflow-edbc08a956d8 (accessed on 10 April 2023).
- Review: DenseNet—Dense Convolutional Network (Image Classification). Available online: https://towardsdatascience.com/review-densenet-image-classification-b6631a8ef803 (accessed on 10 April 2023).
- Zhang, K.; Guo, Y.; Wang, X.; Yuan, J.; Ding, Q. Multiple Feature Reweight DenseNet for Image Classification. IEEE Access 2019, 7, 9872–9880. [Google Scholar] [CrossRef]
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. arXiv 2016, arXiv:1603.04467. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- R., Y.; Sarobin, M.V.R.; Panjanathan, R.; Jasmine, S.G.; Anbarasi, L.J. Diabetic Retinopathy Classification Using CNN and Hybrid Deep Convolutional Neural Networks. Symmetry 2022, 14, 1932. [Google Scholar] [CrossRef]
- Kurup, G.; Jothi, J.A.A.; Kanadath, A. Diabetic Retinopathy Detection and Classification using Pretrained Inception-v3. In Proceedings of the IEEE International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON), Pune, India, 29–30 October 2021; pp. 1–6. [Google Scholar]
- Kumar, R.R.; Pandian, R.; Jacob, T.P.; Pravin, A.; Indumathi, P. Detection of Diabetic Retinopathy Using Deep Convolutional Neural Networks. In Proceedings of the Computational Vision and Bio-Inspired Computing (ICCVBIC), Coimbatore, India, 25–26 November 2021; pp. 415–430. [Google Scholar]
- Gangwar, A.K.; Ravi, V. Diabetic Retinopathy Detection Using Transfer Learning and Deep Learning. In Evolution in Computational Intelligence—Frontiers in Intelligent Computing: Theory and Applications (FICTA); Advances in Intelligent Systems and Computing; Springer: Singapore, 2020; Volume 1176, pp. 679–689. [Google Scholar]
- Shi, B.; Zhang, X.; Wang, Z.; Song, J.; Han, J.; Zhang, Z.; Toe, T.T. GoogLeNet-based Diabetic-Retinopathy-Detection. In Proceedings of the 14th IEEE International Conference on Advanced Computational Intelligence (ICACI), Wuhan, China, 15–17 July 2022; pp. 246–249. [Google Scholar]
- Elsharkawy, M.; Sharafeldeen, A.; Soliman, A.; Khalifa, F.; Ghazal, M.; El-Daydamony, E.; Atwan, A.; Sandhu, H.S.; El-Baz, A. A Novel Computer-Aided Diagnostic System for Early Detection of Diabetic Retinopathy Using 3D-OCT Higher-Order Spatial Appearance Model. Diagnostics 2022, 12, 461. [Google Scholar] [CrossRef]
- Khalifa, N.E.M.; Loey, M.; Taha, M.H.N.; Mohamed, H.N.E.T. Deep Transfer Learning Models for Medical Diabetic Retinopathy Detection. Acta Inform. Med. 2019, 27, 327. [Google Scholar] [CrossRef]
- Kipli, K.; Hui, L.Y.; Tajudin, N.M.A.; Sapawi, R.; Sahari, S.K.; Mat, D.A.A.; Jalil, M.A.; Ray, K.; Kaiser, M.S.; Mahmud, M. Development of Mobile Application for Detection and Grading of Diabetic Retinopathy. In Trends in Electronics and Health Informatics (TEHI); Lecture Notes in Computer Science; Springer: Singapore, 2022; pp. 339–349. [Google Scholar]
Paper | Proposed Techniques |
---|---|
[36] | Removal of low-contrast images, data augmentation, and classification using VGG16 network. |
[37] | Utilization of spatial pyramid pooling layer and network-in-network layer in conjunction with VGG16 network. |
[38] | Introduction of a multiscale attention network (CNN) capable of detecting damages while handling high-level features. |
[39] | Development of E-DenseNet, an ensemble model combining EyeNet and DenseNet architectures. |
[41] | Texture analysis performed on balanced and imbalanced datasets using various CNN models. |
[42] | Implementation of an expert system utilizing case-based reasoning with retina image processing and feature extraction. |
[43] | Adoption of an All-CNN network consisting of ten convolution layers and a softmax layer. |
Current approach | Two DL models are examined: a hybrid model (a combination of VGG16 and XGBoost Classifier) and one based on the DenseNet 121 architecture. |
Class | 0 | 1 | 2 | 3 | 4 |
Classification | Non-DR | Mild DR | Moderate DR | Severe DR | Proliferative DR |
Severity Level | Number of Samples |
---|---|
Class 0 (normal) | 1805 |
Class 1 (mild) | 370 |
Class 2 (moderate) | 999 |
Class 3 (severe) | 193 |
Class 4 (proliferative) | 295 |
Hybrid Model | DenseNet 121 Model | |
---|---|---|
Batch Size | 16 | 32 |
Initial Learning Rate | 0.01 | 0.01 |
Minimum Learning Rate | 0.0001 | 0.00005 |
Epochs | 50 | 50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohanty, C.; Mahapatra, S.; Acharya, B.; Kokkoras, F.; Gerogiannis, V.C.; Karamitsos, I.; Kanavos, A. Using Deep Learning Architectures for Detection and Classification of Diabetic Retinopathy. Sensors 2023, 23, 5726. https://doi.org/10.3390/s23125726
Mohanty C, Mahapatra S, Acharya B, Kokkoras F, Gerogiannis VC, Karamitsos I, Kanavos A. Using Deep Learning Architectures for Detection and Classification of Diabetic Retinopathy. Sensors. 2023; 23(12):5726. https://doi.org/10.3390/s23125726
Chicago/Turabian StyleMohanty, Cheena, Sakuntala Mahapatra, Biswaranjan Acharya, Fotis Kokkoras, Vassilis C. Gerogiannis, Ioannis Karamitsos, and Andreas Kanavos. 2023. "Using Deep Learning Architectures for Detection and Classification of Diabetic Retinopathy" Sensors 23, no. 12: 5726. https://doi.org/10.3390/s23125726
APA StyleMohanty, C., Mahapatra, S., Acharya, B., Kokkoras, F., Gerogiannis, V. C., Karamitsos, I., & Kanavos, A. (2023). Using Deep Learning Architectures for Detection and Classification of Diabetic Retinopathy. Sensors, 23(12), 5726. https://doi.org/10.3390/s23125726