Automatic Detection of Abnormal EEG Signals Using WaveNet and LSTM
Abstract
:1. Introduction
1.1. Background
1.2. Related Work
1.3. Novelties and Contributions
- We propose a novel deep learning network that can effectively discriminate between normal and abnormal EEGs;
- Our proposed network incorporates WaveNet and LSTM to learn salient features from raw EEGs, without the need to manually extract features;
- Our model’s scalable structure effectively reduces both computational complexity and training duration, which is a significant advancement over traditional methods;
- The WaveNet architecture utilized in our study extracts high-level spatial features from the raw EEG data, while LSTM refines the context correlation of those features in their temporal pattern;
- Our proposed model was evaluated on the most extensive abnormal EEG database, TUAB (2.0.0); furthermore, the generalizability was evaluated across different databases;
- Our proposed solution utilizes a novel method incorporated in our study which generates additional data through the use of Time Reverse EEG data augmentation;
- We rigorously tested each component of the proposed model to identify their contribution to the final classification results;
- The proposed network achieved the best results in classifying normal and abnormal EEGs in a patient-independent scenario, utilizing only the initial duration of the signals. This can be attributed to the importance of integrating both the WaveNet and LSTM components for the feature learning process;
- To the best of our knowledge, this is the first study that employs WaveNet and LSTM in an innovative structure for the problem of EEG-based abnormality detection.
2. Materials and Methods
2.1. Datasets
2.2. Preprocessing
- Standardization of channels: Each recording was standardized to include 30 channels, for consistency;
- Utilization of data segments: The first 30 s from each recording were used;
- Application of a bandpass filter: A second-order Butterworth bandpass filter was applied between 0.5 and 49 Hz to remove artifacts.
2.3. Proposed Deep Learning Model
2.4. Model Architecture and Training Details
2.5. Performance Evaluation Metrics
2.6. Ablation Studies
- Ablation Study 1: The model includes only modified WaveNet–LSTM path (Figure 5, top path), without LSTM path;
- Ablation Study 2: The model includes the entire architecture, but without LSTM layer in modified WaveNet–LSTM path, instead replacing it with a GlobalAveragePooling layer. This helps to identify the contribution of the LSTM component in modified WaveNet–LSTM path;
- Ablation Study 3: The model includes only the standalone LSTM path (Figure 5, bottom path), without modified WaveNet–LSTM path. This helps identify the contribution of the standalone LSTM path independently.
3. Results and Discussion
- The most important contribution of this study is the use of a combination of WaveNet and LSTM in the classification of normal and abnormal EEG signals, which can be a crucial reason why the proposed model achieved better results than the previous state-of-the-art studies;
- The fusion of LSTM and WaveNet within two distinct paths is another novel aspect of our approach not yet explored in the existing literature. This innovative architectural design reinforces the superiority of our proposed method over state-of-the-art reported approaches;
- Our ablation studies provide valuable insight into the individual contribution of each component in our architecture. The experimental results demonstrate that both LSTM and modified WaveNet–LSTM paths play integral roles in enhancing the performance of the model;
- One of the strongest validations of our proposed model’s effectiveness is its excellent performance on an entirely separate dataset, namely, the TUEP dataset, without any further hyperparameter tuning or adjustments. The model’s high accuracy and low false negative rate on this dataset illustrate its robustness and generalizability on unseen EEG data. This suggests that our model can be effectively applied across different datasets, demonstrating practical value in real-world scenarios.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sanei, S.; Chambers, J.A. EEG Signal Processing; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Subasi, A. Practical Machine Learning for Data Analysis Using Python; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Farooq, M.S.; Zulfiqar, A.; Riaz, S. Epileptic Seizure Detection Using Machine Learning: Taxonomy, Opportunities, and Challenges. Diagnostics 2023, 13, 1058. [Google Scholar] [CrossRef] [PubMed]
- Zambrana-Vinaroz, D.; Vicente-Samper, J.M.; Manrique-Cordoba, J.; Sabater-Navarro, J.M. Wearable Epileptic Seizure Prediction System Based on Machine Learning Techniques Using ECG, PPG and EEG Signals. Sensors 2022, 22, 9372. [Google Scholar] [CrossRef] [PubMed]
- Albaqami, H.; Hassan, G.M.; Datta, A. MP-SeizNet: A multi-path CNN Bi-LSTM Network for seizure-type classification using EEG. Biomed. Signal Process. Control 2023, 84, 104780. [Google Scholar] [CrossRef]
- Puri, D.V.; Nalbalwar, S.L.; Nandgaonkar, A.B.; Gawande, J.P.; Wagh, A. Automatic detection of Alzheimer’s disease from EEG signals using low-complexity orthogonal wavelet filter banks. Biomed. Signal Process. Control 2023, 81, 104439. [Google Scholar] [CrossRef]
- Wang, Y.; Xiao, Z.; Fang, S.; Li, W.; Wang, J.; Zhao, X. BI-Directional long short-term memory for automatic detection of sleep apnea events based on single channel EEG signal. Comput. Biol. Med. 2022, 142, 105211. [Google Scholar] [CrossRef]
- Toma, T.I.; Choi, S. An End-to-End Multi-Channel Convolutional Bi-LSTM Network for Automatic Sleep Stage Detection. Sensors 2023, 23, 4950. [Google Scholar] [CrossRef]
- Ghaderyan, P.; Moghaddam, F.; Khoshnoud, S.; Shamsi, M. New interdependence feature of EEG signals as a biomarker of timing deficits evaluated in attention-deficit/hyperactivity disorder detection. Measurement 2022, 199, 111468. [Google Scholar] [CrossRef]
- Saini, S.; Rani, R.; Kalra, N. Prediction of Attention Deficit Hyperactivity Disorder (ADHD) using machine learning Techniques based on classification of EEG signal. In Proceedings of the 2022 8th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 25–26 March 2022; Volume 1, pp. 782–786. [Google Scholar] [CrossRef]
- Roy, S.; Kiral-Kornek, I.; Harrer, S. ChronoNet: A deep recurrent neural network for abnormal EEG identification. In Artificial Intelligence in Medicine, Proceedings of the 17th Conference on Artificial Intelligence in Medicine, AIME 2019, Poznan, Poland, 26–29 June 2019; Proceedings 17; Springer: Cham, Switzerland, 2019; pp. 47–56. [Google Scholar]
- Gemein, L.A.; Schirrmeister, R.T.; Chrabąszcz, P.; Wilson, D.; Boedecker, J.; Schulze-Bonhage, A.; Hutter, F.; Ball, T. Machine-learning-based diagnostics of EEG pathology. NeuroImage 2020, 220, 117021. [Google Scholar] [CrossRef]
- Schirrmeister, R.T.; Springenberg, J.T.; Fiederer, L.D.J.; Glasstetter, M.; Eggensperger, K.; Tangermann, M.; Hutter, F.; Burgard, W.; Ball, T. Deep learning with convolutional neural networks for EEG decoding and visualization. Hum. Brain Mapp. 2017, 38, 5391–5420. [Google Scholar] [CrossRef] [Green Version]
- Bajpai, R.; Yuvaraj, R.; Prince, A.A. Automated EEG pathology detection based on different convolutional neural network models: Deep learning approach. Comput. Biol. Med. 2021, 133, 104434. [Google Scholar] [CrossRef]
- Kohad, N.; Ramesh, R.; Roy, R.; Irrinki, S.; S, N. Segment Based Abnormality Detection in EEG Recordings. In Proceedings of the 2022 2nd International Conference on Intelligent Technologies (CONIT), Hubballi, India, 24–26 June 2022; pp. 1–8. [Google Scholar] [CrossRef]
- Wu, T.; Kong, X.; Zhong, Y.; Chen, L. Automatic detection of abnormal EEG signals using multiscale features with ensemble learning. Front. Hum. Neurosci. 2022, 16, 943258. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Ahmed, T.; Singh, A.K.; Chanak, P.; Singh, S.K. SeizSClas: An efficient and secure Internet-of-Things-based EEG classifier. IEEE Internet Things J. 2020, 8, 6214–6221. [Google Scholar] [CrossRef]
- Zhu, F.; Gao, J.; Yang, J.; Ye, N. Neighborhood linear discriminant analysis. Pattern Recognit. 2022, 123, 108422. [Google Scholar] [CrossRef]
- Subasi, A.; Ismail Gursoy, M. EEG signal classification using PCA, ICA, LDA and support vector machines. Expert Syst. Appl. 2010, 37, 8659–8666. [Google Scholar] [CrossRef]
- Varone, G.; Gasparini, S.; Ferlazzo, E.; Ascoli, M.; Tripodi, G.G.; Zucco, C.; Calabrese, B.; Cannataro, M.; Aguglia, U. A comprehensive machine-learning-based software pipeline to classify EEG signals: A case study on PNES vs. control subjects. Sensors 2020, 20, 1235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albaqami, H.; Hassan, G.M.; Subasi, A.; Datta, A. Automatic detection of abnormal EEG signals using wavelet feature extraction and gradient boosting decision tree. Biomed. Signal Process. Control 2021, 70, 102957. [Google Scholar] [CrossRef]
- Guerrero, M.C.; Parada, J.S.; Espitia, H.E. EEG signal analysis using classification techniques: Logistic regression, artificial neural networks, support vector machines, and convolutional neural networks. Heliyon 2021, 7, e07258. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Zhong, Y.; Kong, X.; Chen, L. Salient feature extraction for EEG pathology detection. In Proceedings of the BIBE 2022: The 6th International Conference on Biological Information and Biomedical Engineering, Virtual, China, 19–20 June 2022; pp. 1–6. [Google Scholar]
- Albaqami, H.; Hassan, G.; Datta, A. Comparison of WPD, DWT and DTCWT for Multi-Class Seizure Type Classification. In Proceedings of the 2021 IEEE Signal Processing in Medicine and Biology Symposium (SPMB), Philadelphia, PA, USA, 4 December 2021; pp. 1–7. [Google Scholar]
- Tasci, I.; Tasci, B.; Barua, P.D.; Dogan, S.; Tuncer, T.; Palmer, E.E.; Fujita, H.; Acharya, U.R. Epilepsy detection in 121 patient populations using hypercube pattern from EEG signals. Inf. Fusion 2023, 96, 252–268. [Google Scholar] [CrossRef]
- Albaqami, H.; Hassan, G.M.; Datta, A. Wavelet-Based Multi-Class Seizure Type Classification System. Appl. Sci. 2022, 12, 5702. [Google Scholar] [CrossRef]
- Alhussein, M.; Muhammad, G.; Hossain, M.S. EEG Pathology Detection Based on Deep Learning. IEEE Access 2019, 7, 27781–27788. [Google Scholar] [CrossRef]
- Liu, T.; Truong, N.D.; Nikpour, A.; Zhou, L.; Kavehei, O. Epileptic seizure classification with symmetric and hybrid bilinear models. IEEE J. Biomed. Health Inform. 2020, 24, 2844–2851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zarei, A.; Asl, B.M. Automatic seizure detection using orthogonal matching pursuit, discrete wavelet transform, and entropy based features of EEG signals. Comput. Biol. Med. 2021, 131, 104250. [Google Scholar] [CrossRef]
- Meng, Y.; Lin, L.; Qin, Z.; Qu, Y.; Qin, Y.; Li, Y. Biosignal Classification Based on Multi-Feature Multi-Dimensional WaveNet-LSTM Models. J. Commun. 2022, 17, 5. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Proceedings of the 31st International Conference on Neural Information Processing Systems (NeurIPS), Long Beach, CA, USA, 4–9 December 2017; pp. 5998–6008. [Google Scholar]
- Amodei, D.; Ananthanarayanan, S.; Anubhai, R.; Bai, J.; Battenberg, E.; Case, C.; Casper, J.; Catanzaro, B.; Cheng, Q.; Chen, G.; et al. Deep speech 2: End-to-end speech recognition in english and mandarin. In Proceedings of the International Conference on Machine Learning, PMLR, New York City, NY, USA, 19–24 June 2016; pp. 173–182. [Google Scholar]
- Roy, Y.; Banville, H.; Albuquerque, I.; Gramfort, A.; Falk, T.H.; Faubert, J. Deep learning-based electroencephalography analysis: A systematic review. J. Neural Eng. 2019, 16, 051001. [Google Scholar] [CrossRef]
- Oord, A.V.d.; Dieleman, S.; Zen, H.; Simonyan, K.; Vinyals, O.; Graves, A.; Kalchbrenner, N.; Senior, A.; Kavukcuoglu, K. Wavenet: A generative model for raw audio. arXiv 2016, arXiv:1609.03499. [Google Scholar]
- Obeid, I.; Picone, J. Machine Learning Approaches to Automatic Interpretation of EEGs. In Signal Processing and Machine Learning for Biomedical Big Data; CRC Press: Boca Raton, FL, USA, 2018; pp. 271–300. [Google Scholar]
- Lopez de Diego, S. Automated interpretation of abnormal adult electroencephalograms. Master’s Thesis, Temple University, Philadelphia, PA, USA, 2017. [Google Scholar]
- Zhong, Y.; Wei, H.; Chen, L.; Wu, T. Automated EEG Pathology Detection Based on Significant Feature Extraction and Selection. Mathematics 2023, 11, 1619. [Google Scholar] [CrossRef]
- Altunay, S.; Telatar, Z.; Erogul, O. Epileptic EEG detection using the linear prediction error energy. Expert Syst. Appl. 2010, 37, 5661–5665. [Google Scholar] [CrossRef]
- Cisotto, G.; Zanga, A.; Chlebus, J.; Zoppis, I.; Manzoni, S.; Markowska-Kaczmar, U. Comparison of attention-based deep learning models for EEG classification. arXiv 2020, arXiv:2012.01074. [Google Scholar]
- Sharma, M.; Patel, S.; Acharya, U.R. Automated detection of abnormal EEG signals using localized wavelet filter banks. Pattern Recognit. Lett. 2020, 133, 188–194. [Google Scholar] [CrossRef]
- Mohsenvand, M.N.; Izadi, M.R.; Maes, P. Contrastive Representation Learning for Electroencephalogram Classification. In Proceedings of the Machine Learning for Health, PMLR, Virtual, 7–8 August 2020; pp. 238–253. [Google Scholar]
- Yıldırım, ö.; Baloglu, U.B.; Acharya, U.R. A deep convolutional neural network model for automated identification of abnormal EEG signals. Neural Comput. Appl. 2020, 32, 15857–15868. [Google Scholar] [CrossRef]
- Roy, S.; Kiral-Kornek, I.; Harrer, S. Deep Learning Enabled Automatic Abnormal EEG Identification. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; pp. 2756–2759. [Google Scholar] [CrossRef]
- Amin, S.U.; Hossain, M.S.; Muhammad, G.; Alhussein, M.; Rahman, M.A. Cognitive Smart Healthcare for Pathology Detection and Monitoring. IEEE Access 2019, 7, 10745–10753. [Google Scholar] [CrossRef]
- Khan, H.A.; Ul Ain, R.; Kamboh, A.M.; Butt, H.T.; Shafait, S.; Alamgir, W.; Stricker, D.; Shafait, F. The NMT scalp EEG dataset: An open-source annotated dataset of healthy and pathological EEG recordings for predictive modeling. Front. Neurosci. 2022, 15, 1764. [Google Scholar] [CrossRef]
- Kiessner, A.K.; Schirrmeister, R.T.; Gemein, L.; Boedecker, J.; Ball, T. An Extended Clinical EEG Dataset with 15,300 Automatically Labelled Recordings for Pathology Decoding. Available online: https://ssrn.com/abstract=4387102 (accessed on 20 April 2023). [CrossRef]
- Obeid, I.; Picone, J. The temple university hospital EEG data corpus. Front. Neurosci. 2016, 10, 196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veloso, L.; McHugh, J.; von Weltin, E.; Lopez, S.; Obeid, I.; Picone, J. Big data resources for EEGs: Enabling deep learning research. In Proceedings of the 2017 IEEE Signal Processing in Medicine and Biology Symposium (SPMB), Philadelphia, PA, USA, 2 December 2017; pp. 1–3. [Google Scholar]
- Rommel, C.; Moreau, T.; Paillard, J.; Gramfort, A. CADDA: Class-wise Automatic Differentiable Data Augmentation for EEG Signals. In Proceedings of the ICLR 2022-International Conference on Learning Representations, Virtual Event, 25–29 April 2022. [Google Scholar]
- Rommel, C.; Paillard, J.; Moreau, T.; Gramfort, A. Data augmentation for learning predictive models on EEG: A systematic comparison. J. Neural Eng. 2022, 19, 066020. [Google Scholar] [CrossRef] [PubMed]
- McDougall, M.; Albaqami, H.; Hassan, G.M.; Datta, A. Patient Independent Interictal Epileptiform Discharge Detection. arXiv 2023, arXiv:2304.13965. [Google Scholar]
- Géron, A. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems; O’Reilly Media: Sebastopol, CA, USA, 2019. [Google Scholar]
- Almutairi, H.; Hassan, G.M.; Datta, A. Detection of obstructive sleep apnoea by ecg signals using deep learning architectures. In Proceedings of the 2020 28th European signal processing conference (EUSIPCO), Amsterdam, The Netherlands, 18–21 January 2021; pp. 1382–1386. [Google Scholar]
- Oh, S.L.; Jahmunah, V.; Ooi, C.P.; Tan, R.S.; Ciaccio, E.J.; Yamakawa, T.; Tanabe, M.; Kobayashi, M.; Acharya, U.R. Classification of heart sound signals using a novel deep WaveNet model. Comput. Methods Programs Biomed. 2020, 196, 105604. [Google Scholar] [CrossRef]
- Qu, Y.; Zhang, N.; Meng, Y.; Qin, Z.; Lu, Q.; Liu, X. ECG Heartbeat Classification Detection Based on WaveNet-LSTM. In Proceedings of the 2020 IEEE 4th International Conference on Frontiers of Sensors Technologies (ICFST), Shanghai, China, 6–9 November 2020; pp. 54–58. [Google Scholar]
- Boilard, J.; Gournay, P.; Lefebvre, R. A literature review of wavenet: Theory, application, and optimization. In Proceedings of the Audio Engineering Society Convention 146, Dublin, Ireland, 20-23 March 2019. [Google Scholar]
- Baghdadi, A.; Fourati, R.; Aribi, Y.; Daoud, S.; Dammak, M.; Mhiri, C.; Chabchoub, H.; Siarry, P.; Alimi, A. A channel-wise attention-based representation learning method for epileptic seizure detection and type classification. J. Ambient. Intell. Humaniz. Comput. 2023, 14, 9403–9418. [Google Scholar] [CrossRef]
- Parviainen, L.; Kälviäinen, R.; Jutila, L. Impact of diagnostic delay on seizure outcome in newly diagnosed focal epilepsy. Epilepsia Open 2020, 5, 605–610. [Google Scholar] [CrossRef]
- Kanas, V.G.; Zacharaki, E.I.; Pippa, E.; Tsirka, V.; Koutroumanidis, M.; Megalooikonomou, V. Classification of epileptic and non-epileptic events using tensor decomposition. In Proceedings of the 2015 IEEE 15th International Conference on Bioinformatics and Bioengineering (BIBE), Belgrade, Serbia, 2–4 November 2015; pp. 1–5. [Google Scholar] [CrossRef]
- Xu, Y.; Nguyen, D.; Mohamed, A.; Carcel, C.; Li, Q.; Kutlubaev, M.A.; Anderson, C.S.; Hackett, M.L. Frequency of a false positive diagnosis of epilepsy: A systematic review of observational studies. Seizure 2016, 41, 167–174. [Google Scholar] [CrossRef] [Green Version]
- Asif, U.; Roy, S.; Tang, J.; Harrer, S. SeizureNet: Multi-spectral deep feature learning for seizure type classification. In Machine Learning in Clinical Neuroimaging and Radiogenomics in Neuro-Oncology, Proceedings of the Third International Workshop on Machine Learning in Clinical Neuroimaging and Second International Workshop on Radiogenomics in Neuro-oncology (MLCN/RNO-AI 2020), Lima, Peru, 4–8 October 2020; Springer: Cham, Switzerland, 2020; pp. 77–87. [Google Scholar]
- Krichen, M.; Mihoub, A.; Alzahrani, M.Y.; Adoni, W.Y.H.; Nahhal, T. Are Formal Methods Applicable to Machine Learning and Artificial Intelligence? In Proceedings of the 2022 2nd International Conference of Smart Systems and Emerging Technologies (SMARTTECH), Riyadh, Saudi Arabia, 9–11 May 2022; pp. 48–53. [Google Scholar]
- Raman, R.; Gupta, N.; Jeppu, Y. Framework for Formal Verification of Machine Learning Based Complex System-of-Systems. Insight 2023, 26, 91–102. [Google Scholar] [CrossRef]
Studies | Year | Input | Architecture | ACC (%) |
---|---|---|---|---|
Lopez et al. [37] * | 2017 | band power-based features using Cepstral coefficients | CNN + Multilayer Perception (MLP) | 78.8 |
Alhussien et al. [27] * | 2019 | FFT band-limited signals | AlexNet + MLP | 89.13 |
Gemein et al. [12] | 2020 | DWT + CWT + DFT + Statistical features | RG | 85.90 |
Cisotto et al. [40] | 2020 | Statistical features + spectral power in specific frequency bands | LSTM+attention | 79.18 |
Sharma et al. [41] | 2020 | Wavelet-based statistical features | SVM | 79.34 |
Albaqami et al. [21] | 2021 | WPD + Statistical features | CatBoost | 87.68 |
Singh et al. [17] | 2021 | Spectrogram image based on STFT | VGG-19 + RF | 88.04 |
Bajpai et al. [14] | 2021 | Spectrogram image based on STFT | SeizNet + SVM | 96.56 |
Mohsenvand et al. [42] | 2021 | EEG contrastive learning | Simple Contrastive Learning of Visual Representations(SimCLR) | 87.45 |
Wu et al. [16] | 2022 | Statistical features from DWT coefficients | CatBoost | 89.13 |
Wu et al. [23] | 2022 | Statistical features from WPD coefficient | Catboost | 89.76 |
Tasci et al. [25] | 2023 | Multilevel Discrete Wavelet Transform (MDWT) + Statistical features | KNN | 87.78 |
Zhong et al. [38] | 2023 | Statistical features from WPD coefficients | CatBoost | 89.13 |
Kohad et al. [15] | 2022 | EMD and EWT based features | Linear SVM | 88.48 |
Studies | Year | Input | Architecture | ACC (%) |
---|---|---|---|---|
Schirrmeister et al. [13] | 2017 | Raw EEG data | Deep CNN | 85.42 |
Roy et al. [44] | 2018 | Raw EEG data | 1D-CNN–RNN | 82.27 |
Amin et al. [45] * | 2019 | Raw EEG data | AlexNet + SVM | 87.32 |
Roy et al. [11] | 2019 | Raw EEG data | 1D-CNN–GRU ChronoNet | 86.57 |
Yildirim et al. [43] | 2020 | Raw EEG data | 1D-CNN | 79.34 |
Gemein et al. [12] | 2021 | Raw EEG data | TCN Model | 86.16 |
Khan et al. [46] | 2023 | Raw EEG data | Hybrid Model (LSTM and CNN) | 85.00 |
Kiessner et al. [47] * | 2023 | Raw EEG data | Deep CNN [13] | 86.59 |
TUAB | Samples | Patients | ||
---|---|---|---|---|
Normal | Abnormal | Normal | Abnormal | |
Training | 1371 | 1346 | 1237 | 893 |
Evaluation | 150 | 126 | 184 | 105 |
Total | 1521 | 1472 | 1385 | 998 |
TUEP | Samples | Patients | ||
Non-Epileptic | Epileptic | Non-Epileptic | Epileptic | |
Training | 224 | 451 | 80 | 32 |
Evaluation | 64 | 172 | 20 | 10 |
Total | 288 | 623 | 100 | 42 |
Study | Accuracy | Sensitivity | Specificity |
---|---|---|---|
Baseline | 83.69 | 80.95 | 86 |
Ablation Study 1 | 86.231 | 84.126 | 88 |
Ablation Study 2 | 84.06 | 87.3 | 81.33 |
Ablation Study 3 | 78.26 | 73.809 | 82 |
Proposed model | 88.76 | 84.92 | 92 |
Study | Accuracy | Sensitivity | Specificity |
---|---|---|---|
Yildirim et al. [43] | 79.34 | ||
Roy et al. [44] | 82.27 | ||
Schirrmeister et al. [13] | 85.4 | 75.1 | 94.1 |
Khan et al. [46] | 85 | ||
Gemein et al. [12] | 86.1 | 79.7 | 91.6 |
Roy et al. [11] | 86.57 | ||
Kiessner et al. [47] | 86.59 | 78.17 | 93.67 |
Amin et al. [45] | 87.32 | 78.57 | 94.67 |
Proposed model | 88.76 | 84.92 | 92 |
Study | Accuracy | Sensitivity | Specificity |
---|---|---|---|
McDougall et al. [52] | 94.92 | 96.51 | 90.62 |
Proposed model | 97.45 | 97.09 | 98.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albaqami, H.; Hassan, G.M.; Datta, A. Automatic Detection of Abnormal EEG Signals Using WaveNet and LSTM. Sensors 2023, 23, 5960. https://doi.org/10.3390/s23135960
Albaqami H, Hassan GM, Datta A. Automatic Detection of Abnormal EEG Signals Using WaveNet and LSTM. Sensors. 2023; 23(13):5960. https://doi.org/10.3390/s23135960
Chicago/Turabian StyleAlbaqami, Hezam, Ghulam Mubashar Hassan, and Amitava Datta. 2023. "Automatic Detection of Abnormal EEG Signals Using WaveNet and LSTM" Sensors 23, no. 13: 5960. https://doi.org/10.3390/s23135960