Computer Vision Technology for Monitoring of Indoor and Outdoor Environments and HVAC Equipment: A Review
Abstract
:1. Introduction
1.1. Research Background
1.1.1. Indoor Environment Monitoring
1.1.2. Outdoor Environment Monitoring
1.1.3. HVAC Equipment Monitoring
1.2. Article’s Contributions
2. Review Methodology
2.1. Literature Search
2.2. Selection Criteria
- Considering the influence of individual factors such as the subjects’ physical health status, gender, age differences, and so on;
- Ensuring the stability of the thermal environment in which the subjects are located during the experiment;
- Combining sensing equipment and CV technology to adequately capture and compare climate parameters, subjective evaluations of subjects’ comfort, and objective physiological parameters;
- Simultaneous acquisition of frost dew visual characteristics and equipment operating parameters using a visualization lab bench based on cameras and sensing equipment to compare experimental results;
- During the experiment, the effect of environmental factors such as light and angle on the frost dew image of the equipment can be weakened by the use of fill lights;
- The level of condensation on the equipment can be lowered by using fill lights.
3. Indoor Environment Monitoring
3.1. Non-Contact Measurement of the Thermal State of Indoor Personnel
3.1.1. Based on Skin Temperature
- Infrared thermal-image-based skin temperature measurement.
- Skin temperature measurement based on visible light images.
3.1.2. Based on Human Position Posture
3.2. Application
3.2.1. Initial Exploration of Sleep State Monitoring
3.2.2. Ventilation on Demand
4. Outdoor Environment Monitoring
4.1. Urban Environmental Monitoring
4.1.1. Field Measurements
4.1.2. Remote Sensing Image Measurement
4.1.3. Street View Image Measurement
- Urban Geometry.
- Urban Greening.
4.2. Building Construction Safety Monitoring Robot
5. HVAC Equipment Monitoring
5.1. Thermal Infrared-Image-Based Device Monitoring
5.2. Visible-Image-Based Device Monitoring
5.2.1. Heat Pump Surface Frosting Phenomenon Monitoring
5.2.2. Indirect Evaporative Cooler Condensation Monitoring
6. Summary and Outlook
6.1. Indoor Environmental Monitoring
- The algorithm’s performance in detecting more types of human posture should be improved in the future. Currently, automated quantitative observations of frost and dew condensation are limited to a lateral reflection of condensation through dew coverage.
- The majority of current research is focused on gathering information about the indoor environment. It is necessary to consider combination with control technologies to achieve the real-time automated regulation of indoor environments based on personnel’s thermal status.
6.2. Outdoor Environmental Monitoring
- The further integration of SVI, remote sensing images with social media data, weather conditions, human posture, and many other types of heterogeneous urban data should be considered for future use based on the new generation of information technology represented by artificial intelligence (AI), Internet of Things (IoT), digital twin (DT), and inspection robots.
6.3. HVAC Equipment Monitoring
- To achieve more precise defrosting timing, a variety of frost suppression and frost retardation strategies and defrosting methods are used in conjunction with local conditions. While maintaining indoor thermal comfort, the defrosting process’s energy consumption is reduced, and the unit’s operation is stabilized to reduce the number of defrosts.
- The continued development of an intelligent defrosting strategy based on CV technology to quantify the degree of frosting by inducing new feature parameters from the original image data is necessary.
- It is important to extend the video shooting time and shoot condensation surfaces from multiple camera positions to reduce visualization experimental errors, and to create new CV algorithms that incorporate dynamic droplet features such as the droplet growth rate, shedding frequency, number of droplets merging, and number of shedding, to create more reliable condensation datasets.
- It is also important to generate a generic condensing heat transfer performance prediction model by combining techniques such as CV and AI algorithms such as deep learning.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Borodinecs, A.; Zemitis, J.; Palcikovskis, A. HVAC system control solutions based on modern IT technologies: A review article. Energies 2022, 15, 6726. [Google Scholar] [CrossRef]
- Zemitis, J.; Borodinecs, A.; Sidenko, N.; Zajacs, A. Simulation of IAQ and thermal comfort of a classroom at various ventilation strategies. E3S Web Conf. 2023, 396, 03005. [Google Scholar] [CrossRef]
- Fanger, P.O. Thermal comfort: Analysis and applications in environmental engineering. Appl. Ergon. 1970, 3, 181. [Google Scholar]
- Huizenga, C.; Zhang, H.; Arens, E.; Wang, D. Skin and core temperature response to partial-and whole-body heating and cooling. J. Therm. Biol. 2004, 29, 549–558. [Google Scholar] [CrossRef] [Green Version]
- Takada, S.; Matsumoto, S.; Matsushita, T. Prediction of whole-body thermal sensation in the non-steady state based on skin temperature. Build. Environ. 2013, 68, 123–133. [Google Scholar] [CrossRef]
- Choi, J.H.; Yeom, D. Study of data-driven thermal sensation prediction model as a function of local body skin temperatures in a built environment. Build. Environ. 2017, 121, 130–147. [Google Scholar] [CrossRef]
- Dang, Y.; Liu, Z.; Yang, X.; Ge, L.; Miao, S. A fatigue assessment method based on attention mechanism and surface electromyography. Int. Things Cyber Phys. Syst. 2023, 3, 112–120. [Google Scholar] [CrossRef]
- Yang, B.; Cheng, X.; Dai, D.; Olofsson, T.; Li, H.; Meier, A. Macro pose based non-invasive thermal comfort perception for energy efficiency. arXiv 2018, arXiv:1811.07690. [Google Scholar]
- Akbari, H.; Cartalis, C.; Kolokotsa, D.; Muscio, A.; Pisello, A.L.; Rossi, F.; Santamouris, M.; Synnefa, A.; Wong, N.H.; Zinzi, M. Local climate change and urban heat island mitigation techniques-the state of the art. J. Civ. Eng. Manag. 2016, 22, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Mijani, N.; Alavipanah, S.K.; Hamzeh, S.; Firozjaei, M.K.; Arsanjani, J.J. Modeling thermal comfort in different condition of mind using satellite images: An Ordered Weighted Averaging approach and a case study. Ecol. Indic. 2019, 104, 1–12. [Google Scholar] [CrossRef]
- Wibowo, A.; Salleh, K.O. Landscape features and potential heat hazard threat: A spatial-temporal analysis of two urban universities. Nat. Hazards 2018, 92, 1267–1286. [Google Scholar] [CrossRef]
- Pantavou, K.; Lykoudis, S.; Psiloglou, B. Air quality perception of pedestrians in an urban outdoor Mediterranean environment: A field survey approach. Sci. Total Environ. 2017, 574, 663–670. [Google Scholar] [CrossRef] [PubMed]
- Zakaria, M.F.; Ezani, E.; Hassan, N.; Ramli, N.A.; Wahab, M.I.A. Traffic-related air pollution (TRAP), air quality perception and respiratory health symptoms of active commuters in a university outdoor environment. IOP Conf. Ser. Earth Env. Sci. 2019, 22, 012017. [Google Scholar] [CrossRef]
- Gao, W.; Qian, Y.; Chen, H.; Zhong, Z.; Zhou, M.; Aminpour, F. Assessment of sidewalk walkability: Integrating objective and subjective measures of identical context-based sidewalk features. Sustain. Cities Soc. 2022, 87, 104142. [Google Scholar] [CrossRef]
- Ma, X.; Chau, C.K.; Lai, J.H.K. Critical factors influencing the comfort evaluation for recreational walking in urban street environments. Cities 2021, 116, 103286. [Google Scholar] [CrossRef]
- Berkouk, D.; Bouzir, T.A.K.; Boucherit, S.; Khelil, S.; Mahaya, C.; Matallah, M.E.; Mazouz, S. Exploring the multisensory interaction between luminous, thermal and auditory environments through the spatial promenade experience: A case study of a university campus in an oasis settlement. Sustainability 2022, 14, 4013. [Google Scholar] [CrossRef]
- De Oliveira, F.; Moreau, S.; Gehin, C.; Dittmar, A. Infrared imaging analysis for thermal comfort assessment. In Proceedings of the 2007 29th Annual International Conference of The IEEE Engineering in Medicine and Biology Society, Lyon, France, 22–26 August 2007; pp. 3373–3376. [Google Scholar]
- Ranjan, J.; Scott, J. ThermalSense: Determining dynamic thermal comfort preferences using thermographic imaging. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Heidelberg, Germany, 12–16 September 2016; pp. 1212–1222. [Google Scholar]
- Li, D.; Menassa, C.C.; Kamat, V.R. Non-intrusive interpretation of human thermal comfort through analysis of facial infrared thermography. Energy Build. 2018, 176, 246–261. [Google Scholar] [CrossRef]
- Tejedor, B.; Casals, M.; Gangolells, M.; Macarulla, M.; Forcada, N. Human comfort modelling for elderly people by infrared thermography: Evaluating the thermoregulation system responses in an indoor environment during winter. Build. Environ. 2020, 186, 107354. [Google Scholar] [CrossRef]
- Ghahramani, A.; Castro, G.; Becerik-Gerber, B.; Yu, X. Infrared thermography of human face for monitoring thermoregulation performance and estimating personal thermal comfort. Build. Environ. 2016, 109, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Liu, H.; Li, B.; Kosonen, R. Prediction of thermal sensation using low-cost infrared array sensors monitoring system. IOP Conf. Ser. Mater. Sci. Eng. 2019, 609, 032002. [Google Scholar] [CrossRef]
- Burzo, M.; Abouelenien, M.; Pérez-Rosas, V.; Wicaksono, C.; Tao, Y.; Mihalcea, R. Using infrared thermography and biosensors to detect thermal discomfort in a building’s inhabitants. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Montreal, Quebec, Canada, 14–20 November 2014; American Society of Mechanical Engineers: New York, NY, USA, 2014; p. V06BT07A015. [Google Scholar]
- Pavlin, B.; Pernigotto, G.; Cappelletti, F.; Bison, P.; Vidoni, R.; Gasparella, A. Real-time monitoring of occupants’ thermal comfort through infrared imaging: A preliminary study. Buildings 2017, 7, 10. [Google Scholar] [CrossRef]
- Aryal, A.; Becerik-Gerber, B. A comparative study of predicting individual thermal sensation and satisfaction using wrist-worn temperature sensor, thermal camera and ambient temperature sensor. Build. Environ. 2019, 160, 106223. [Google Scholar] [CrossRef]
- Kopaczka, M.; Breuer, L.; Schock, J.; Merhof, D. A modular system for detection, tracking and analysis of human faces in thermal infrared recordings. Sensors 2019, 19, 4135. [Google Scholar] [CrossRef] [Green Version]
- Ghahramani, A.; Xu, Q.; Min, S.; Wang, A.; Zhang, H.; He, Y.; Merritt, A.; Levinson, R. Infrared-fused vision-based thermoregulation performance estimation for personal thermal comfort-driven HVAC system controls. Buildings 2022, 12, 1241. [Google Scholar] [CrossRef]
- He, Y.; Zhang, H.; Arens, E.; Merritt, A.; Huizenga, C.; Levinson, R.; Wang, A.; Ghahramani, A.; Alvarez-Suarez, A. Smart detection of indoor occupant thermal state via infrared thermography, computer vision, and machine learning. Build. Environ. 2023, 228, 109811. [Google Scholar] [CrossRef]
- Metzmacher, H.; Wölki, D.; Schmidt, C.; Frisch, J.; van Treeck, C. Real-time human skin temperature analysis using thermal image recognition for thermal comfort assessment. Energy Build. 2018, 158, 1063–1078. [Google Scholar] [CrossRef]
- Li, D.; Menassa, C.C.; Kamat, V.R. Robust non-intrusive interpretation of occupant thermal comfort in built environments with low-cost networked thermal cameras. Appl. Energ. 2019, 251, 113336. [Google Scholar] [CrossRef]
- Cosma, A.C.; Simha, R. Thermal comfort modeling in transient conditions using real-time local body temperature extraction with a thermographic camera. Build. Environ. 2018, 143, 36–47. [Google Scholar] [CrossRef]
- Cosma, A.C.; Simha, R. Machine learning method for real-time non-invasive prediction of individual thermal preference in transient conditions. Build. Environ. 2019, 148, 372–383. [Google Scholar] [CrossRef]
- Ventola, C.L. Social media and health care professionals: Benefits, risks, and best practices. Pharm. Ther. 2014, 39, 491. [Google Scholar]
- Jung, W.; Jazizadeh, F. Vision-based thermal comfort quantification for HVAC control. Build. Environ. 2018, 142, 513–523. [Google Scholar] [CrossRef]
- Wu, H.Y.; Rubinstein, M.; Shih, E.; Guttag, J.; Durand, F.; Freeman, W. Eulerian video magnification for revealing subtle changes in the world. ACM Trans. Graphic. 2012, 31, 65. [Google Scholar] [CrossRef]
- Alghoul, K.; Alharthi, S.; Al Osman, H.; El Saddik, A. Heart rate variability extraction from videos signals: ICA vs. EVM comparison. IEEE Access 2017, 5, 4711–4719. [Google Scholar] [CrossRef]
- Jazizadeh, F.; Pradeep, S. Can computers visually quantify human thermal comfort? Short Paper. In Proceedings of the 3rd ACM International Conference on Systems for Energy-Efficient Built Environments, Palo Alto, CA, USA, 16–17 November 2016; pp. 95–98. [Google Scholar]
- Jazizadeh, F.; Jung, W. Personalized thermal comfort inference using RGB video images for distributed HVAC control. Appl. Energ. 2018, 220, 829–841. [Google Scholar] [CrossRef]
- Cheng, X.; Yang, B.; Olofsson, T.; Liu, G.; Li, H. A pilot study of online non-invasive measuring technology based on video magnification to determine skin temperature. Build. Environ. 2017, 121, 1–10. [Google Scholar] [CrossRef]
- Cheng, X.; Yang, B.; Hedman, A.; Olofsson, T.; Li, H.; Van Gool, L. NIDL: A pilot study of contactless measurement of skin temperature for intelligent building. Energy Build. 2019, 198, 340–352. [Google Scholar] [CrossRef]
- Cheng, X.; Yang, B.; Tan, K.; Isaksson, E.; Li, L.; Hedman, A.; Olofsson, T.; Li, H. A contactless measuring method of skin temperature based on the skin sensitivity index and deep learning. Appl. Sci. 2019, 9, 1375. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Wang, Z.; Peng, Y.; Zhang, Z.; Yu, G.; Sun, J. Cascaded pyramid network for multi-person pose estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7103–7112. [Google Scholar]
- Chen, Y.; Shen, C.; Wei, X.S.; Liu, L.; Yang, J. Adversarial posenet: A structure-aware convolutional network for human pose estimation. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 1212–1221. [Google Scholar]
- Pfister, T.; Charles, J.; Zisserman, A. Flowing convnets for human pose estimation in videos. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1913–1921. [Google Scholar]
- Pishchulin, L.; Insafutdinov, E.; Tang, S.; Andres, B.; Andriluka, M.; Gehler, P.V.; Schiele, B. Deepcut: Joint subset partition and labeling for multi person pose estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 4929–4937. [Google Scholar]
- Insafutdinov, E.; Pishchulin, L.; Andres, B.; Andriluka, M.; Schiele, B. Deepercut: A deeper, stronger, and faster multi-person pose estimation model. In Proceedings of the 14th European Conference of Computer Vision (ECCV), Amsterdam, The Netherlands, 11–14 October 2016; pp. 34–50. [Google Scholar]
- Vemulapalli, R.; Arrate, F.; Chellappa, R. Human action recognition by representing 3d skeletons as points in a lie group. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 588–595. [Google Scholar]
- Galna, B.; Barry, G.; Jackson, D.; Mhiripiri, D.; Olivier, P.; Rochester, L. Accuracy of the Microsoft Kinect sensor for measuring movement in people with Parkinson’s disease. Gait Posture 2014, 39, 1062–1068. [Google Scholar] [CrossRef] [Green Version]
- Toshev, A.; Szegedy, C. Deeppose: Human pose estimation via deep neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 1653–1660. [Google Scholar]
- Cao, Z.; Simon, T.; Wei, S.E.; Sheikh, Y. Realtime multi-person 2d pose estimation using part affinity fields. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7291–7299. [Google Scholar]
- Qian, J.; Cheng, X.; Yang, B.; Li, Z.; Ren, J.; Olofsson, T.; Li, H. Vision-based contactless pose estimation for human thermal discomfort. Atmosphere 2020, 11, 376. [Google Scholar] [CrossRef] [Green Version]
- Güler, R.A.; Neverova, N.; Kokkinos, I. Densepose: Dense human pose estimation in the wild. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7297–7306. [Google Scholar]
- Li, J.; Wang, C.; Zhu, H.; Mao, Y.; Fang, H.S.; Lu, C. Crowdpose: Efficient crowded scenes pose estimation and a new benchmark. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 10863–10872. [Google Scholar]
- Meier, A.; Dyer, W.; Graham, C. Using human gestures to control a building’s heating and cooling System. In Proceedings of the 9th International Conference on Energy Efficiency in Domestic Appliances and Lighting (EEDAL’17), Irvine, CA, USA, 13–15 September 2017; pp. 627–635. [Google Scholar]
- Xu, M.; Han, Y.; Liu, Q.; Zhao, L. Action-based personalized dynamic thermal demand prediction with video cameras. Build. Environ. 2022, 223, 109457. [Google Scholar] [CrossRef]
- Liu, P.L.; Chang, C.C. Simple method integrating OpenPose and RGB-D camera for identifying 3D body landmark locations in various postures. Int. J. Ind. Ergonom. 2022, 91, 103354. [Google Scholar] [CrossRef]
- Wang, H.; Wang, G.; Li, X. An RGB-D camera-based indoor occupancy positioning system for complex and densely populated scenarios. Indoor Built Environ. 2023, 32, 1420326X231155112. [Google Scholar] [CrossRef]
- Yang, B.; Cheng, X.; Dai, D.; Olofsson, T.; Li, H.; Meier, A. Real-time and contactless measurements of thermal discomfort based on human poses for energy efficient control of buildings. Build. Environ. 2019, 162, 106284. [Google Scholar] [CrossRef]
- Chen, Z.; Jiang, C.; Xie, L. Building occupancy estimation and detection: A review. Energy Build. 2018, 169, 260–270. [Google Scholar] [CrossRef]
- Priyadarshini, R.; Mehra, R.M. Quantitative review of occupancy detection technologies. Int. J. Radio Freq. 2015, 1, 1–19. [Google Scholar]
- Pawar, Y.; Chopde, A.; Nandre, M. Motion detection using pir sensor. Int. Res. J. Eng. Technol. 2018, 5, 2395-0056. [Google Scholar]
- Hang, L.; Kim, D.H. Enhanced model-based predictive control system based on fuzzy logic for maintaining thermal comfort in IoT smart space. Appl. Sci. 2018, 8, 1031. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.C.; Lee, D. Enabling smart air conditioning by sensor development: A review. Sensors 2016, 16, 2028. [Google Scholar] [CrossRef] [Green Version]
- Peng, Y.T.; Lin, C.Y.; Sun, M.T.; Landis, C.A. Multimodality sensor system for long-term sleep quality monitoring. IEEE Trans. Biomed. Circuits Syst. 2007, 1, 217–227. [Google Scholar] [CrossRef]
- Choe, J.; Montserrat, D.M.; Schwichtenberg, A.J.; Delp, E.J. Sleep analysis using motion and head detection. In Proceedings of the 2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI), Las Vegas, NV, USA, 8–10 April 2018; pp. 29–32. [Google Scholar]
- Mohammadi, S.M.; Enshaeifar, S.; Hilton, A.; Dijk, D.J.; Wells, K. Transfer learning for clinical sleep pose detection using a single 2D IR camera. IEEE T. Neur. Sys. Reh. 2020, 29, 290–299. [Google Scholar] [CrossRef]
- Piriyajitakonkij, M.; Warin, P.; Lakhan, P.; Leelaarporn, P.; Kumchaiseemak, N.; Suwajanakorn, S.; Pianpanit, T.; Niparnan, N.; Mukhopadhyay, S.C.; Wilaiprasitporn, T. SleepPoseNet: Multi-view learning for sleep postural transition recognition using UWB. IEEE J. Biomed. Health 2020, 25, 1305–1314. [Google Scholar] [CrossRef]
- Cheng, X.; Hu, F.; Yang, B.; Wang, F.; Olofsson, T. Contactless sleep posture measurements for demand-controlled sleep thermal comfort: A pilot study. Indoor Air 2022, 32, e13175. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, G.; Li, X. Image-based occupancy positioning system using pose-estimation model for demand-oriented ventilation. J. Build. Eng. 2021, 39, 102220. [Google Scholar] [CrossRef]
- Cui, Z.; Sun, Y.; Gao, D.; Ji, J.; Zou, W. Computer-vision-assisted subzone-level demand-controlled ventilation with fast occupancy adaptation for large open spaces towards balanced IAQ and energy performance. Build. Environ. 2023, 207, 110427. [Google Scholar] [CrossRef]
- Zhai, Y.; Miao, F.; Yang, L.; Zhao, S.; Zhang, H.; Arens, E. Using personally controlled air movement to improve comfort after simulated summer commute. Build. Environ. 2019, 165, 106329. [Google Scholar] [CrossRef] [Green Version]
- Bourikas, L.; Costanza, E.; Gauthier, S.; James, P.A.B.; Kittley-Davies, J.; Ornaghi, C.; Rogers, A.; Saadatian, E.; Huang, Y. Camera-based window-opening estimation in a naturally ventilated office. Build. Res. Inf. 2018, 46, 148–163. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Li, F.; Cai, H.; Zhang, K. Non-intrusive measurement method for the window opening behavior. Energy Build. 2019, 197, 171–176. [Google Scholar] [CrossRef]
- Luong, D.; Richman, R.; Touchie, M. Towards window state detection using image processing in residential and office building facades. Build. Environ. 2022, 207, 108486. [Google Scholar] [CrossRef]
- Tien, P.W.; Wei, S.; Liu, T.; Calautit, J.; Darkwa, J.; Wood, C. A deep learning approach towards the detection and recognition of opening of windows for effective management of building ventilation heat losses and reducing space heating demand. Renew. Energy 2021, 177, 603–625. [Google Scholar] [CrossRef]
- Sun, C.; Guo, X.; Zhao, T.; Han, Y. Real-time detection method of window opening behavior using deep learning-based image recognition in severe cold regions. Energy Build. 2022, 268, 112196. [Google Scholar] [CrossRef]
- Chen, X.; Zou, Z.; Hao, F.; Wang, Y.; Mei, C.; Zhou, Y.; Wang, D.; Yang, X. Remote sensing of indoor thermal environment from outside the building through window opening gap by using infrared camera. Energy Build. 2023, 286, 112975. [Google Scholar] [CrossRef]
- Li, J.; Liu, N. The perception, optimization strategies and prospects of outdoor thermal comfort in China: A review. Build. Environ. 2020, 170, 106614. [Google Scholar] [CrossRef]
- De Montigny, L.; Ling, R.; Zacharias, J. The effects of weather on walking rates in nine cities. Environ. Behav. 2012, 44, 821–840. [Google Scholar] [CrossRef]
- Middel, A.; Krayenhoff, E.S. Micrometeorological determinants of pedestrian thermal exposure during record-breaking heat in Tempe, Arizona: Introducing the MaRTy observational platform. Sci. Total Environ. 2019, 687, 137–151. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.Y.; Kim, J.H.; Jeong, J.W. Classification of the Sidewalk Condition Using Self-Supervised Transfer Learning for Wheelchair Safety Driving. Sensors 2022, 22, 380. [Google Scholar] [CrossRef]
- Peng, Z.; Bardhan, R.; Ellard, C.; Steemers, K. Urban climate walk: A stop-and-go assessment of the dynamic thermal sensation and perception in two waterfront districts in Rome, Italy. Build. Environ. 2022, 221, 109267. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, Y.; Deng, Q. The effects of urban microclimate on outdoor thermal sensation and neutral temperature in hot-summer and cold-winter climate. Energy Build. 2016, 128, 190–197. [Google Scholar] [CrossRef]
- Yao, J.; Yang, F.; Zhuang, Z.; Shao, Y.; Yuan, P.F. The effect of personal and microclimatic variables on outdoor thermal comfort: A field study in a cold season in Lujiazui CBD, Shanghai. Sustain. Cities Soc. 2018, 39, 181–188. [Google Scholar] [CrossRef]
- Speak, A.F.; Salbitano, F. Summer thermal comfort of pedestrians in diverse urban settings: A mobile study. Build. Environ. 2022, 208, 108600. [Google Scholar] [CrossRef]
- Cui, Y.; Yan, D.; Hong, T.; Ma, J. Temporal and spatial characteristics of the urban heat island in Beijing and the impact on building design and energy performance. Energy 2017, 130, 286–297. [Google Scholar] [CrossRef] [Green Version]
- Van Hove, L.W.A.; Jacobs, C.M.J.; Heusinkveld, B.G.; Elbers, J.A.; Van Driel, B.L.; Holtslag, A.A.M. Temporal and spatial variability of urban heat island and thermal comfort within the Rotterdam agglomeration. Build. Environ. 2015, 83, 91–103. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.C.; Yao, C.K.; Honjo, T.; Lin, T.P. The application of a high-density street-level air temperature observation network (HiSAN): Dynamic variation characteristics of urban heat island in Tainan, Taiwan. Sci. Total Environ. 2018, 626, 555–566. [Google Scholar] [CrossRef] [PubMed]
- Oke, T.R.; Mills, G.; Christen, A.; Voogt, J.A. Urban Climates; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Pigliautile, I.; Pisello, A.L. A new wearable monitoring system for investigating pedestrians’ environmental conditions: Development of the experimental tool and start-up findings. Sci. Total Environ. 2018, 630, 690–706. [Google Scholar] [CrossRef] [PubMed]
- Cureau, R.J.; Pigliautile, I.; Pisello, A.L. A new wearable system for sensing outdoor environmental conditions for monitoring hyper-microclimate. Sensors 2022, 22, 502. [Google Scholar] [CrossRef]
- Pigliautile, I.; Pisello, A.L. Environmental data clustering analysis through wearable sensing techniques: New bottom-up process aimed to identify intra-urban granular morphologies from pedestrian transects. Build. Environ. 2020, 171, 106641. [Google Scholar] [CrossRef]
- Tsin, P.K.; Knudby, A.; Krayenhoff, E.S.; Ho, H.C.; Brauer, M.; Henderson, S.B. Microscale mobile monitoring of urban air temperature. Urban Clim. 2016, 18, 58–72. [Google Scholar] [CrossRef] [Green Version]
- Nakayoshi, M.; Kanda, M.; Shi, R.; de Dear, R. Outdoor thermal physiology along human pathways: A study using a wearable measurement system. Int. J. Biometeorol. 2015, 59, 503–515. [Google Scholar] [CrossRef]
- Dam, N.; Ricketts, A.; Catlett, B.; Henriques, J. Wearable sensors for analyzing personal exposure to air pollution. In Proceedings of the 2017 Systems and Information Engineering Design Symposium (SIEDS), Charlottesville, VA, USA, 28–28 April 2017; pp. 1–4. [Google Scholar]
- Saoutieff, E.; Polichetti, T.; Jouanet, L.; Faucon, A.; Vidal, A.; Pereira, A.; Boisseau, S.; Ernst, T.; Miglietta, M.L.; Alfano, B.; et al. A wearable low-power sensing platform for environmental and health monitoring: The convergence project. Sensors 2021, 21, 1802. [Google Scholar] [CrossRef]
- Deng, Y.; Chen, C.; Xian, X.; Tsow, F.; Verma, G.; McConnell, R.; Fruin, S.; Tao, N.; Forzani, E.S. A novel wireless wearable volatile organic compound (VOC) monitoring device with disposable sensors. Sensors 2016, 16, 2060. [Google Scholar] [CrossRef]
- Gallinelli, P.; Camponovo, R.; Guillot, V. CityFeel-micro climate monitoring for climate mitigation and urban design. Energy Procedia 2017, 122, 391–396. [Google Scholar] [CrossRef]
- Kulkarni, K.K.; Schneider, F.A.; Gowda, T.; Jayasuriya, S.; Middel, A. MaRTiny-A low-cost biometeorological sensing device with embedded computer vision for urban climate research. Front. Env. Sci. 2022, 10, 550. [Google Scholar] [CrossRef]
- Yang, J.; Wong, M.S.; Ho, H.C.; Krayenhoff, E.S.; Chan, P.W.; Abbas, S.; Menenti, M. A semi-empirical method for estimating complete surface temperature from radiometric surface temperature, a study in Hong Kong city. Remote Sens. Environ. 2020, 237, 111540. [Google Scholar] [CrossRef]
- Zhao, Z.; Sharifi, A.; Dong, X.; Shen, L.; He, B.J. Spatial variability and temporal heterogeneity of surface urban heat island patterns and the suitability of local climate zones for land surface temperature characterization. Remote Sens. 2021, 13, 4338. [Google Scholar] [CrossRef]
- Voogt, J.A.; Oke, T.R. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- Sun, R.; Chen, L. How can urban water bodies be designed for climate adaptation? Landsc. Urban Plan. 2012, 105, 27–33. [Google Scholar] [CrossRef]
- Da Silva Espinoza, N.; dos Santos, C.A.C.; de Oliveira, M.B.L.; Silva, M.T.; Santos, C.A.G.; da Silva, R.M.; Mishra, M.; Ferreira, R.R. Assessment of urban heat islands and thermal discomfort in the Amazonia biome in Brazil: A case study of Manaus city. Build. Environ. 2023, 227, 109772. [Google Scholar] [CrossRef]
- Pearsall, H. Staying cool in the compact city: Vacant land and urban heating in Philadelphia, Pennsylvania. Appl. Geogr. 2017, 79, 84–92. [Google Scholar] [CrossRef]
- Wang, C.; Li, Y.; Myint, S.W.; Zhao, Q.; Wentz, E.A. Impacts of spatial clustering of urban land cover on land surface temperature across Köppen climate zones in the contiguous United States. Landsc. Urban Plan. 2019, 192, 103668. [Google Scholar] [CrossRef]
- Stathopoulou, M.I.; Cartalis, C.; Keramitsoglou, I.; Santamouris, M. Thermal remote sensing of Thom’s discomfort index (DI): Comparison with in-situ measurements. In Proceedings of the Remote Sensing for Environmental Monitoring, GIS Applications, and Geology V, Bruges, Belgium, 29 October 2005; SPIE: Bellingham, WA, USA, 2005; pp. 131–139. [Google Scholar]
- Xu, H.; Hu, X.; Guan, H.; He, G. Development of a fine-scale discomfort index map and its application in measuring living environments using remotely-sensed thermal infrared imagery. Energy Build. 2017, 150, 598–607. [Google Scholar] [CrossRef]
- Mijani, N.; Alavipanah, S.K.; Firozjaei, M.K.; Arsanjani, J.J.; Hamzeh, S.; Weng, Q. Modeling outdoor thermal comfort using satellite imagery: A principle component analysis-based approach. Ecol. Indic. 2020, 117, 106555. [Google Scholar] [CrossRef]
- Li, X.; Ratti, C. Mapping the spatio-temporal distribution of solar radiation within street canyons of Boston using Google Street View panoramas and building height model. Landsc. Urban Plan. 2019, 191, 103387. [Google Scholar] [CrossRef]
- Fabbri, K.; Costanzo, V. Drone-assisted infrared thermography for calibration of outdoor microclimate simulation models. Sustain. Cities Soc. 2020, 52, 101855. [Google Scholar] [CrossRef]
- Asawa, T.; Oshio, H.; Tanaka, K. Portable recording system for spherical thermography and its application to longwave mean radiant temperature estimation. Build. Environ. 2022, 222, 109412. [Google Scholar] [CrossRef]
- Gil, E.; Lerma, C.; Vercher, J.; Mas, Á. Methodology for thermal behaviour assessment of homogeneous façades in heritage buildings. J. Sens. 2017, 2017, 3280691. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Moon, H.; Choi, Y.; Yoon, D.K. Analyzing thermal characteristics of urban streets using a thermal imaging camera: A case study on commercial streets in Seoul, Korea. Sustainability 2018, 10, 519. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Luo, Y.; He, J. Analysis of the thermal environment in pedestrian space using 3D thermal imaging. Energies 2020, 13, 3674. [Google Scholar] [CrossRef]
- Martin, M.; Chong, A.; Biljecki, F.; Miller, C. Infrared thermography in the built environment: A multi-scale review. Renew. Sust. Energ. Rev. 2022, 165, 112540. [Google Scholar] [CrossRef]
- Yu, K.; Chen, Y.; Wang, D.; Chen, Z.; Gong, A.; Li, J. Study of the seasonal effect of building shadows on urban land surface temperatures based on remote sensing data. Remote Sens. 2019, 11, 497. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Gao, C.; Li, J.; Gao, M.; Ma, R. Assessing the cooling efficiency of urban parks using data envelopment analysis and remote sensing data. Theor. Appl. Climatol. 2021, 145, 903–916. [Google Scholar] [CrossRef]
- Lee, S.; Moon, H.; Choi, Y.; Yoon, D.K. Urban morphology detection and computation for urban climate research. Landsc. Urban Plan. 2017, 167, 212–224. [Google Scholar]
- Vanhoey, K.; de Oliveira, C.E.P.; Riemenschneider, H.; Bódis-Szomorú, A.; Manén, S.; Paudel, D.P.; Gygli, M.; Kobyshev, N.; Kroeger, T.; Dai, D.; et al. VarCity-the video: The struggles and triumphs of leveraging fundamental research results in a graphics video production. In Proceedings of the ACM Special Interest Group on Computer Graphics and Interactive Techniques Conference, Los Angeles, CA, USA, 30 July–3 August 2017; pp. 1–2. [Google Scholar]
- Xian, G.; Shi, H.; Auch, R.; Gallo, K.; Zhou, Q.; Wu, Z.; Kolian, M. The effects of urban land cover dynamics on urban heat Island intensity and temporal trends. GiSci. Remote Sens. 2021, 58, 501–515. [Google Scholar] [CrossRef]
- Wang, B.; Zhao, W.; Gao, P.; Zhang, Y.; Wang, Z. Crack damage detection method via multiple visual features and efficient multi-task learning model. Sensors 2018, 18, 1796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Xu, X.; Dong, H.; Gui, R.; Pu, F. Multi-pixel simultaneous classification of PolSAR image using convolutional neural networks. Sensors 2018, 18, 769. [Google Scholar] [CrossRef] [Green Version]
- Wurm, M.; Stark, T.; Zhu, X.X.; Weigand, M.; Taubenböck, H. Semantic segmentation of slums in satellite images using transfer learning on fully convolutional neural networks. ISPRS J. Photogramm. 2019, 150, 59–69. [Google Scholar] [CrossRef]
- Amirkolaee, H.A.; Arefi, H. Height estimation from single aerial images using a deep convolutional encoder-decoder network. ISPRS J. Photogramm. 2019, 149, 50–66. [Google Scholar] [CrossRef]
- Smart, N.; Eisenman, T.S.; Karvonen, A. Street tree density and distribution: An international analysis of five capital cities. Front. Ecol. Evol. 2020, 8, 562646. [Google Scholar] [CrossRef]
- Huang, C.; Yang, J.; Clinton, N.; Yu, L.; Huang, H.; Dronova, I.; Jin, J. Mapping the maximum extents of urban green spaces in 1039 cities using dense satellite images. Environ. Res. Lett. 2021, 16, 064072. [Google Scholar] [CrossRef]
- Huang, Y.; Lin, T.; Zhang, G.; Zhu, Y.; Zeng, Z.; Ye, H. Spatial patterns of urban green space and its actual utilization status in China based on big data analysis. Big Earth Data 2021, 5, 391–409. [Google Scholar] [CrossRef]
- Hong, X.; Sheridan, S.; Li, D. Mapping built environments from UAV imagery: A tutorial on mixed methods of deep learning and GIS. Comput. Urban Sci. 2022, 2, 12. [Google Scholar] [CrossRef]
- Hu, T.; Wei, D.; Su, Y.; Wang, X.; Zhang, J.; Sun, X.; Liu, Y.; Guo, Q. Quantifying the shape of urban street trees and evaluating its influence on their aesthetic functions based mobile lidar data. ISPRS J. Photogramm. 2022, 184, 203–214. [Google Scholar] [CrossRef]
- Ren, C.; Cai, M.; Li, X.; Shi, Y.; See, L. Developing a rapid method for 3-dimensional urban morphology extraction using open-source data. Sustain. Cities Soc. 2020, 53, 101962. [Google Scholar] [CrossRef]
- Li, X.; Wang, G. Examining runner’s outdoor heat exposure using urban microclimate modeling and GPS trajectory mining. Comput. Environ. Urban 2021, 89, 101678. [Google Scholar] [CrossRef]
- Fox, J.; Osmond, P.; Peters, A. The effect of building facades on outdoor microclimate—Reflectance recovery from terrestrial multispectral images using a robust empirical line method. Climate 2018, 6, 56. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhang, C.; Li, W.; Ricard, R.; Meng, Q.; Zhang, W. Assessing street-level urban greenery using Google Street View and a modified green view index. Urban For. Urban Gree. 2015, 14, 675–685. [Google Scholar] [CrossRef]
- Biljecki, F.; Ito, K. Street view imagery in urban analytics and GIS: A review. Landsc. Urban Plan. 2021, 215, 104217. [Google Scholar] [CrossRef]
- Li, Y.; Peng, L.; Wu, C.; Zhang, J. Street view imagery (svi) in the built environment: A theoretical and systematic review. Buildings 2022, 12, 1167. [Google Scholar] [CrossRef]
- Gong, Z.; Ma, Q.; Kan, C.; Qi, Q. Classifying Street spaces with street view images for a spatial indicator of urban functions. Sustainability 2019, 11, 6424. [Google Scholar] [CrossRef] [Green Version]
- Jamei, E.; Rajagopalan, P.; Seyedmahmoudian, M.; Jamei, Y. Review on the impact of urban geometry and pedestrian level greening on outdoor thermal comfort. Renew. Sust. Energ. Rev. 2016, 54, 1002–1017. [Google Scholar] [CrossRef]
- Klemm, W.; Heusinkveld, B.G.; Lenzholzer, S.; van Hove, B. Street greenery and its physical and psychological impact on thermal comfort. Landsc. Urban Plan. 2015, 138, 87–98. [Google Scholar] [CrossRef]
- Yang, J.; Shi, B.; Xia, G.; Xue, Q.; Cao, S.J. Impacts of urban form on thermal environment near the surface region at pedestrian height: A case study based on high-density built-up areas of Nanjing City in China. Sustainability 2020, 12, 1737. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.J.; Brown, R.D. A multilevel approach for assessing the effects of microclimatic urban design on pedestrian thermal comfort: The High Line in New York. Build. Environ. 2021, 205, 108244. [Google Scholar] [CrossRef]
- Kim, S.W.; Brown, R.D. Pedestrians’ behavior based on outdoor thermal comfort and micro-scale thermal environments, Austin, TX. Sci. Total Environ. 2022, 808, 152143. [Google Scholar] [CrossRef] [PubMed]
- Abdelhafez, M.H.H.; Altaf, F.; Alshenaifi, M.; Hamdy, O.; Ragab, A. Achieving effective thermal performance of street canyons in various climatic zones. Sustainability 2022, 14, 10780. [Google Scholar] [CrossRef]
- Oke, T.R. Canyon geometry and the nocturnal urban heat island: Comparison of scale model and field observations. J. Climatol. 1981, 1, 237–254. [Google Scholar] [CrossRef]
- Lin, T.P.; Tsai, K.T.; Hwang, R.L.; Matzarakis, A. Quantification of the effect of thermal indices and sky view factor on park attendance. Landsc. Urban Plan. 2012, 107, 137–146. [Google Scholar] [CrossRef]
- Oke, T.R. Street design and urban canopy layer climate. Energy Build. 1988, 11, 103–113. [Google Scholar] [CrossRef]
- Scarano, M.; Mancini, F. Assessing the relationship between sky view factor and land surface temperature to the spatial resolution. Int. J. Remote Sens. 2017, 38, 6910–6929. [Google Scholar] [CrossRef]
- Watson, I.D.; Johnson, G.T. Graphical estimation of sky view-factors in urban environments. J. Climatol. 1987, 7, 193–197. [Google Scholar] [CrossRef]
- Chapman, L.; Thornes, J.E.; Bradley, A.V. Sky-view factor approximation using GPS receivers. Int. J. Climatol. 2002, 22, 615–621. [Google Scholar] [CrossRef]
- Brown, M.J.; Grimmond, S.; Ratti, C. Comparison of Methodologies for Computing Sky View Factor in Urban Environments; Los Alamos National Lab: Los Alamos, NM, USA, 2001. [Google Scholar]
- Miao, C.; Yu, S.; Hu, Y.; Zhang, H.; He, X.; Chen, W. Review of methods used to estimate the sky view factor in urban street canyons. Build. Environ. 2020, 168, 106497. [Google Scholar] [CrossRef]
- Holmer, B. A simple operative method for determination of sky view factors in complex urban canyons from fisheye photographs. Meteorol. Z 1992, 1, 236–239. [Google Scholar] [CrossRef]
- Steyn, D.G. The calculation of view factors from fisheye-lens photographs: Research note. Atmos. Ocean 1980, 18, 254–258. [Google Scholar] [CrossRef]
- Chen, L.; Ng, E.; An, X.; Ren, C.; Lee, M.; Wang, U.; He, Z. Sky view factor analysis of street canyons and its implications for daytime intra-urban air temperature differentials in high-rise, high-density urban areas of Hong Kong: A GIS-based simulation approach. Int. J. Climatol. 2012, 32, 121–136. [Google Scholar] [CrossRef]
- Gong, F.Y.; Zeng, Z.C.; Zhang, F.; Li, X.; Ng, E.; Norford, L.K. Mapping sky, tree, and building view factors of street canyons in a high-density urban environment. Build. Environ. 2018, 134, 155–167. [Google Scholar] [CrossRef]
- Zeng, L.; Lu, J.; Li, W.; Li, Y. A fast approach for large-scale Sky View Factor estimation using street view images. Build. Environ. 2018, 135, 74–84. [Google Scholar] [CrossRef]
- Middel, A.; Lukasczyk, J.; Maciejewski, R. Sky view factors from synthetic fisheye photos for thermal comfort routing–A case study in Phoenix, Arizona. Urban Plan. 2017, 2, 19–30. [Google Scholar] [CrossRef] [Green Version]
- Carrasco-Hernandez, R.; Smedley, A.R.D.; Webb, A.R. Using urban canyon geometries obtained from Google Street View for atmospheric studies, Potential applications in the calculation of street level total shortwave irradiances. Energy Build. 2015, 86, 340–348. [Google Scholar] [CrossRef]
- Xia, Y.; Yabuki, N.; Fukuda, T. Sky view factor estimation from street view images based on semantic segmentation. Urban Clim. 2021, 40, 100999. [Google Scholar] [CrossRef]
- Liang, J.; Gong, J.; Sun, J.; Zhou, J.; Li, W.; Li, Y.; Liu, J.; Shen, S. Automatic sky view factor estimation from street view photographs—A big data approach. Remote Sens. 2017, 9, 411. [Google Scholar] [CrossRef] [Green Version]
- Gong, F.Y.; Zeng, Z.C.; Ng, E.; Norford, L.K. Spatiotemporal patterns of street-level solar radiation estimated using Google Street View in a high-density urban environment. Build. Environ. 2019, 148, 547–566. [Google Scholar] [CrossRef]
- Du, K.; Ning, J.; Yan, L. How long is the sun duration in a street canyon?—Analysis of the view factors of street canyons. Build. Environ. 2020, 172, 106680. [Google Scholar] [CrossRef]
- Nice, K.A.; Wijnands, J.S.; Middel, A.; Wang, J.; Qiu, Y.; Zhao, N.; Thompson, J.; Aschwanden, G.D.P.A.; Zhao, H.; Stevenson, M. Sky pixel detection in outdoor imagery using an adaptive algorithm and machine learning. Urban Clim. 2020, 31, 100572. [Google Scholar] [CrossRef]
- Urban, J.; Pikl, M.; Zemek, F.; Novotný, J. Using Google Street View photographs to assess long-term outdoor thermal perception and thermal comfort in the urban environment during heatwaves. Front. Env. Sci. 2022, 10, 878341. [Google Scholar] [CrossRef]
- Doersch, C.; Singh, S.; Gupta, A.; Sivic, J.; Efros, A. What makes paris look like paris? ACM Trans. Graphic. 2012, 31, 101. [Google Scholar] [CrossRef]
- Kang, J.; Körner, M.; Wang, Y.; Taubenböck, H.; Zhu, X.X. Building instance classification using street view images. ISPRS J. Photogramm. 2018, 145, 44–59. [Google Scholar] [CrossRef]
- Deng, Z.; Chen, Y.; Pan, X.; Peng, Z.; Yang, J. Integrating GIS-based point of interest and community boundary datasets for urban building energy modeling. Energies 2021, 14, 1049. [Google Scholar] [CrossRef]
- Koch, D.; Despotovic, M.; Sakeena, M.; Döller, M.; Zeppelzauer, M. Visual estimation of building condition with patch-level ConvNets. In Proceedings of the 2018 ACM Workshop on Multimedia for Real Estate Tech, Yokohama, Japan, 11 June 2018; pp. 12–17. [Google Scholar]
- Zeppelzauer, M.; Despotovic, M.; Sakeena, M.; Koch, D.; Döller, M. Automatic prediction of building age from photographs. In Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval, Yokohama, Japan, 11–14 June 2018; pp. 126–134. [Google Scholar]
- Li, Y.; Chen, Y.; Rajabifard, A.; Khoshelham, K.; Aleksandrov, M. Estimating building age from Google street view images using deep learning (short paper). In Proceedings of the 10th International Conference on Geographic Information Science (GIScience 2018), Melbourne, Australia, 28–31 August 2018; pp. 1–7. [Google Scholar]
- Kim, H.; Han, S. Interactive 3D building modeling method using panoramic image sequences and digital map. Multimed. Tools Appl. 2018, 77, 27387–27404. [Google Scholar] [CrossRef]
- Kraff, N.J.; Wurm, M.; Taubenböck, H. The dynamics of poor urban areas-analyzing morphologic transformations across the globe using Earth observation data. Cities 2020, 107, 102905. [Google Scholar] [CrossRef]
- Zhong, T.; Ye, C.; Wang, Z.; Tang, G.; Zhang, W.; Ye, Y. City-scale mapping of urban façade color using street-view imagery. Remote Sens. 2021, 13, 1591. [Google Scholar] [CrossRef]
- Zhang, J.; Fukuda, T.; Yabuki, N. Development of a city-scale approach for façade color measurement with building functional classification using deep learning and street view images. ISPRS Int. J. Geo-Inf. 2021, 10, 551. [Google Scholar] [CrossRef]
- Rosenfelder, M.; Wussow, M.; Gust, G.; Cremades, R.; Neumann, D. Predicting residential electricity consumption using aerial and street view images. Appl. Energy 2021, 301, 117407. [Google Scholar] [CrossRef]
- Li, X.; Zhang, C.; Li, W. Building block level urban land-use information retrieval based on Google Street View images. GiSci. Remote Sens. 2017, 54, 819–835. [Google Scholar] [CrossRef]
- Cao, R.; Zhu, J.; Tu, W.; Li, Q.; Cao, J.; Liu, B.; Zhang, Q.; Qiu, G. Integrating aerial and street view images for urban land use classification. Remote Sens. 2018, 10, 1553. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Fang, F.; Liu, Y.; Li, S.; Luo, Z. Urban land use classification using street view images based on deep transfer network. In Urban Intelligence and Applications: Proceedings of ICUIA 2019; Springer International Publishing: Cham, Switzerland, 2020; pp. 83–95. [Google Scholar]
- Hu, F.; Liu, W.; Lu, J.; Song, C.; Meng, Y.; Wang, J.; Xing, H. Urban function as a new perspective for adaptive street quality assessment. Sustainability 2020, 12, 1296. [Google Scholar] [CrossRef] [Green Version]
- Ye, C.; Zhang, F.; Mu, L.; Gao, Y.; Liu, Y. Urban function recognition by integrating social media and street-level imagery. Environ. Plann. B Urban Anal. City Sci. 2021, 48, 1430–1444. [Google Scholar] [CrossRef]
- Ning, H.; Ye, X.; Chen, Z.; Liu, T.; Cao, T. Sidewalk extraction using aerial and street view images. Environ. Plann. B Urban Anal. City Sci. 2022, 49, 7–22. [Google Scholar] [CrossRef]
- Li, M.; Sheng, H.; Irvin, J.; Chung, H.; Ying, A.; Sun, T.; Ng, A.Y.; Rodriguez, D.A. Marked crosswalks in US transit-oriented station areas, 2007–2020: A computer vision approach using street view imagery. Environ. Plann. B Urban Anal. City Sci. 2023, 50, 350–369. [Google Scholar] [CrossRef]
- Li, X.; Ning, H.; Huang, X.; Dadashova, B.; Kang, Y.; Ma, A. Urban infrastructure audit: An effective protocol to digitize signalized intersections by mining street view images. Cartogr. Geogr. Inf. Sci. 2022, 49, 32–49. [Google Scholar] [CrossRef]
- Ibrahim, M.R.; Haworth, J.; Cheng, T. Understanding cities with machine eyes: A review of deep computer vision in urban analytics. Cities 2020, 96, 102481. [Google Scholar] [CrossRef]
- Aram, F.; Solgi, E.; Garcia, E.H.; Mosavi, A. Urban heat resilience at the time of global warming: Evaluating the impact of the urban parks on outdoor thermal comfort. Environ. Sci. Eur. 2020, 32, 17. [Google Scholar] [CrossRef]
- Zhou, H.; Tao, G.; Yan, X.; Sun, J. Influences of greening and structures on urban thermal environments: A case study in Xuzhou City, China. Urban For. Urban Gree. 2021, 66, 127386. [Google Scholar] [CrossRef]
- Wang, R.; Yang, B.; Yao, Y.; Bloom, M.S.; Feng, Z.; Yuan, Y.; Zhang, J.; Liu, P.; Wu, W.; Lu, Y.; et al. Residential greenness, air pollution and psychological well-being among urban residents in Guangzhou, China. Sci. Total Environ. 2020, 711, 134843. [Google Scholar] [CrossRef]
- Suppakittpaisarn, P.; Jiang, B.; Slavenas, M.; Sullivan, W.C. Does density of green infrastructure predict preference? Urban For. Urban Gree. 2019, 40, 236–244. [Google Scholar] [CrossRef]
- Gupta, K.; Kumar, P.; Pathan, S.K.; Sharma, K.P. Urban Neighborhood Green Index–A measure of green spaces in urban areas. Landsc. Urban Plan. 2012, 105, 325–335. [Google Scholar] [CrossRef]
- Shah, A.; Garg, A.; Mishra, V. Quantifying the local cooling effects of urban green spaces: Evidence from Bengaluru, India. Landsc. Urban Plan. 2021, 209, 104043. [Google Scholar] [CrossRef]
- Yu, Z.; Yang, G.; Zuo, S.; Jørgensen, G.; Koga, M.; Vejre, H. Critical review on the cooling effect of urban blue-green space: A threshold-size perspective. Urban For. Urban Gree. 2020, 49, 126630. [Google Scholar] [CrossRef]
- Ye, Y.; Xie, H.; Fang, J.; Jiang, H.; Wang, D. Daily accessed street greenery and housing price: Measuring economic performance of human-scale streetscapes via new urban data. Sustainability 2019, 11, 1741. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Rong, H.; Kang, Y.; Zhang, F.; Chegut, A. The financial impact of street-level greenery on New York commercial buildings. Landsc. Urban Plan. 2021, 214, 104162. [Google Scholar] [CrossRef]
- Jing, F.; Liu, L.; Zhou, S.; Song, J.; Wang, L.; Zhou, H.; Wang, Y.; Ma, R. Assessing the impact of street-view greenery on fear of neighborhood crime in Guangzhou, China. Int. J. Environ. Res. Public Health 2021, 18, 311. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhang, Y.; Sun, Y.; Tao, P.; Kuang, X. Does green space really matter for residents’ obesity? A new perspective from Baidu Street View. Front. Public Health 2020, 8, 332. [Google Scholar] [CrossRef]
- He, H.; Lin, X.; Yang, Y.; Lu, Y. Association of street greenery and physical activity in older adults: A novel study using pedestrian-centered photographs. Urban For. Urban Gree. 2020, 55, 126789. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, L.; Mcbride, J.; Gong, P. Can you see green? Assessing the visibility of urban forests in cities. Landsc. Urban Plan. 2009, 91, 97–104. [Google Scholar] [CrossRef]
- Riihimäki, H.; Luoto, M.; Heiskanen, J. Estimating fractional cover of tundra vegetation at multiple scales using unmanned aerial systems and optical satellite data. Remote Sens. Environ. 2019, 224, 119–132. [Google Scholar] [CrossRef]
- Barbierato, E.; Bernetti, I.; Capecchi, I.; Saragosa, C. Integrating remote sensing and street view images to quantify urban forest ecosystem services. Remote Sens. 2020, 12, 329. [Google Scholar] [CrossRef] [Green Version]
- Lumnitz, S.; Devisscher, T.; Mayaud, J.R.; Radic, V.; Coops, N.C.; Griess, V.C. Mapping trees along urban street networks with deep learning and street-level imagery. ISPRS J. Photogramm. 2021, 175, 144–157. [Google Scholar] [CrossRef]
- Ki, D.; Lee, S. Analyzing the effects of Green View Index of neighborhood streets on walking time using Google Street View and deep learning. Landsc. Urban Plan. 2021, 205, 103920. [Google Scholar] [CrossRef]
- Yu, H.; Zhou, Y.; Wang, R.; Qian, Z.; Knibbs, L.D.; Jalaludin, B.; Schootman, M.; McMillin, S.E.; Howard, S.W.; Lin, L.Z.; et al. Associations between trees and grass presence with childhood asthma prevalence using deep learning image segmentation and a novel green view index. Environ. Pollut. 2021, 286, 117582. [Google Scholar] [CrossRef]
- Wang, B.; Li, L.; Nakashima, Y.; Kawasaki, R.; Nagahara, H.; Yagi, Y. Noisy-LSTM: Improving temporal awareness for video semantic segmentation. IEEE Access 2021, 9, 46810–46820. [Google Scholar] [CrossRef]
- Dong, R.; Zhang, Y.; Zhao, J. How green are the streets within the sixth ring road of Beijing? An analysis based on Tencent street view pictures and the green view index. Int. J. Environ. Res. Public Health 2018, 15, 1367. [Google Scholar] [CrossRef] [Green Version]
- Kumakoshi, Y.; Chan, S.Y.; Koizumi, H.; Li, X.; Yoshimura, Y. Standardized green view index and quantification of different metrics of urban green vegetation. Sustainability 2020, 12, 7434. [Google Scholar] [CrossRef]
- Chiang, Y.C.; Liu, H.H.; Li, D.; Ho, L.C. Quantification through deep learning of sky view factor and greenery on urban streets during hot and cool seasons. Landsc. Urban Plan. 2023, 232, 104679. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, A. Analyzing green view index and green view index best path using Google street view and deep learning. J. Comput. Des. Eng. 2022, 9, 2010–2023. [Google Scholar] [CrossRef]
- Tong, M.; She, J.; Tan, J.; Li, M.; Ge, R.; Gao, Y. Evaluating street greenery by multiple indicators using street-level imagery and satellite images: A Case Study In Nanjing, China. Forests 2020, 11, 1347. [Google Scholar] [CrossRef]
- Branson, S.; Wegner, J.D.; Hall, D.; Lang, N.; Schindler, K.; Perona, P. From Google Maps to a fine-grained catalog of street trees. ISPRS J. Photogramm. Remote Sens. 2018, 135, 13–30. [Google Scholar] [CrossRef] [Green Version]
- Choi, K.; Lim, W.; Chang, B.; Jeong, J.; Kim, I.; Park, C.R.; Ko, D.W. An automatic approach for tree species detection and profile estimation of urban street trees using deep learning and Google street view images. ISPRS J. Photogramm. Remote Sens. 2022, 190, 165–180. [Google Scholar] [CrossRef]
- Seiferling, I.; Naik, N.; Ratti, C.; Proulx, R. Green streets—Quantifying and mapping urban trees with street-level imagery and computer vision. Landsc. Urban Plan. 2017, 165, 93–101. [Google Scholar] [CrossRef]
- Liu, D.; Jiang, Y.; Wang, R.; Lu, Y. Establishing a citywide street tree inventory with street view images and computer vision techniques. Comput. Environ. Urban Syst. 2023, 100, 101924. [Google Scholar] [CrossRef]
- Yue, N.; Zhang, Z.; Jiang, S.; Chen, S. Deep feature migration for real-time mapping of urban street shading coverage index based on street-level panorama images. Remote Sens. 2022, 14, 1796. [Google Scholar] [CrossRef]
- Wong, P.K.Y.; Luo, H.; Wang, M.; Cheng, J.C.P. Enriched and discriminative convolutional neural network features for pedestrian re-identification and trajectory modeling. Comput. Aided Civ. Infrastruct. Eng. 2022, 37, 573–592. [Google Scholar] [CrossRef]
- Tokuda, E.K.; Lockerman, Y.; Ferreira, G.B.A.; Sorrelgreen, E.; Boyle, D.; Cesar, R.M.; Silva, C.T. A new approach for pedestrian density estimation using moving sensors and computer vision. ACM Trans. Spat. Algorithms Syst. 2020, 6, 26. [Google Scholar] [CrossRef]
- Li, Z.; Ma, J. Discussing street tree planning based on pedestrian volume using machine learning and computer vision. Build. Environ. 2022, 219, 109178. [Google Scholar] [CrossRef]
- Martani, C.; Stent, S.; Acikgoz, S.; Soga, K.; Bain, D.; Jin, Y. Pedestrian monitoring techniques for crowd-flow prediction. Proc. Inst. Civ. Eng. Smart Infrastruct. Constr. 2017, 170, 17–27. [Google Scholar] [CrossRef]
- Malinovskiy, Y.; Zheng, J.; Wang, Y. Model-free video detection and tracking of pedestrians and bicyclists. Comput. Aided Civ. Infrastruct. Eng. 2009, 24, 157–168. [Google Scholar] [CrossRef]
- Batty, M. Urban analytics defined. Environ. Plan. B Urban Anal. City Sci. 2019, 46, 403–405. [Google Scholar] [CrossRef] [Green Version]
- Ashraf, S. A proactive role of IoT devices in building smart cities. Internet Things Cyber Phys. Syst. 2021, 1, 8–13. [Google Scholar] [CrossRef]
- Feng, H.; Chen, D.; Lv, H. Sensible and secure IoT communication for digital twins, cyber twins, web twins. Internet Things Cyber Phys. Syst. 2021, 1, 34–44. [Google Scholar] [CrossRef]
- Cheng, C.; Dou, J.; Zheng, Z. Energy-efficient SDN for Internet of Things in smart city. Internet Things Cyber Phys. Syst. 2022, 2, 145–158. [Google Scholar] [CrossRef]
- Paneru, S.; Jeelani, I. Computer vision applications in construction: Current state, opportunities & challenges. Autom. Constr. 2021, 132, 103940. [Google Scholar]
- Tavares, P.; Costa, C.M.; Rocha, L.; Malaca, P.; Costa, P.; Moreira, A.P.; Sousa, A.; Veiga, G. Collaborative welding system using BIM for robotic reprogramming and spatial augmented reality. Autom. Constr. 2019, 106, 102825. [Google Scholar] [CrossRef]
- Moon, S.; Becerik-Gerber, B.; Soibelman, L. Virtual learning for workers in robot deployed construction sites. In Advances in Informatics and Computing in Civil and Construction Engineering; Proceedings of the 35th CIB W78 2018 Conference: IT in Design, Construction, and Management, Chicago, IL, USA, 1–3 October 2019; Mutis, I., Hartmann, T., Eds.; Springer: Cham, Switzerland, 2019; pp. 889–895. [Google Scholar]
- Chu, B.; Jung, K.; Lim, M.T.; Hong, D. Robot-based construction automation: An application to steel beam assembly (Part I). Autom. Constr. 2013, 32, 46–61. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.; Zhang, K.; Wang, Z.; Lu, J. Design and analysis of demolition robot arm based on finite element method. Adv. Mech. Eng. 2019, 11, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Cui, J.; Liew, L.S.; Sabaliauskaite, G.; Zhou, F. A review on safety failures, security attacks, and available countermeasures for autonomous vehicles. Ad. Hoc. Netw. 2019, 90, 101823. [Google Scholar] [CrossRef]
- Silva Oliveira, A.S.; dos Reis, M.C.; da Mota, F.A.X.; Martinez, M.E.M.; Alexandria, A.R. New trends on computer vision applied to mobile robot localization. Internet Things Cyber Phys. Syst. 2022, 2, 63–69. [Google Scholar] [CrossRef]
- Li, H.; Luo, X.; Skitmore, M. Intelligent hoisting with car-like mobile robots. J. Constr. Eng. Manag. 2020, 146, 04020136. [Google Scholar] [CrossRef]
- Kim, D.; Lee, S.H.; Kamat Vineet, R. Proximity prediction of mobile objects to prevent contact-driven accidents in co-robotic construction. J. Comput. Civ. Eng. 2020, 34, 04020022. [Google Scholar] [CrossRef]
- Wang, Z.; Li, H.; Zhang, X. Construction waste recycling robot for nails and screws: Computer vision technology and neural network approach. Autom. Constr. 2019, 97, 220–228. [Google Scholar] [CrossRef]
- Luo, H.; Wang, M.; Wong, P.K.Y.; Cheng, J.C.P. Full body pose estimation of construction equipment using computer vision and deep learning techniques. Autom. Constr. 2020, 110, 103016. [Google Scholar] [CrossRef]
- Lee, M.F.R.; Chien, T.W. Intelligent robot for worker safety surveillance: Deep learning perception and visual navigation. In Proceedings of the 2020 International Conference on Advanced Robotics and Intelligent Systems (ARIS), Taipei, China, 19–21 August 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–6. [Google Scholar]
- Wild, W. Application of infrared thermography in civil engineering. Proc. Estonian Acad.Sci. Eng. 2007, 13, 436–444. [Google Scholar] [CrossRef]
- Antonopoulos, V.Z. Water movement and heat transfer simulations in a soil under ryegrass. Biosyst. Eng. 2006, 95, 127–138. [Google Scholar] [CrossRef]
- Al-Karawi, J.; Schmidt, J. Application of infrared thermography to the analysis of welding processes. In Proceedings of the 7th International Conference on Quantitative InfraRed Thermography, Belgium, Brussels, Belgium, 5–8 July 2004; Von Karman Institute: Sint-Genesius-Rode, Belgium, 2004; pp. 1–6. [Google Scholar]
- Jadin, M.S.; Taib, S. Recent progress in diagnosing the reliability of electrical equipment by using infrared thermography. Infrared Phys. Technol. 2012, 55, 236–245. [Google Scholar] [CrossRef] [Green Version]
- Johnson, E.J.; Hyer, P.V.; Culotta, P.W.; Clark, I.O. Evaluation of infrared thermography as a diagnostic tool in CVD applications. J. Cryst. Growth 1998, 187, 463–473. [Google Scholar] [CrossRef]
- Hittel, M.J.; Bingham, R.; Sanders, M.K. NFPA 70B recommended practice for electrical equipment maintenance 2002 edition. In Proceedings of the 8th IAS Annual Meeting on Conference Record of the Industry Applications Conference, Salt Lake City, UT, USA, 12–16 October 2003; IEEE: Piscataway, NJ, USA, 2003; pp. 1280–1284. [Google Scholar]
- Singh, G.; Kumar, T.C.A.; Naikan, V.N.A. Fault diagnosis of induction motor cooling system using infrared thermography. In Proceedings of the 2016 IEEE 6th International Conference on Power Systems (ICPS), New Delhi, India, 4–6 March 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–4. [Google Scholar]
- Jeffali, F.; El Kihel, B.; Nougaoui, A.; Delaunois, F. Monitoring and diagnostic misalignment of asynchronous machines by infrared thermography. J. Mater. Environ. Sci. 2015, 6, 1192–1199. [Google Scholar]
- Chaturvedi, D.K.; Iqbal, M.S.; Singh, M.P. Intelligent health monitoring system for three phase induction motor using infrared thermal image. In Proceedings of the 2015 International Conference on Energy Economics and Environment (ICEEE), Greater Noida, India, 27–28 March 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–6. [Google Scholar]
- Du, X.; Feng, L.; Yang, Y.; Yang, L. Experimental study on heat transfer enhancement of wavy finned flat tube with longitudinal vortex generators. Appl. Therm. Eng. 2013, 50, 55–62. [Google Scholar] [CrossRef]
- Sarraf, K.; Launay, S.; El Achkar, G.; Tadrist, L. Local vs. global heat transfer and flow analysis of hydrocarbon complete condensation in plate heat exchanger based on infrared thermography. Int. J. Heat Mass Transf. 2015, 90, 878–893. [Google Scholar] [CrossRef]
- Ge, Z.; Du, X.; Yang, L.; Yang, Y.; Li, Y.; Jin, Y. Performance monitoring of direct air-cooled power generating unit with infrared thermography. Appl. Therm. Eng. 2011, 31, 418–424. [Google Scholar] [CrossRef]
- Sarraf, K.; Launay, S.; Tadrist, L. Analysis of enhanced vapor desuperheating during condensation inside a plate heat exchanger. Int. J. Therm. Sci. 2016, 105, 96–108. [Google Scholar] [CrossRef]
- Kanargi, B.; Tan, J.M.S.; Lee, P.S.; Yap, C. A tapered inlet/outlet flow manifold for planar, air-cooled oblique-finned heat sink. Appl. Therm. Eng. 2020, 174, 115250. [Google Scholar] [CrossRef]
- Li, H.Y.; Chiang, M.H. Effects of shield on thermal-fluid performance of vapor chamber heat sink. Int. J. Heat Mass Transf. 2011, 54, 1410–1419. [Google Scholar] [CrossRef]
- Li, H.Y.; Chao, S.M.; Tsai, G.L. Thermal performance measurement of heat sinks with confined impinging jet by infrared thermography. Int. J. Heat Mass Transf. 2005, 48, 5386–5394. [Google Scholar] [CrossRef]
- Xu, C.; Yang, L.; Li, L.; Du, X. Experimental study on heat transfer performance improvement of wavy finned flat tube. Appl. Therm. Eng. 2015, 85, 80–88. [Google Scholar] [CrossRef]
- Li, H.Y.; Chiang, M.H.; Lee, C.I.; Yang, W.J. Thermal performance of plate-fin vapor chamber heat sinks. Int. Commun. Heat Mass Transf. 2010, 37, 731–738. [Google Scholar] [CrossRef]
- He, R.; Xu, P.; Chen, Z.; Luo, W.; Su, Z.; Mao, J. A non-intrusive approach for fault detection and diagnosis of water distribution systems based on image sensors, audio sensors and an inspection robot. Energy Build. 2021, 243, 110967. [Google Scholar] [CrossRef]
- Zhou, B.; Yang, H.; Feng, W.; Jiang, Y.; Chen, Y. Self-propelled and size distribution of condensate droplets on superhydrophobic surfaces. Surf. Technol. 2020, 49, 170–176, 190. (In Chinese) [Google Scholar]
- Wu, J.; Ouyang, G.; Hou, P.; Xiao, H. Experimental investigation of frost formation on a parallel flow evaporator. Appl. Energy 2011, 88, 1549–1556. [Google Scholar] [CrossRef]
- Malik, A.N.; Khan, S.A.; Lazoglu, I. A novel demand-actuated defrost approach based on the real-time thickness of frost for the energy conservation of a refrigerator. Int. J. Refrig. 2021, 131, 168–177. [Google Scholar] [CrossRef]
- Yoo, J.W.; Chung, Y.; Kim, G.T.; Song, C.W.; Yoon, P.H.; Sa, Y.C.; Kim, M.S. Determination of defrosting start time in an air-to-air heat pump system by frost volume calculation method. Int. J. Refrig. 2018, 96, 169–178. [Google Scholar] [CrossRef]
- Zheng, X.; Shi, R.; You, S.; Han, Y.; Shi, K. Experimental study of defrosting control method based on image processing technology for air source heat pumps. Sustain. Cities Soci. 2019, 51, 101667. [Google Scholar] [CrossRef]
- Miao, H.; Yang, X.; Yin, D.; Zheng, W.; Zhang, H.; Zhang, S.; Liu, Z. A novel defrosting control strategy with image processing technique and fractal theory. Int. J. Refrig. 2022, 138, 259–269. [Google Scholar] [CrossRef]
- Li, Z.; Wang, W.; Sun, Y.; Wang, S.; Deng, S.; Lin, Y. Applying image recognition to frost built-up detection in air source heat pumps. Energy 2021, 233, 121004. [Google Scholar] [CrossRef]
- Wang, S.; Wang, W.; Sun, Y.; Li, Z. Research on image recognition frost measurement technology for air-source heat pumps based on light adaptation. Heat. Vent. Air Cond. 2022, 52, 68, 113–117. (In Chinese) [Google Scholar]
- Smith, S.T.; Hanby, V.I.; Harpham, C. A probabilistic analysis of the future potential of evaporative cooling systems in a temperate climate. Energy Build. 2011, 43, 507–516. [Google Scholar] [CrossRef]
- Campaniço, H.; Soares, P.M.M.; Hollmuller, P.; Cardoso, R.M. Climatic cooling potential and building cooling demand savings: High resolution spatiotemporal analysis of direct ventilation and evaporative cooling for the Iberian Peninsula. Renew. Energy 2016, 85, 766–776. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, A.; Rehman, S.; Al-Hadhrami, L.M. Performance evaluation of an indirect evaporative cooler under controlled environmental conditions. Energy Build. 2013, 62, 278–285. [Google Scholar] [CrossRef]
- Shi, W.; Min, Y.; Chen, Y.; Yang, H. Development of a three-dimensional numerical model of indirect evaporative cooler incorporating with air dehumidification. Int. J. Heat Mass Transf. 2022, 185, 122316. [Google Scholar] [CrossRef]
- Chen, Y.; Luo, Y.; Yang, H. A simplified analytical model for indirect evaporative cooling considering condensation from fresh air: Development and application. Energy Build. 2015, 108, 387–400. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, H.; Luo, Y. Indirect evaporative cooler considering condensation from primary air: Model development and parameter analysis. Build. Environ. 2016, 95, 330–345. [Google Scholar] [CrossRef]
- Meng, D.; Lv, J.; Chen, Y.; Li, H.; Ma, X. Visualized experimental investigation on cross-flow indirect evaporative cooler with condensation. Appl. Therm. Eng. 2018, 145, 165–173. [Google Scholar] [CrossRef]
- Min, Y.; Chen, Y.; Yang, H.; Guo, C. Characteristics of primary air condensation in indirect evaporative cooler: Theoretical analysis and visualized validation. Build. Environ. 2020, 174, 106783. [Google Scholar] [CrossRef]
- You, Y.; Wang, G.; Yang, B.; Guo, C.; Ma, Y.; Cheng, B. Study on heat transfer characteristics of indirect evaporative cooling system based on secondary side hydrophilic. Energy Build. 2022, 257, 111704. [Google Scholar] [CrossRef]
- Min, Y.; Shi, W.; Shen, B.; Chen, Y.; Yang, H. Enhancing the cooling and dehumidification performance of indirect evaporative cooler by hydrophobic-coated primary air channels. Int. J. Heat Mass Transf. 2021, 179, 121733. [Google Scholar] [CrossRef]
- Damoulakis, G.; Gukeh, M.J.; Moitra, S.; Megaridis, C.M. Quantifying steam dropwise condensation heat transfer via experiment, computer vision and machine learning algorithms. In Proceedings of the 2021 20th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm), San Diego, CA, USA, 1–4 June 2021; pp. 1015–1023. [Google Scholar]
- Suh, Y.; Lee, J.; Simadiris, P.; Yan, X.; Sett, S.; Li, L.; Rabbi, K.F.; Miljkovic, N.; Won, Y. A deep learning perspective on dropwise condensation. Adv. Sci. 2021, 8, 2101794. [Google Scholar] [CrossRef] [PubMed]
- Khodakarami, S.; Fazle Rabbi, K.; Suh, Y.; Won, Y.; Miljkovic, N. Machine learning enabled condensation heat transfer measurement. Int. J. Heat Mass Transf. 2022, 194, 123016. [Google Scholar] [CrossRef]
Indoor Environment Monitoring (2013–2023) | Outdoor Environment Monitoring (2013–2023) | HVAC Equipment Monitoring (2003–2023) |
---|---|---|
computer vision infrared thermal imaging video image processing occupant behavior physiological parameter hot pose cold pose non-contact measurement thermal comfort | outdoor thermal comfort pedestrian thermal comfort street view image street view photographs street-level imager artificial intelligence computer vision visual analytics behavior patterns sky view factor greenway planning urban morphology urban spatial indicators urban environment urban facade color new urban data construction sites construction equipment monitoring robot/robotics visual object detection | infrared thermography infrared thermal imaging equipment health heat exchangers refrigeration fin monitoring fault diagnosis and detection non-contact measurement image robot frosting/frost condensation automatic observation image processing |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, B.; Yang, S.; Zhu, X.; Qi, M.; Li, H.; Lv, Z.; Cheng, X.; Wang, F. Computer Vision Technology for Monitoring of Indoor and Outdoor Environments and HVAC Equipment: A Review. Sensors 2023, 23, 6186. https://doi.org/10.3390/s23136186
Yang B, Yang S, Zhu X, Qi M, Li H, Lv Z, Cheng X, Wang F. Computer Vision Technology for Monitoring of Indoor and Outdoor Environments and HVAC Equipment: A Review. Sensors. 2023; 23(13):6186. https://doi.org/10.3390/s23136186
Chicago/Turabian StyleYang, Bin, Shuang Yang, Xin Zhu, Min Qi, He Li, Zhihan Lv, Xiaogang Cheng, and Faming Wang. 2023. "Computer Vision Technology for Monitoring of Indoor and Outdoor Environments and HVAC Equipment: A Review" Sensors 23, no. 13: 6186. https://doi.org/10.3390/s23136186
APA StyleYang, B., Yang, S., Zhu, X., Qi, M., Li, H., Lv, Z., Cheng, X., & Wang, F. (2023). Computer Vision Technology for Monitoring of Indoor and Outdoor Environments and HVAC Equipment: A Review. Sensors, 23(13), 6186. https://doi.org/10.3390/s23136186