Adaptive Control Method for Gait Detection and Classification Devices with Inertial Measurement Unit
Abstract
:1. Introduction
1.1. Research Background and Related Literatures
1.2. Summary of the Previous Research
2. Materials and Methods
2.1. Experiments for Data Collection
2.2. Impact of the AT and GT on the GDCR
2.3. Algorithm
- The first scenario presents a linear increase in walking speed.
- The second scenario presents a linear decrease in walking speed.
- The third scenario presents walking speeds with punctuations within a range.
- The fourth scenario presents an increasing trend in walking speed followed by a sudden decrease in the middle.
- The fifth scenario presents a decreasing trend in walking speed followed by a sudden increase in the middle.
- The sixth scenario presents a V-shaped trend in walking speed.
- The seventh scenario presents a V-shaped trend in walking speed with a range of random punctuations in the middle.
- The eighth scenario presents a sudden increase in ranged random punctuations after a linear decrease in walking speed.
- The ninth scenario presents ranged random punctuations after a linear increase in walking speed.
- For an initial setting, measure the first Cp1 at 2 km/h of walking speed and 6000 AT.
- If Cp1 is recorded as smaller than 0.9, set Gt as 0.01 below Cp1 (Cp1—0.01). Otherwise, if Cp1 was over 0.9, set Gt as 0.9.
- Set new AT for later rehabilitation as AT (Gt);
- Do exercise with set AT (Gt) and measure new GDCR as a result of exercise.
- Calculate Cpn from the measured GDCR.
- If Cpn was smaller than 0.9, set Gt as 0.01 smaller than Cpn (Cpn − 0.01). Otherwise, if Cpn was over 0.9, set Gt as 0.9.
- Set new AT as AT (Gt)
- Repeat process from 4.
- Adaptative, designed method that was previously described;
- Fixed, which simply fixes the AT at 6000;
- Simple, which increases or decreases the AT by 100 from the initial value of ‘AT = 6000’ when the GDCR exceeds 0.95 or falls below 0.9, respectively.
2.4. Our Goal
3. Results
3.1. Statistical Analysis Results of the Effects of the AT and GT on the GDCR
3.2. Algorithm Evaluation
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Pereira, A.P.S.; Marinho, V.; Gupta, D.; Magalhães, F.; Ayres, C.; Teixeira, S. Music Therapy and Dance as Gait Rehabilitation in Patients with Parkinson Disease: A Review of Evidence. J. Geriatr. Psychiatry Neurol. 2019, 32, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Lim, I.; van Wegen, E.; de Goede, C.; Deutekom, M.; Nieuwboer, A.; Willems, A.; Jones, D.; Rochester, L.; Kwakkel, G. Effects of External Rhythmical Cueing on Gait in Patients with Parkinson’s Disease: A Systematic Review. Clin. Rehabil. 2005, 19, 695–713. [Google Scholar] [CrossRef] [PubMed]
- Kearney, E.; Shellikeri, S.; Martino, R.; Yunusova, Y. Augmented Visual Feedback-Aided Interventions for Motor Rehabilitation in Parkinson’s Disease: A Systematic Review. Disabil. Rehabil. 2019, 41, 995–1011. [Google Scholar] [CrossRef] [PubMed]
- Monteiro-Junior, R.S.; Cevada, T.; Oliveira, B.R.R.; Lattari, E.; Portugal, E.M.M.; Carvalho, A.; Deslandes, A.C. We Need to Move More: Neurobiological Hypotheses of Physical Exercise as a Treatment for Parkinson’s Disease. Med. Hypotheses 2015, 85, 537–541. [Google Scholar]
- van Duijnhoven, H.J.R.; Heeren, A.; Peters, M.A.M.; Veerbeek, J.M.; Kwakkel, G.; Geurts, A.C.H.; Weerdesteyn, V. Effects of Exercise Therapy on Balance Capacity in Chronic Stroke. Stroke 2016, 47, 2603–2610. [Google Scholar] [CrossRef] [Green Version]
- Tomlinson, C.L.; Patel, S.; Meek, C.; Herd, C.P.; Clarke, C.E.; Stowe, R.; Shah, L.; Sackley, C.M.; Deane, K.H.; Wheatley, K.; et al. Physiotherapy versus Placebo or No Intervention in Parkinson’s Disease. Cochrane Database Syst. Rev. 2013, CD002817. [Google Scholar] [CrossRef] [Green Version]
- Gunn, H.; Markevics, S.; Haas, B.; Marsden, J.; Freeman, J. Systematic Review: The Effectiveness of Interventions to Reduce Falls and Improve Balance in Adults with Multiple Sclerosis. Arch. Phys. Med. Rehabil. 2015, 96, 1898–1912. [Google Scholar] [CrossRef]
- Galea, J.M.; Mallia, E.; Rothwell, J.; Diedrichsen, J. The Dissociable Effects of Punishment and Reward on Motor Learning. Nat Neurosci 2015, 18, 597–602. [Google Scholar] [CrossRef] [Green Version]
- Trotter, A.B.; Inman, D.A. The Use of Positive Reinforcement in Physical Therapy. Phys. Ther. 1968, 48, 347–352. [Google Scholar] [CrossRef]
- Takeda, K.; Mani, H.; Hasegawa, N.; Sato, Y.; Tanaka, S.; Maejima, H.; Asaka, T. Adaptation Effects in Static Postural Control by Providing Simultaneous Visual Feedback of Center of Pressure and Center of Gravity. J. Physiol. Anthropol. 2017, 36, 31. [Google Scholar] [CrossRef] [Green Version]
- Mirelman, A.; Herman, T.; Nicolai, S.; Zijlstra, A.; Zijlstra, W.; Becker, C.; Chiari, L.; Hausdorff, J.M. Audio-Biofeedback Training for Posture and Balance in Patients with Parkinson’s Disease. J. NeuroEng. Rehabil. 2011, 8, 35. [Google Scholar] [CrossRef] [Green Version]
- Hasegawa, N.; Takeda, K.; Mancini, M.; King, L.A.; Horak, F.B.; Asaka, T. Differential Effects of Visual versus Auditory Bio-feedback Training for Voluntary Postural Sway. PLoS ONE 2020, 15, e0244583. [Google Scholar] [CrossRef] [PubMed]
- Ginis, P.; Nieuwboer, A.; Dorfman, M.; Ferrari, A.; Gazit, E.; Canning, C.G.; Rocchi, L.; Chiari, L.; Hausdorff, J.M.; Mirelman, A. Feasibility and Effects of Home-Based Smartphone-Delivered Automated Feedback Training for Gait in People with Parkinson’s Disease: A Pilot Randomized Controlled Trial. Park. Relat. Disord. 2016, 22, 28–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dozza, M.; Chiari, L.; Chan, B.; Rocchi, L.; Horak, F.B.; Cappello, A. Influence of a Portable Audio-Biofeedback Device on Structural Properties of Postural Sway. J. NeuroEng. Rehabil. 2005, 2, 13. [Google Scholar] [CrossRef] [Green Version]
- Sienko, K.H.; Seidler, R.D.; Carender, W.J.; Goodworth, A.D.; Whitney, S.L.; Peterka, R.J. Potential Mechanisms of Sensory Augmentation Systems on Human Balance Control. Front. Neurol. 2018, 9, 944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirelman, A.; Maidan, I.; Herman, T.; Deutsch, J.E.; Giladi, N.; Hausdorff, J.M. Virtual Reality for Gait Training: Can It Induce Motor Learning to Enhance Complex Walking and Reduce Fall Risk in Patients with Parkinson’s Disease? J. Gerontol. Ser. A 2011, 66A, 234–240. [Google Scholar] [CrossRef] [Green Version]
- Carpinella, I.; Cattaneo, D.; Bonora, G.; Bowman, T.; Martina, L.; Montesano, A.; Ferrarin, M. Wearable Sensor-Based Bio-feedback Training for Balance and Gait in Parkinson Disease: A Pilot Randomized Controlled Trial. Arch. Phys. Med. Rehabil. 2017, 98, 622–630.e3. [Google Scholar] [CrossRef] [Green Version]
- Dozza, M.; Chiari, L.; Peterka, R.J.; Wall, C.; Horak, F.B. What Is the Most Effective Type of Audio-Biofeedback for Postural Motor Learning? Gait Posture 2011, 34, 313–319. [Google Scholar] [CrossRef]
- Shen, X.; Mak, M.K.Y. Balance and Gait Training with Augmented Feedback Improves Balance Confidence in People with Parkinson’s Disease: A Randomized Controlled Trial. Neurorehabil. Neural Repair 2014, 28, 524–535. [Google Scholar] [CrossRef]
- Van den Heuvel, M.R.C.; Kwakkel, G.; Beek, P.J.; Berendse, H.W.; Daffertshofer, A.; van Wegen, E.E.H. Effects of Augmented Visual Feedback during Balance Training in Parkinson’s Disease: A Pilot Randomized Clinical Trial. Park. Relat. Disord. 2014, 20, 1352–1358. [Google Scholar] [CrossRef] [Green Version]
- Liao, Y.-Y.; Yang, Y.-R.; Wu, Y.-R.; Wang, R.-Y. Virtual Reality-Based Wii Fit Training in Improving Muscle Strength, Sensory Integration Ability, and Walking Abilities in Patients with Parkinson’s Disease: A Randomized Control Trial. Int. J. Gerontol. 2015, 9, 190–195. [Google Scholar] [CrossRef] [Green Version]
- Mhatre, P.V.; Vilares, I.; Stibb, S.M.; Albert, M.V.; Pickering, L.; Marciniak, C.M.; Kording, K.; Toledo, S. Wii Fit Balance Board Playing Improves Balance and Gait in Parkinson Disease. PM&R 2013, 5, 769–777. [Google Scholar]
- Baram, Y.; Aharon-Peretz, J.; Badarny, S.; Susel, Z.; Schlesinger, I. Closed-Loop Auditory Feedback for the Improvement of Gait in Patients with Parkinson’s Disease. J. Neurol. Sci. 2016, 363, 104–106. [Google Scholar] [CrossRef] [PubMed]
- Gooßes, M.; Saliger, J.; Folkerts, A.-K.; Nielsen, J.; Zierer, J.; Schmoll, P.; Niepold, A.; Colbach, L.; Leemhuis, J.; Engels, L.; et al. Feasibility of Music-Assisted Treadmill Training in Parkinson’s Disease Patients with and without Deep Brain Stimulation: Insights from an Ongoing Pilot Randomized Controlled Trial. Front. Neurol. 2020, 11, 790. [Google Scholar] [CrossRef] [PubMed]
- Cappozzo, A.; Della Croce, U.; Leardini, A.; Chiari, L. Human Movement Analysis Using Stereophotogrammetry: Part 1: Theoretical Background. Gait Posture 2005, 21, 186–196. [Google Scholar]
- Mobbs, R.J.; Phan, K.; Maharaj, M.; Rao, P.J. Physical Activity Measured with Accelerometer and Self-Rated Disability in Lumbar Spine Surgery: A Prospective Study. Glob. Spine J. 2016, 6, 459–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phan, K.; Mobbs, R.J. Long-Term Objective Physical Activity Measurements Using a Wireless Accelerometer Following Minimally Invasive Transforaminal Interbody Fusion Surgery. Asian Spine J. 2016, 10, 366–369. [Google Scholar] [CrossRef] [Green Version]
- Sprager, S.; Juric, M.B. Inertial Sensor-Based Gait Recognition: A Review. Sensors 2015, 15, 22089–22127. [Google Scholar] [CrossRef] [PubMed]
- Agostini, V.; Gastaldi, L.; Rosso, V.; Knaflitz, M.; Tadano, S. A Wearable Magneto-Inertial System for Gait Analysis (H-Gait): Validation on Normal Weight and Overweight/Obese Young Healthy Adults. Sensors 2017, 17, 2406. [Google Scholar] [CrossRef] [Green Version]
- Donath, L.; Faude, O.; Lichtenstein, E.; Pagenstert, G.; Nüesch, C.; Mündermann, A. Mobile Inertial Sensor Based Gait Analysis: Validity and Reliability of Spatiotemporal Gait Characteristics in Healthy Seniors. Gait Posture 2016, 49, 371–374. [Google Scholar] [CrossRef]
- Kluge, F.; Gaßner, H.; Hannink, J.; Pasluosta, C.; Klucken, J.; Eskofier, B.M. Towards Mobile Gait Analysis: Concurrent Validity and Test-Retest Reliability of an Inertial Measurement System for the Assessment of Spatio-Temporal Gait Parameters. Sensors 2017, 17, 1522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maffiuletti, N.A.; Gorelick, M.; Kramers-de Quervain, I.; Bizzini, M.; Munzinger, J.P.; Tomasetti, S.; Stacoff, A. Concurrent Validity and Intrasession Reliability of the IDEEA Accelerometry System for the Quantification of Spatiotemporal Gait Parameters. Gait Posture 2008, 27, 160–163. [Google Scholar] [CrossRef] [PubMed]
- Orlowski, K.; Eckardt, F.; Herold, F.; Aye, N.; Edelmann-Nusser, J.; Witte, K. Examination of the Reliability of an Inertial Sensor-Based Gait Analysis System. Biomed. Eng./Biomed. Tech. 2017, 62, 615–622. [Google Scholar] [CrossRef]
- Rao, P.J.; Phan, K.; Maharaj, M.M.; Pelletier, M.H.; Walsh, W.R.; Mobbs, R.J. Accelerometers for Objective Evaluation of Physical Activity Following Spine Surgery. J. Clin. Neurosci. 2016, 26, 14–18. [Google Scholar] [CrossRef]
- Tunca, C.; Pehlivan, N.; Ak, N.; Arnrich, B.; Salur, G.; Ersoy, C. Inertial Sensor-Based Robust Gait Analysis in Non-Hospital Settings for Neurological Disorders. Sensors 2017, 17, 825. [Google Scholar] [CrossRef] [Green Version]
- Mobbs, R.J.; Katsinas, C.J.; Choy, W.J.; Rooke, K.; Maharaj, M. Objective Monitoring of Activity and Gait Velocity Using Wearable Accelerometer Following Lumbar Microdiscectomy to Detect Recurrent Disc Herniation. J. Spine Surg. 2018, 4, 792–797. [Google Scholar] [CrossRef]
- Demonceau, M.; Donneau, A.-F.; Croisier, J.-L.; Skawiniak, E.; Boutaayamou, M.; Maquet, D.; Garraux, G. Contribution of a Trunk Accelerometer System to the Characterization of Gait in Patients with Mild-to-Moderate Parkinson’s Disease. IEEE J. Biomed. Health Inform. 2015, 19, 1803–1808. [Google Scholar] [CrossRef]
- Van Schooten, K.S.; Pijnappels, M.; Rispens, S.M.; Elders, P.J.M.; Lips, P.; Daffertshofer, A.; Beek, P.J.; Dieën, J.H. van Daily-Life Gait Quality as Predictor of Falls in Older People: A 1-Year Prospective Cohort Study. PLoS ONE 2016, 11, e0158623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Din, S.; Galna, B.; Godfrey, A.; Bekkers, E.M.J.; Pelosin, E.; Nieuwhof, F.; Mirelman, A.; Hausdorff, J.M.; Rochester, L. Analysis of Free-Living Gait in Older Adults with and Without Parkinson’s Disease and with and without a History of Falls: Identifying Generic and Disease-Specific Characteristics. J. Gerontol. Ser. A 2019, 74, 500–506. [Google Scholar] [CrossRef] [PubMed]
- Espinosa, H.G.; Thiel, D.V.; Sorell, M.; Rowlands, D. Can We Trust Inertial and Heart Rate Sensor Data from an APPLE Watch Device? Proceedings 2020, 49, 128. [Google Scholar]
- Mobbs, R.J.; Perring, J.; Raj, S.M.; Maharaj, M.; Yoong, N.K.M.; Sy, L.W.; Fonseka, R.D.; Natarajan, P.; Choy, W.J. Gait Metrics Analysis Utilizing Single-Point Inertial Measurement Units: A Systematic Review. Mhealth 2022, 8, 9. [Google Scholar] [CrossRef] [PubMed]
- Prasanth, H.; Caban, M.; Keller, U.; Courtine, G.; Ijspeert, A.; Vallery, H.; von Zitzewitz, J. Wearable Sensor-Based Real-Time Gait Detection: A Systematic Review. Sensors 2021, 21, 2727. [Google Scholar] [CrossRef]
- Semwal, V.B.; Gaud, N.; Lalwani, P.; Bijalwan, V.; Alok, A.K. Pattern Identification of Different Human Joints for Different Human Walking Styles Using Inertial Measurement Unit (IMU) Sensor. Artif. Intell. Rev. 2022, 55, 1149–1169. [Google Scholar] [CrossRef]
- Sarshar, M.; Polturi, S.; Schega, L. Gait Phase Estimation by Using LSTM in IMU-Based Gait Analysis—Proof of Concept. Sensors 2021, 21, 5749. [Google Scholar] [CrossRef]
- Trabassi, D.; Serrao, M.; Varrecchia, T.; Ranavolo, A.; Coppola, G.; De Icco, R.; Tassorelli, C.; Castiglia, S.F. Machine Learning Approach to Support the Detection of Parkinson’s Disease in IMU-Based Gait Analysis. Sensors 2022, 22, 3700. [Google Scholar] [CrossRef] [PubMed]
- Mundt, M.; Koeppe, A.; David, S.; Witter, T.; Bamer, F.; Potthast, W.; Markert, B. Estimation of Gait Mechanics Based on Simulated and Measured IMU Data Using an Artificial Neural Network. Front. Bioeng. Biotechnol. 2020, 8, 41. [Google Scholar] [CrossRef] [PubMed]
- Balakrishnan, A.; Medikonda, J.; Namboothiri, P.K.; Natarajan, M. Role of Wearable Sensors with Machine Learning Approaches in Gait Analysis for Parkinson’s Disease Assessment: A Review. Eng. Sci. 2022, 19, 5–19. [Google Scholar] [CrossRef]
- Pappas, I.P.; Popovic, M.R.; Keller, T.; Dietz, V.; Morari, M. A reliable gait phase detection system. IEEE Trans. Neural Syst. Rehabil. Eng. 2001, 9, 113–125. [Google Scholar] [CrossRef]
- Mazhar, O.; Bari, A.Z.; Faudzi, A.A.M. Real-time gait phase detection using wearable sensors. In Proceedings of the 2015 10th Asian Control Conference (ASCC), Kota Kinabalu, Malaysia, 31 May–3 June 2015; pp. 1–4. [Google Scholar]
- Li, J.; Zhou, X.; Li, C.; Li, W.; Zhang, H.; Gu, H. A Real-Time Gait Phase Detection Method for Prosthesis Control. In Assistive Robotics, Proceedings of the 18th International Conference on CLAWAR 2015, Hangzhou, China, 6–9 September 2015; National Natural Science Foundation of China: Beijing, China, 2016; pp. 577–584. [Google Scholar]
- Goršič, M.; Kamnik, R.; Ambrožič, L.; Vitiello, N.; Lefeber, D.; Pasquini, G.; Munih, M. Online phase detection using wearable sensors for walking with a robotic prosthesis. Sensors 2014, 14, 2776–2794. [Google Scholar] [CrossRef]
- Yang, J.; Chen, X.; Guo, H.; Zhang, Q. Implementation of omnidirectional lower limbs rehabilitation training robot. In Proceedings of the 2007 International Conference on Electrical Machines and Systems (ICEMS), Seoul, Republic of Korea, 8–11 October 2007; pp. 2033–2036. [Google Scholar]
- Kim, H.; Kim, J.-W.; Ko, J. Gait Disorder Detection and Classification Method Using Inertia Measurement Unit for Augmented Feedback Training in Wearable Devices. Sensors 2021, 21, 7676. [Google Scholar] [CrossRef]
- Karl, K.A.; O’Leary-Kelly, A.M.; Martocchio, J.J. The Impact of Feedback and Self-Efficacy on Performance in Training. J. Organ. Behav. 1993, 14, 379–394. [Google Scholar] [CrossRef]
- Burgers, C.; Eden, A.; van Engelenburg, M.D.; Buningh, S. How Feedback Boosts Motivation and Play in a Brain-Training Game. Comput. Hum. Behav. 2015, 48, 94–103. [Google Scholar] [CrossRef] [Green Version]
- Wilson, K.M.; Helton, W.S.; de Joux, N.R.; Head, J.R.; Weakley, J.J.S. Real-Time Quantitative Performance Feedback during Strength Exercise Improves Motivation, Competitiveness, Mood, and Performance. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2017, 61, 1546–1550. [Google Scholar] [CrossRef]
- Burke, J.W.; McNeill, M.D.J.; Charles, D.K.; Morrow, P.J.; Crosbie, J.H.; McDonough, S.M. Optimising Engagement for Stroke Rehabilitation Using Serious Games. Vis. Comput. 2009, 25, 1085. [Google Scholar] [CrossRef]
- Iosa, M.; Capodaglio, E.; Pelà, S.; Persechino, B.; Morone, G.; Antonucci, G.; Paolucci, S.; Panigazzi, M. Artificial Neural Network Analyzing Wearable Device Gait Data for Identifying Patients with Stroke Unable to Return to Work. Front. Neurol. 2021, 12, 650542. [Google Scholar] [PubMed]
- Mohan, D.M.; Khandoker, A.H.; Wasti, S.A.; Ismail Ibrahim Ismail Alali, S.; Jelinek, H.F.; Khalaf, K. Assessment Methods of Post-Stroke Gait: A Scoping Review of Technology-Driven Approaches to Gait Characterization and Analysis. Front. Neurol. 2021, 12, 650024. [Google Scholar] [CrossRef]
- Nadeau, S.; Betschart, M.; Bethoux, F. Gait Analysis for Poststroke Rehabilitation: The Relevance of Biomechanical Analysis and the Impact of Gait Speed. Phys. Med. Rehabil. Clin. 2013, 24, 265–276. [Google Scholar] [CrossRef] [PubMed]
- Scheffer, C.; Cloete, T. Inertial Motion Capture in Conjunction with an Artificial Neural Network Can Differentiate the Gait Patterns of Hemiparetic Stroke Patients Compared with Able-Bodied Counterparts. Comput. Methods Biomech. Biomed. Eng. 2012, 15, 285–294. [Google Scholar] [CrossRef]
- Lau, H.; Tong, K.; Zhu, H. Support Vector Machine for Classification of Walking Conditions of Persons after Stroke with Dropped Foot. Hum. Mov. Sci. 2009, 28, 504–514. [Google Scholar] [CrossRef]
- Zhou, Y.; Romijnders, R.; Hansen, C.; van Campen, J.; Maetzler, W.; Hortobágyi, T.; Lamoth, C.J.C. The Detection of Age Groups by Dynamic Gait Outcomes Using Machine Learning Approaches. Sci. Rep. 2020, 10, 4426. [Google Scholar] [CrossRef] [Green Version]
- Hutabarat, Y.; Owaki, D.; Hayashibe, M. Quantitative Gait Assessment with Feature-Rich Diversity Using Two IMU Sensors. IEEE Trans. Med. Robot. Bionics 2020, 2, 639–648. [Google Scholar] [CrossRef]
- Zhou, L.; Tunca, C.; Fischer, E.; Brahms, C.M.; Ersoy, C.; Granacher, U.; Arnrich, B. Validation of an IMU Gait Analysis Algorithm for Gait Monitoring in Daily Life Situations. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 4229–4232. [Google Scholar]
- Gujarathi, T.; Bhole, K. Gait Analysis Using Imu Sensor. In Proceedings of the 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kanpur, India, 6–8 July 2019; pp. 1–5. [Google Scholar]
- Anwary, A.R.; Yu, H.; Vassallo, M. An Automatic Gait Feature Extraction Method for Identifying Gait Asymmetry Using Wearable Sensors. Sensors 2018, 18, 676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Relation | Variable | Number of Subjects | Number of Samples | Statistical Analysis Method |
---|---|---|---|---|
GDCR-Leg | Left leg | 25 | 121 | Independent sample Mann–Whitney U test |
Right leg | 25 | 125 | ||
GDCR-Walking speed | 1.0 km/h | 25 | 47 | Independent sample Kruskal–Wallis test |
1.5 km/h | 25 | 50 | ||
2.0 km/h | 25 | 49 | ||
2.5 km/h | 25 | 50 | ||
3.0 km/h | 25 | 50 | ||
GDCR-GT | 1.0 km/h | 25 | 39,921 | Spearman’s correlation analysis |
1.5 km/h | 25 | 39,921 | ||
2.0 km/h | 25 | 39,921 | ||
2.5 km/h | 25 | 39,921 | ||
3.0 km/h | 25 | 39,921 | ||
GDCR-AT | 1.0 km/h | 25 | 441 | |
1.5 km/h | 25 | 441 | ||
2.0 km/h | 25 | 441 | ||
2.5 km/h | 25 | 441 | ||
3.0 km/h | 25 | 441 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.; Kim, J.-W.; Ko, J. Adaptive Control Method for Gait Detection and Classification Devices with Inertial Measurement Unit. Sensors 2023, 23, 6638. https://doi.org/10.3390/s23146638
Kim H, Kim J-W, Ko J. Adaptive Control Method for Gait Detection and Classification Devices with Inertial Measurement Unit. Sensors. 2023; 23(14):6638. https://doi.org/10.3390/s23146638
Chicago/Turabian StyleKim, Hyeonjong, Ji-Won Kim, and Junghyuk Ko. 2023. "Adaptive Control Method for Gait Detection and Classification Devices with Inertial Measurement Unit" Sensors 23, no. 14: 6638. https://doi.org/10.3390/s23146638