Enhanced 3D Pose Estimation in Multi-Person, Multi-View Scenarios through Unsupervised Domain Adaptation with Dropout Discriminator
Abstract
:1. Introduction
2. Related Work
2.1. 3D Human Pose Estimation
2.2. Unsupervised Domain Adaptation
3. Preliminaries
3.1. VoxelPose
3.2. Fundamental Conceptual Framework
3.3. Dataset
4. Method: Domain Adaptation for Multi-View Multi-Person 3D Pose Estimation
4.1. Domain Adaptation Component
4.2. Dropout Domain Adaptation Component
4.3. Transferable Parameter Learning Component
4.4. Network Overview
Algorithm 1: Voxelpose with dropout discriminator and transfer parameter learning. |
Input: Camera Views of source domain, Camera views of target domain Output: 3D human poses for all cuboids |
5. Experiments
5.1. Experiment Setup
5.2. Outdoor Environment Experimental Results
5.3. Indoor Social Interaction Environment Experimental Results
5.4. Ablation Studies and Discussions
5.4.1. Domain Adaptation Component
5.4.2. Dropout Domain Adaptation Component
5.4.3. Transferable Parameter Learning Component
6. Conclusions and Outlook
6.1. Limitations
6.2. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Song, L.; Yu, G.; Yuan, J.; Liu, Z. Human pose estimation and its application to action recognition: A survey. J. Vis. Commun. Image Represent. 2021, 76, 103055. [Google Scholar] [CrossRef]
- Bagautdinov, T.; Wu, C.; Simon, T.; Prada, F.; Shiratori, T.; Wei, S.; Xu, W.; Sheikh, Y.; Saragih, J. Driving-signal aware full-body avatars. ACM Trans. Graph. 2021, 40, 1–17. [Google Scholar] [CrossRef]
- Wang, J.; Yan, S.; Dai, B.; Lin, D. Scene-aware generative network for human motion synthesis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 12206–12215. [Google Scholar]
- Moon, G.; Chang, J.Y.; Lee, K.M. Camera distance-aware top-down approach for 3d multi-person pose estimation from a single rgb image. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 10133–10142. [Google Scholar]
- Zeng, A.; Ju, X.; Yang, L.; Gao, R.; Zhu, X.; Dai, B.; Xu, Q. Deciwatch: A simple baseline for 10x efficient 2d and 3d pose estimation. arXiv 2022, arXiv:2203.08713. [Google Scholar]
- Zhang, J.; Cai, Y.; Yan, S.; Feng, J. Direct multi-view multi-person 3d pose estimation. Adv. Neural Inf. Process. Syst. 2021, 34, 13153–13164. [Google Scholar]
- Cheng, Y.; Wang, B.; Tan, R. Dual networks based 3d multi-person pose estimation from monocular video. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 42, 1636–1651. [Google Scholar] [CrossRef]
- Belagiannis, V.; Amin, S.; Andriluka, M.; Schiele, B.; Navab, N.; Ilic, S. 3d pictorial structures for multiple human pose estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 1669–1676. [Google Scholar]
- Joo, H.; Liu, H.; Tan, L.; Gui, L.; Nabbe, B.; Matthews, I.; Kanade, T.; Nobuhara, S.; Sheikh, Y. Panoptic studio: A massively multiview system for social motion capture. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 3334–3342. [Google Scholar]
- Belagiannis, V.; Amin, S.; Andriluka, M.; Schiele, B.; Navab, N.; Ilic, S. 3d pictorial structures revisited: Multiple human pose estimation. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 38, 1929–1942. [Google Scholar] [CrossRef]
- Tu, H.; Wang, C.; Zeng, W. Voxelpose: Towards multi-camera 3d human pose estimation in wild environment. In Computer Vision—ECCV 2020, Proceedings of the 16th European Conference, Glasgow, UK, 23–28 August 2020; Springer: Cham, Switzerland, 2020; pp. 197–212. [Google Scholar]
- Ganin, Y.; Lempitsky, V. Unsupervised domain adaptation by backpropagation. In Proceedings of the International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 1180–1189. [Google Scholar]
- Han, Z.; Sun, H.; Yin, Y. Learning transferable parameters for unsupervised domain adaptation. IEEE Trans. Image Process. 2022, 31, 6424–6439. [Google Scholar] [CrossRef]
- Wang, Z.; Nie, X.; Qu, X.; Chen, Y.; Liu, S. Distribution-aware single-stage models for multi-person 3d pose estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–20 June 2022; pp. 13096–13105. [Google Scholar]
- Hua, G.; Liu, H.; Li, W.; Zhang, Q.; Ding, R.; Xu, X. Weakly-supervised 3d human pose estimation with cross-view u-shaped graph convolutional network. IEEE Trans. Multimed. 2022, 25, 1832–1843. [Google Scholar] [CrossRef]
- Zhang, J.; Tu, Z.; Yang, J.; Chen, Y.; Yuan, J. Mixste: Seq2seq mixed spatio-temporal encoder for 3d human pose estimation in video. arXiv 2022, arXiv:2203.00859. [Google Scholar]
- Sun, Y.; Liu, W.; Bao, Q.; Fu, Y.; Mei, T.; Black, M.J. Putting people in their place: Monocular regression of 3d people in depth. arXiv 2021, arXiv:2112.08274. [Google Scholar]
- Mahmood, B.; Han, S.; Seo, J. Implementation experiments on convolutional neural network training using synthetic images for 3d pose estimation of an excavator on real images. Autom. Constr. 2022, 133, 103996. [Google Scholar] [CrossRef]
- Wu, Y.; Kong, D.; Wang, S.; Li, J.; Yin, B. Hpgcn: Hierarchical poselet-guided graph convolutional network for 3d pose estimation. Neurocomputing 2022, 487, 243–256. [Google Scholar] [CrossRef]
- Jin, L.; Xu, C.; Wang, X.; Xiao, Y.; Guo, Y.; Nie, X.; Zhao, J. Single-stage is enough: Multi-person absolute 3d pose estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 13086–13095. [Google Scholar]
- Park, C.; Lee, H.S.; Kim, W.J.; Bae, H.B.; Lee, J.; Lee, S. An Efficient Approach Using Knowledge Distillation Methods to Stabilize Performance in a Lightweight Top-Down Posture Estimation Network. Sensors 2021, 21, 7640. [Google Scholar] [CrossRef]
- Nguyen, H.-C.; Nguyen, T.-H.; Scherer, R.; Le, V.-H. Unified End-to-End YOLOv5-HR-TCM Framework for Automatic 2D/3D Human Pose Estimation for Real-Time Applications. Sensors 2022, 22, 5419. [Google Scholar] [CrossRef]
- Qiu, H.; Wang, C.; Wang, J.; Wang, N.; Zeng, W. Cross view fusion for 3d human pose estimation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 4342–4351. [Google Scholar]
- He, Y.; Yan, R.; Fragkiadaki, K.; Yu, S. Epipolar transformers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 7779–7788. [Google Scholar]
- Chen, X.; Lin, K.-Y.; Liu, W.; Qian, C.; Lin, L. Weakly-supervised discovery of geometry-aware representation for 3d human pose estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 10895–10904. [Google Scholar]
- Dong, J.; Fang, Q.; Jiang, W.; Yang, Y.; Huang, Q.; Bao, H.; Zhou, X. Fast and robust multi-person 3d pose estimation and tracking from multiple views. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 6981–6992. [Google Scholar] [CrossRef] [PubMed]
- Burenius, M.; Sullivan, J.; Carlsson, S. 3d pictorial structures for multiple view articulated pose estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 3618–3625. [Google Scholar]
- Chu, H.; Lee, J.-H.; Lee, Y.-G.; Hsu, C.-H.; Li, J.-D.; Chen, C.-S. Part-aware measurement for robust multi-view multi-human 3d pose estimation and tracking. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 1472–1481. [Google Scholar]
- Habermann, M.; Xu, W.; Zollhofer, M.; Pons-Moll, G.; Theobalt, C. Deepcap: Monocular human performance capture using weak supervision. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 5052–5063. [Google Scholar]
- Hu, W.; Zhang, C.; Zhan, F.; Zhang, L.; Wong, T.-T. Conditional directed graph convolution for 3d human pose estimation. In Proceedings of the 29th ACM International Conference on Multimedia, Virtual, 20–24 October 2021; pp. 602–611. [Google Scholar]
- Ye, H.; Zhu, W.; Wang, C.; Wu, R.; Wang, Y. Faster voxelpose: Real-time 3d human pose estimation by orthographic projection. In Proceedings of the European Conference on Computer Vision (ECCV), Tel Aviv, Israel, 25–27 October 2022. [Google Scholar]
- Wang, M.; Deng, W. Deep visual domain adaptation: A survey. Neurocomputing 2018, 312, 135–153. [Google Scholar] [CrossRef]
- Wang, J.; Lan, C.; Liu, C.; Ouyang, Y.; Zeng, W.; Qin, T. Generalizing to unseen domains: A survey on domain generalization. arXiv 2021, arXiv:2103.03097. [Google Scholar]
- Jiang, J.; Shu, Y.; Wang, J.; Long, M. Transferability in deep learning: A survey. arXiv 2022, arXiv:2201.05867. [Google Scholar]
- David, S.B.; Lu, T.; Luu, T.; Pál, D. Impossibility theorems for domain adaptation. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, Sardinia, Italy, 13–15 May 2010; pp. 129–136. [Google Scholar]
- Long, M.; Cao, Y.; Wang, J.; Jordan, M. Learning transferable features with deep adaptation networks. In Proceedings of the International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 97–105. [Google Scholar]
- Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. arXiv 2014, arXiv:1406.2661. [Google Scholar]
- Chen, Y.; Li, W.; Sakaridis, C.; Dai, D.; Gool, L.V. Domain adaptive faster r-cnn for object detection in the wild. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3339–3348. [Google Scholar]
- Saito, K.; Ushiku, Y.; Harada, T.; Saenko, K. Strong-weak distribution alignment for adaptive object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 6956–6965. [Google Scholar]
- Zhu, L.; She, Q.; Chen, Q.; You, Y.; Wang, B.; Lu, Y. Weakly supervised object localization as domain adaption. arXiv 2022, arXiv:2203.01714. [Google Scholar]
- Tzeng, E.; Hoffman, J.; Saenko, K.; Darrell, T. Adversarial discriminative domain adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7167–7176. [Google Scholar]
- Mordido, G.; Yang, H.; Meinel, C. Dropout-gan: Learning from a dynamic ensemble of discriminators. arXiv 2018, arXiv:1807.11346. [Google Scholar]
- Hoffman, J.; Tzeng, E.; Park, T.; Zhu, J.-Y.; Isola, P.; Saenko, K.; Efros, A.; Darrell, T. Cycada: Cycle-consistent adversarial domain adaptation. In Proceedings of the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 1989–1998. [Google Scholar]
- Zhang, Y.; Qiu, Z.; Yao, T.; Liu, D.; Mei, T. Fully convolutional adaptation networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6810–6818. [Google Scholar]
- Saito, K.; Watanabe, K.; Ushiku, Y.; Harada, T. Maximum classifier discrepancy for unsupervised domain adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 17–23 June 2018; pp. 3723–3732. [Google Scholar]
- Supancic, J.S.; Ramanan, D. Self-paced learning for long-term tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 2379–2386. [Google Scholar]
- Choi, J.; Jeong, M.; Kim, T.; Kim, C. Pseudo-labeling curriculum for unsupervised domain adaptation. arXiv 2019, arXiv:1908.00262. [Google Scholar]
- Bengio, Y.; Louradour, J.; Collobert, R.; Weston, J. Curriculum learning. In Proceedings of the 26th Annual International Conference on Machine Learning, Montreal, QC, Canada, 14–18 June 2009; pp. 41–48. [Google Scholar]
- Xu, R.; Li, G.; Yang, J.; Lin, L. Larger norm more transferable: An adaptive feature norm approach for unsupervised domain adaptation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 1426–1435. [Google Scholar]
- Cao, J.; Tang, H.; Fang, H.-S.; Shen, X.; Lu, C.; Tai, Y.-W. Cross-domain adaptation for animal pose estimation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 9498–9507. [Google Scholar]
- Li, C.; Lee, G.H. From synthetic to real: Unsupervised domain adaptation for animal pose estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 1482–1491. [Google Scholar]
- Jiang, J.; Ji, Y.; Wang, X.; Liu, Y.; Wang, J.; Long, M. Regressive domain adaptation for unsupervised keypoint detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 6780–6789. [Google Scholar]
- Zhou, X.; Karpur, A.; Gan, C.; Luo, L.; Huang, Q. Unsupervised domain adaptation for 3d keypoint estimation via view consistency. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 137–153. [Google Scholar]
- Zhang, X.; Wong, Y.; Kankanhalli, M.S.; Geng, W. Unsupervised domain adaptation for 3d human pose estimation. In Proceedings of the 27th ACM International Conference on Multimedia, Nice, France, 21–25 October 2019; pp. 926–934. [Google Scholar]
- Chen, H.; Guo, P.; Li, P.; Lee, G.H.; Chirikjian, G. Multi-person 3d pose estimation in crowded scenes based on multi-view geometry. In Computer Vision—ECCV 2020, Proceedings of the 16th European Conference, Glasgow, UK, 23–28 August 2020; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Huang, C.; Jiang, S.; Li, Y.; Zhang, Z.; Traish, J.; Deng, C.; Ferguson, S.; Xu, R.Y.D. End-to-end dynamic matching network for multi-view multi-person 3d pose estimation. In Computer Vision—ECCV 2020, Proceedings of the 16th European Conference, Glasgow, UK, 23–28 August 2020; Springer: Cham, Switzerland, 2020; pp. 477–493. [Google Scholar]
- Reddy, N.D.; Guigues, L.; Pishchulin, L.; Eledath, J.; Narasimhan, S.G. Tessetrack: End-to-end learnable multi-person articulated 3d pose tracking. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 15190–15200. [Google Scholar]
- Saini, N.; Bonetto, E.; Price, E.; Ahmad, A.; Black, M.J. Airpose: Multi-view fusion network for aerial 3d human pose and shape estimation. IEEE Robot. Autom. Lett. 2022, 7, 4805–4812. [Google Scholar] [CrossRef]
- Chen, Y.; Gu, R.; Huang, O.; Jia, G. Vtp: Volumetric transformer for multi-view multi-person 3d pose estimation. arXiv 2022, arXiv:2205.12602. [Google Scholar] [CrossRef]
- Loshchilov, I.; Hutter, F. Decoupled weight decay regularization. arXiv 2017, arXiv:1711.05101. [Google Scholar]
- Tzeng, E.; Hoffman, J.; Zhang, N.; Saenko, K.; Darrell, T. Deep domain confusion: Maximizing for domain invariance. arXiv 2014, arXiv:1412.3474. [Google Scholar]
- Long, M.; Zhu, H.; Wang, J.; Jordan, M.I. Deep transfer learning with joint adaptation networks. In Proceedings of the International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 2208–2217. [Google Scholar]
- Sun, B.; Saenko, K. Deep coral: Correlation alignment for deep domain adaptation. In Computer Vision, Proceedings of the ECCV 2016 Workshops, Amsterdam, The Netherlands, 8–10, 15–16 October 2016; Springer: Cham, Switzerland, 2016; pp. 443–450. [Google Scholar]
- Long, M.; Cao, Z.; Wang, J.; Jordan, M.I. Conditional Adversarial Domain Adaptation. arXiv 2017, arXiv:1705.10667. [Google Scholar]
- Hinton, G.E.; Srivastava, N.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R.R. Improving neural networks by preventing co-adaptation of feature detectors. arXiv 2012, arXiv:1207.0580. [Google Scholar]
- Frankle, J.; Carbin, M. The lottery ticket hypothesis: Finding sparse, trainable neural networks. arXiv 2018, arXiv:1803.03635. [Google Scholar]
Datasets | Duration | Views | Characteristics | Application |
---|---|---|---|---|
Campus | 3–4 min | 3 | 3 people on campus grounds. | Target Domain |
Shelf | 6–7 min | 5 | 4 people disassembling a shelf | Target Domain |
Panoptic | 60 h | 30 | Lab-based multi-player interactions | Source Domain |
P → C | DA | Dropout DA | TranPar | Actor 1 | Actor 2 | Actor 3 | Average |
---|---|---|---|---|---|---|---|
VoxelPose | 78.8 | 82.8 | 67.4 | 76.3 | |||
Ours(a) | √ | 78.6 | 86.8 | 79.6 | 81.7 | ||
Ours(b) | √ | √ | 79.3 | 85.5 | 78.2 | 82.2 | |
Ours(c) | √ | √ | 84.3 | 86.0 | 78.0 | 82.8 | |
Ours(d) | √ | √ | √ | 85.1 | 86.3 | 78.4 | 83.2 |
Methods | Voxelpose | Ours(d) | ||||||
---|---|---|---|---|---|---|---|---|
Bone Group | Actor 1 | Actor 2 | Actor 3 | Average | Actor 1 | Actor 2 | Actor 3 | Average |
Head | 90.8 | 68.5 | 71.4 | 76.9 | 91.8 | 69.7 | 83.8 | 81.8 |
Torso | 89.7 | 95.1 | 74.7 | 86.5 | 90.5 | 96.2 | 89.7 | 92.1 |
Upper arms | 73.5 | 92.3 | 71.2 | 79 | 82.5 | 93.1 | 73.8 | 83.1 |
Lower arms | 65.9 | 73.4 | 58.7 | 66 | 78.5 | 82.3 | 73.7 | 78.2 |
Upper legs | 86 | 92.3 | 65.1 | 81.1 | 85.3 | 93.4 | 75.8 | 84.8 |
Lower legs | 66.9 | 75.1 | 63.3 | 68.4 | 81.8 | 83.1 | 73.3 | 79.4 |
Total | 78.8 | 82.8 | 67.4 | 76.3 | 85.1 | 86.3 | 78.4 | 83.2 |
Methods | P → C | P → S |
---|---|---|
VoxelPose [11] | 76.3 | 93.4 |
VoxelPose-DDC [61] | 76.4 | 90.1 |
VoxelPose-JAN [62] | 81.1 | 91.2 |
VoxelPose-DAN [36] | 78.7 | 88.9 |
VoxelPose-DeepCoral [63] | 80.3 | 87.8 |
VoxelPose-MMD [61] | 74.6 | 82.5 |
VoxelPose-RSD [52] | 82.2 | 95.3 |
Ours(a) | 81.7 | 95.0 |
Ours(b) | 82.8 | 95.5 |
Ours(c) | 82.5 | 94.9 |
Ours(d) | 83.2 | 96.1 |
P → S | DA | Dropout DA | TranPar | Actor 1 | Actor 2 | Actor 3 | Average |
---|---|---|---|---|---|---|---|
VoxelPose | 93.2 | 90.5 | 96.5 | 93.4 | |||
Ours(a) | √ | 95.1 | 92.4 | 97.4 | 95.0 | ||
Ours(b) | √ | √ | 95.2 | 94.5 | 96.2 | 95.6 | |
Ours(c) | √ | √ | 96.0 | 93.8 | 97.1 | 95.1 | |
Ours(d) | √ | √ | √ | 96.5 | 94.1 | 97.7 | 96.1 |
Methods | Voxelpose | Ours(d) | ||||||
---|---|---|---|---|---|---|---|---|
Bone Group | Actor 1 | Actor 2 | Actor 3 | Average | Actor 1 | Actor 2 | Actor 3 | Average |
Head | 78.2 | 94.6 | 92.1 | 88.3 | 87.2 | 95.3 | 94.3 | 92.3 |
Torso | 98.5 | 96.1 | 99 | 97.9 | 99.5 | 96.6 | 99 | 98.4 |
Upper arms | 94.3 | 93.2 | 96.3 | 94.6 | 95.6 | 93.9 | 96.8 | 95.4 |
Lower arms | 93.5 | 64.9 | 94 | 84.1 | 98.5 | 81.3 | 97.2 | 92.3 |
Upper legs | 96.7 | 97.4 | 98.7 | 97.6 | 98.3 | 97.4 | 98.7 | 98.1 |
Lower legs | 97.9 | 96.6 | 98.5 | 97.7 | 99.9 | 100 | 100 | 100 |
Total | 93.2 | 90.5 | 96.4 | 93.4 | 96.5 | 94.1 | 97.7 | 96.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, J.; Yao, H.; Shi, P. Enhanced 3D Pose Estimation in Multi-Person, Multi-View Scenarios through Unsupervised Domain Adaptation with Dropout Discriminator. Sensors 2023, 23, 8406. https://doi.org/10.3390/s23208406
Deng J, Yao H, Shi P. Enhanced 3D Pose Estimation in Multi-Person, Multi-View Scenarios through Unsupervised Domain Adaptation with Dropout Discriminator. Sensors. 2023; 23(20):8406. https://doi.org/10.3390/s23208406
Chicago/Turabian StyleDeng, Junli, Haoyuan Yao, and Ping Shi. 2023. "Enhanced 3D Pose Estimation in Multi-Person, Multi-View Scenarios through Unsupervised Domain Adaptation with Dropout Discriminator" Sensors 23, no. 20: 8406. https://doi.org/10.3390/s23208406
APA StyleDeng, J., Yao, H., & Shi, P. (2023). Enhanced 3D Pose Estimation in Multi-Person, Multi-View Scenarios through Unsupervised Domain Adaptation with Dropout Discriminator. Sensors, 23(20), 8406. https://doi.org/10.3390/s23208406