Multi-Order Mode Excitation and Separation of Ultrasonic Guided Waves in Rod Structures Using 2D-FFT
Abstract
:1. Introduction
2. Theoretical Background and Methodology
2.1. Ultrasonic Guided Wave Propagation in Rod Structures
2.2. Basic Theory of 2D-FFT
2.3. Dynamic Programming Method
- In the first step, the initial ridge is extracted based on the modal maximum method, which involves identifying the maximum values corresponding to the desired mode in the signal. This initial ridge provides a starting point for further refinement.
- The second step involves optimizing the ridge line using the penalty function, allowing for the determination of the optimal ridge line.
3. Finite Element Model of the Cylindrical Rod
3.1. Description of the Simulation
3.2. Finite Element Model
4. Analysis in the f-k Domain
4.1. Cylindrical Rod Ridge Extraction
4.2. Noise Effect
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grattan, K.T.V.; Augousti, D.A. Ultrasonic Measurements and Technologies; Chapman & Hall: Boca Raton, FL, USA, 1999; pp. 1–127. [Google Scholar]
- Dalton, R.P.; Cawley, P.; Lowe, M.J.S. The potential of guided waves for monitoring large areas of metallic structures. J. Nondestruct. Eval. 2001, 20, 29–46. [Google Scholar] [CrossRef]
- Cho, H.; Lissenden, C.J. Structural health monitoring of fatigue crack growth in plate structures with ultrasonic guided waves. Struct. Health Monit. 2012, 11, 393–404. [Google Scholar] [CrossRef]
- Abbas, M.; Shafiee, M. Structural health monitoring (SHM) and determination of surface defects in large metallic structures using ultrasonic guided waves. Sensors 2018, 18, 3958. [Google Scholar] [CrossRef] [PubMed]
- Peng, K.; Zhang, Y.; Xu, X.; Han, J.; Luo, Y. Crack detection of threaded steel rods based on ultrasonic guided waves. Sensors 2022, 22, 6885. [Google Scholar] [CrossRef]
- Kubrusly, A.C.; Tovar, P.; von der Weid, J.P.; Dixon, S. Mode conversion of SH guided waves with symmetry inversion in plates. Ultrasonics 2021, 112, 106334. [Google Scholar] [CrossRef]
- He, J.; Leckey, C.A.C.; Leser, P.E.; Leser, W.P. Multi-mode reverse time migration damage imaging using ultrasonic guided waves. Ultrasonics 2019, 94, 319–331. [Google Scholar] [CrossRef] [PubMed]
- Xining, X.; Lu, Z.; Bo, X.; Zujun, Y.; Liqiang, Z. An Ultrasonic Guided Wave Mode Excitation Method in Rails. IEEE Access 2018, 6, 60414–60428. [Google Scholar] [CrossRef]
- Meng, X.; Li, W.; Sun, P.; Zhang, X.; Wu, J.; He, Q. Study on Guided Wave Characteristics of Waveguide Rod. IOP Conf. Ser. Earth Environ. Sci. 2020, 603, 012042. [Google Scholar] [CrossRef]
- Vaziri Astaneh, A.; Guddati, M.N. Dispersion analysis of composite acousto-elastic waveguides. Compos. Part B Eng. 2017, 130, 200–216. [Google Scholar] [CrossRef]
- Yao, W.; Sheng, F.; Wei, X.; Zhang, L.; Yang, Y. Propagation characteristics of ultrasonic guided waves in continuously welded rail. Mod. Phys. Lett. B 2017, 31, 1740075. [Google Scholar] [CrossRef]
- Zhu, Y.; Zeng, X.; Deng, M.; Han, K.; Gao, D. Mode selection of nonlinear Lamb wave based on approximate phase velocity matching. NDT E Int. 2019, 102, 295–303. [Google Scholar] [CrossRef]
- Hu, Y.; Zhu, Y.; Tu, X.; Lu, J.; Li, F. Dispersion curve analysis method for Lamb wave mode separation. Struct. Health Monit. 2019, 19, 1590–1601. [Google Scholar] [CrossRef]
- Dubuc, B.; Livadiotis, S.; Ebrahimkhanlou, A.; Salamone, S. Crack-induced guided wave motion and modal excitability in plates using elastodynamic reciprocity. J. Sound Vib. 2020, 476, 115287. [Google Scholar] [CrossRef]
- POPOV, E.; MASHEV, L. Dispersion characteristics of multilayer waveguides. Opt. Commun. 1985, 52, 393–396. [Google Scholar] [CrossRef]
- Su, H.-C.; Wong, K.-L. Dispersion characteristics of cylindrical coplanar waveguides. IEEE Trans. Microw. Theory Tech. 1996, 44, 2120–2122. [Google Scholar]
- Marchi, L.; Caporale, S.; Speciale, N.; Marzani, A. Ultrasonic guided-waves characterization with Warped Frequency Transforms. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2008, 46, 188–191. [Google Scholar]
- Marchi, L.; Baravelli, E.; Ruzzene, M.; Speciale, N.; Masetti, G. Guided wave expansion in warped curvelet frames. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2012, 59, 949–957. [Google Scholar] [CrossRef] [PubMed]
- Prosser, W.H.; Seale, M.D.; Smith, B.T. Time-frequency analysis of the dispersion of Lamb modes. J. Acoust. Soc. Am. 1999, 105, 2669–2676. [Google Scholar] [CrossRef]
- Frank Pai, P.; Deng, H.; Sundaresan, M.J. Time-frequency characterization of lamb waves for material evaluation and damage inspection of plates. Mech. Syst. Signal Process. 2015, 62, 183–206. [Google Scholar] [CrossRef]
- Yang, Y.; Peng, Z.K.; Zhang, W.M.; Meng, G.; Lang, Z.Q. Dispersion analysis for broadband guided wave using generalized warblet transform. J. Sound Vib. 2016, 367, 22–36. [Google Scholar] [CrossRef]
- Tian, Z.; Yu, L. Lamb wave frequency–wavenumber analysis and decomposition. J. Intel. Mat. Syst. Str. 2014, 25, 1107–1123. [Google Scholar] [CrossRef]
- Kemao, Q. Two-dimensional windowed Fourier transform for fringe pattern analysis: Principles, applications and implementations. Opt. Lasers Eng. 2007, 45, 304–317. [Google Scholar] [CrossRef]
- Draudviliene, L.; Meskuotiene, A.; Raisutis, R.; Tumsys, O.; Surgaute, L. Accuracy assessment of the 2D-FFT method based on peak detection of the spectrum magnitude at the particular frequencies using the Lamb wave signals. Sensors 2022, 22, 6750. [Google Scholar] [CrossRef]
- Alleyne, D.; Cawley, P. A two-dimensional Fourier transform method for the measurement of propagating multimode signals. J. Acoust. Soc. Am. 1990, 89, 1159–1168. [Google Scholar] [CrossRef]
- Michaels, T.E.; Michaels, J.E.; Ruzzene, M. Frequency-wavenumber domain analysis of guided wavefields. Ultrasonics 2011, 51, 452–466. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Zeng, L.; Lin, J.; Luo, Z. Mode separation in frequency–wavenumber domain through compressed sensing of far-field Lamb waves. Meas. Sci. Technol. 2017, 28, 075004. [Google Scholar] [CrossRef]
- Aeron, S.; Bose, S.; Valero, H.-P. Joint multi-mode dispersion extraction in frequency-wavenumber and space-time domains. IEEE Trans. Signal Process. 2015, 63, 4115–4128. [Google Scholar] [CrossRef]
- Wang, X.; Gao, S.; Liu, H.; Li, J. Low frequency ultrasonic guided waves excitated by Galfenol Rod Ultrasonic Transducer in plate inspection. Sens. Actuators A Phys. 2020, 313, 112196. [Google Scholar] [CrossRef]
- Xu, K.; Ta, D.; Wang, W. Multiridge-based analysis for separating individual modes from multimodal guided wave signals in long bones. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2010, 57, 2480–2490. [Google Scholar]
- Carmona, R.A.; Hwang, W.L.; Torrésani, B. Multi-ridge detection and time-frequency reconstruction. IEEE Trans. Signal Process. 1999, 47, 480–492. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.; Zhao, T.; Song, W. An improved multi-ridge extraction method based on differential synchro-squeezing wavelet transform. IEEE Access 2021, 9, 96763–96774. [Google Scholar] [CrossRef]
- Carmona, R.A.; Hwang, W.L.; Torrésani, B. Characterization of signals by the ridges of their wavelet transforms. IEEE Trans. Signal Process. 1997, 45, 2586–2590. [Google Scholar] [CrossRef]
- Marzani, A.; Marchi, L. Characterization of the elastic moduli in composite plates via dispersive guided waves data and genetic algorithms. J. Intel. Mat. Syst. Str. 2012, 24, 2135–2147. [Google Scholar] [CrossRef]
- HQlkne, L.; Catherine, M. Ridge extraction from the scalogram of the uterine electromyogram. In Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis (Cat. No. 98TH8380), Pittsburgh, PA, USA, 9 October 1998; pp. 245–248. [Google Scholar]
- Hu, Y.; Tu, X.; Li, F.; Li, H.; Meng, G. An adaptive and tacholess order analysis method based on enhanced empirical wavelet transform for fault detection of bearings with varying speeds. J. Sound Vib. 2017, 409, 241–255. [Google Scholar] [CrossRef]
- Ibáñez, F.; Baltazar, A.; Mijarez, R. Detection of damage in multiwire cables based on wavelet entropy evolution. Smart Mater. Struct. 2015, 24, 085036. [Google Scholar] [CrossRef]
- Balvantín, A.; Baltazar, A.; Aranda-Sanchez, J.I. A study of guided wave propagation on a plate between two solid bodies with imperfect boundary conditions. Int. J. Mech. Sci. 2012, 63, 66–73. [Google Scholar] [CrossRef]
- Benmeddour, F.; Treyssède, F.; Laguerre, L. Numerical modeling of guided wave interaction with non-axisymmetric cracks in elastic cylinders. Int. J. Solids Struct. 2011, 48, 764–774. [Google Scholar] [CrossRef]
Material | Density (kg/m3) | Elastic Modulus (GPa) | Poisson Ratio |
---|---|---|---|
Steel | 7850 | 210 | 0.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Zhang, J.; Cheng, J.; Wang, K.; Yang, D.; Yuan, Y. Multi-Order Mode Excitation and Separation of Ultrasonic Guided Waves in Rod Structures Using 2D-FFT. Sensors 2023, 23, 8483. https://doi.org/10.3390/s23208483
Li G, Zhang J, Cheng J, Wang K, Yang D, Yuan Y. Multi-Order Mode Excitation and Separation of Ultrasonic Guided Waves in Rod Structures Using 2D-FFT. Sensors. 2023; 23(20):8483. https://doi.org/10.3390/s23208483
Chicago/Turabian StyleLi, Gang, Jing Zhang, Juke Cheng, Kang Wang, Dong Yang, and Ye Yuan. 2023. "Multi-Order Mode Excitation and Separation of Ultrasonic Guided Waves in Rod Structures Using 2D-FFT" Sensors 23, no. 20: 8483. https://doi.org/10.3390/s23208483