An Efficient Recognition Method for Orbital Angular Momentum via Adaptive Deep ELM
Abstract
:1. Introduction
- (1)
- Different from the previous job, this paper not only considers the randomness of parameters in the neural network as a whole [22], but also obtains the minimum norm constraint of the global solution.
- (2)
- Then, the updated model will be self-driven, that means OAM mode recognition will obtain the analytical expression. The whole learning process avoided manual parameter tuning.
- (3)
- It has significant application value for OAM mode recognition according to the atmospheric turbulent environment.
2. Preliminaries
2.1. Atmosphere Turbulence Theory
2.2. Brief of ELM Model
3. Preliminaries
3.1. Model Selection Phase
3.2. Parameter Estimation Phase
Algorithm 1: Learning Procedure of the AD-ELM |
1. Generate Laguerre Gaussian beams |
2. Calculate the Phase Screen at objective position |
3. Building the mapping relationship between laser spots and OAM mode |
4. Establish multilayer ELM network structure |
5. Solve the output weight of each layer |
6. Return the analytic solution of the output weight |
7. Identify OAM in the new simple set |
4. Simulation Results and Discussion
4.1. Dataset Generation
4.2. Evaluation Criteria
4.3. Simulation Results
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Khalighi, M.A.; Uysal, M. Survey on free space optical communication: A communication theory perspective. IEEE Commun. Surv. Tutor. 2014, 16, 2231–2258. [Google Scholar] [CrossRef]
- Chen, R.; Zhou, H.; Moretti, M.; Wang, X.; Li, J. Orbital Angular Momentum Waves: Generation, Detection and Emerging Applications. IEEE Commun. Surv. Tutor. 2019, 22, 840–868. [Google Scholar] [CrossRef]
- Chen, C.; Yang, H.; Tong, S.; Lou, Y. Two-frequency mutual coherence function for Gaussian-beam pulses propagating along a horizontal path in weak anisotropic atmosphere turbulence. Appl. Opt. 2015, 54, 5797–5804. [Google Scholar] [CrossRef] [PubMed]
- Wang, C. Multi-Sector Oriented Object Detector for Accurate Localization in Optical Remote Sensing Images. Remote Sens. 2021, 13, 1921. [Google Scholar]
- Krenn, M.; Fickler, R.; Fink, M.; Handsteiner, J.; Malik, M.; Scheidl, T.; Ursin, R.; Zeilinger, A. Communication with spatially modulated light through turbulent air across Vienna. New J. Phys. 2014, 16, 113028. [Google Scholar] [CrossRef]
- Krenn, M.; Handsteiner, J.; Fink, M.; Fickler, R.; Ursin, R.; Malik, M.; Zeilinger, A. Twisted light transmission over 143 km. Proc. Natl. Acad. Sci. USA 2016, 113, 13648–13653. [Google Scholar] [CrossRef]
- Sun, R.; Guo, L.; Cheng, M.; Li, J.; Yan, X. Identifying orbital angular momentum modes in turbulence with high accuracy via machine learning. J. Opt. 2019, 21, 075703. [Google Scholar] [CrossRef]
- Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436. [Google Scholar] [CrossRef]
- Jing, G.; Chen, L.; Wang, P.; Xiong, W.; Huang, Z.; Liu, J.; Chen, Y.; Li, Y.; Fan, D.; Chen, S. Recognizing Fractional Orbital Angular Momentum Using Feedforward Neural Network. Results Phys. 2021, 28, 104619. [Google Scholar] [CrossRef]
- Fu, X.; Bai, Y.H.; Yang, Y.J. Measuring OAM by the hybrid scheme of interference and convolutional neural network. Opt. Eng. 2021, 60, 064109. [Google Scholar] [CrossRef]
- Krenn, M.; Handsteiner, J.; Fink, M.; Fickler, R.; Ursin, R.; Malik, M.; Zeilinger, A. Orbital angular momentum detection based on diffractive deep neural network. Opt. Commun. 2019, 443, 245–249. [Google Scholar]
- Zhou, H.; Wang, Y.; Li, X.; Xu, Z.; Li, X.; Huang, L. A deep learning approach for trustworthy high-fidelity computational holographic orbital angular momentum communication. Appl. Phys. Lett. 2021, 119, 044104. [Google Scholar] [CrossRef]
- Zou, L.; Wang, L.; Zhao, S. Turbulence mitigation scheme based on spatial diversity in orbital-angular-momentum multiplexed system. Opt. Commun. 2017, 400, 123–127. [Google Scholar] [CrossRef]
- Huang, G.; Zhu, Q.; Siew, C. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501. [Google Scholar] [CrossRef]
- Wang, X.; Han, M. Improved extreme learning machine for multivariate time series online sequential prediction. Eng. Appl. Artif. Intell. 2015, 40, 28–36. [Google Scholar] [CrossRef]
- Huang, G.-B.; Zhou, H.; Ding, X.; Zhang, R. Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 2011, 42, 513–529. [Google Scholar] [CrossRef] [PubMed]
- Tavakoli, H.R.; Borji, A.; Laaksonen, J.; Rahtu, E. Exploiting inter-image similarity and ensemble of extreme learners for fixation prediction using deep features. Neurocomputing 2017, 244, 10–18. [Google Scholar] [CrossRef]
- Feng, G.; Huang, G.-B.; Lin, Q.; Gay, R. Error Minimized Extreme Learning Machine with Growth of Hidden Nodes and Incremental Learning. IEEE Trans. Neural Netw. 2009, 20, 1352–1357. [Google Scholar] [CrossRef]
- Zhang, R.; Lan, Y.; Huang, G.-B.; Xu, Z.-B.; Soh, Y.C. Dynamic extreme learning machine and its approximation capability. IEEE Trans. Cybern. 2013, 43, 2054–2065. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, S.; Feng, Z.; Gao, Q.; Wang, M. Fast SAR Autofocus Based on Ensemble Convolutional Extreme Learning Machine. Remote Sens. 2021, 13, 2683. [Google Scholar] [CrossRef]
- Beck, A.; Teboulle, M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2009, 2, 183–202. [Google Scholar] [CrossRef]
- Yu, H.Y.; Chen, C.Y.; Yang, H.M. Two-Stage Game Strategy for Multiclass Imbalanced Data Online Prediction. Neural Process. Lett. 2020, 52, 2493–2512. [Google Scholar] [CrossRef]
- Bai, Z.; Huang, G.-B.; Wang, D.; Wang, H.; Westover, M.B. Sparse Extreme Learning Machine for Classification. IEEE Trans. Cybern. 2014, 44, 1858–1870. [Google Scholar] [CrossRef] [PubMed]
- Basu, S. A simple approach for estimating the refractive index structure parameter (Cn2) profile in the atmosphere. Opt. Lett. 2015, 40, 4130–4133. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Vences, F.J.; Flandoli, F. A spectral-based numerical method for Kolmogorov equations in Hilbert spaces. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2016, 19, 1–37. [Google Scholar] [CrossRef]
- Fayed, H.A.; Abd El Aziz Aly, A.M.; Aly, M.H. Irradiance scintillation index on slant atmosphere turbulence: Simple approach. Opt. Eng. 2016, 55, 056113. [Google Scholar] [CrossRef]
- Peng, J.; Zhang, L.; Zhang, K.; Ma, J. Channel capacity of OAM based FSO communication systems with partially coherent Bessel–Gaussian beams in anisotropic turbulence. Opt. Commun. 2018, 418, 32–36. [Google Scholar] [CrossRef]
- Savitha, R.; Suresh, S.; Kim, H.J. A Meta-Cognitive Learning Algorithm for an Extreme Learning Machine Classifier. Cogn. Comput. 2014, 6, 253–263. [Google Scholar] [CrossRef]
- Fatheddin, P.; Gustafsson, J. Generation of a sequence of correlated phase screens. Opt. Commun. 2017, 391, 100–105. [Google Scholar] [CrossRef]
- Davis, J. Consideration of atmospheric turbulence in laser systems design. Appl. Opt. 1966, 5, 139–147. [Google Scholar] [CrossRef]
Actual Result | Predicted Result | |
---|---|---|
Positive | Negative | |
Positive | TP (True Positive) | FN (False Negative) |
Negative | FP (False Positive) | TN (True Negative) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, H.; Chen, C.; Hu, X.; Yang, H. An Efficient Recognition Method for Orbital Angular Momentum via Adaptive Deep ELM. Sensors 2023, 23, 8737. https://doi.org/10.3390/s23218737
Yu H, Chen C, Hu X, Yang H. An Efficient Recognition Method for Orbital Angular Momentum via Adaptive Deep ELM. Sensors. 2023; 23(21):8737. https://doi.org/10.3390/s23218737
Chicago/Turabian StyleYu, Haiyang, Chunyi Chen, Xiaojuan Hu, and Huamin Yang. 2023. "An Efficient Recognition Method for Orbital Angular Momentum via Adaptive Deep ELM" Sensors 23, no. 21: 8737. https://doi.org/10.3390/s23218737
APA StyleYu, H., Chen, C., Hu, X., & Yang, H. (2023). An Efficient Recognition Method for Orbital Angular Momentum via Adaptive Deep ELM. Sensors, 23(21), 8737. https://doi.org/10.3390/s23218737