Deep Learning for Structural Health Monitoring: Data, Algorithms, Applications, Challenges, and Trends
Abstract
:1. Introduction
- At the data level, we studied the data types adopted by DL for SHM and compared their scope of application. They were followed by analysis and comparison of the different data acquisition methods.
- At the algorithm level, we analyzed the DL algorithm types commonly used in SHM and clarified the data types, core functions, and applications of different algorithms.
- At the application level, we summarized the popular application objects and application functions of DL for SHM on different facilities and facility components.
- Challenges and trends were presented at three levels: data, algorithm, and application. Moreover, combined with the structural model data, the SHMDT framework is constructed to develop the SHM in the direction of digitization and intelligence.
2. Research Methodology
- (1)
- Literature database: Web of Science was chosen as the search database.
- (2)
- Keywords setting: Considering that CNN is the most commonly applied algorithm in DL, CNN was also selected as a keyword in addition to “SHM” and “DL.” The selected keywords and their parallel relationships were: ((((“health monitoring” OR “health surveillance”) AND (“structure” OR “structural”)) OR “SHM”) AND (“deep learning” OR “deep-learning” OR CNN OR “convolutional neural network”)).
- (3)
- Time frame: To study the latest progress of SHM, we selected the relevant literature in the past six years, and the corresponding search time range was 1 January 2017–31 March 2023..
- (4)
- Result: Through retrieval, a total of 555 journal articles in related fields were obtained.
- (5)
- Manual screening: Manual screening includes preliminary screening and rescreening. The preliminary screening based on the title and abstract of the article can exclude articles related to biology, aerospace, and industry, as well as articles where we cannot obtain the full text. Rescreening was performed by reading all articles in detail to exclude articles with topic deviations, and the final number of articles was 337, including 23 review articles.
3. Data Types
3.1. Vibration Signal
3.2. Image
3.3. Acoustic Emission
3.4. Guided Wave
3.5. Others
3.6. Summary
4. Deep Learning Algorithms
4.1. Convolutional Neural Network
4.1.1. CNN
4.1.2. The Combined Application of DL Algorithms
4.2. Recurrent Neural Network
4.3. Auto-Encoder
4.4. Generative Adversarial Network
4.5. Others
4.6. Summary
5. Application Objects and Functions
5.1. Facility Components
5.1.1. Concrete Block
5.1.2. Composite Plate and Metal Plate
5.1.3. Steel and Concrete Beams
5.1.4. Others
5.2. Facilities
5.2.1. Bridges
5.2.2. Frame Structures
5.2.3. Other Buildings and Infrastructure
5.3. Other Application Functions
5.4. Summary
6. Discussion
6.1. Challenges
6.1.1. Data Issues
- (1)
- Data shortage
- (2)
- Data Loss
- (3)
- Data Quality
- (4)
- Data Storage
6.1.2. DL Performance
- (1)
- Overfitting
- (2)
- Model Architecture Selection
- (3)
- Credibility of results
- (4)
- Black box characteristics
6.1.3. Practical Application Obstacles
- (1)
- Application cost
- (2)
- Application number
- (3)
- Application unity
6.2. Trends
6.2.1. Trends in Data
- (1)
- Research on FE methods, unsupervised methods, and composite data to cope with the lack of data
- (2)
- Research on data recovery methods to deal with data loss
- (3)
- Research on anomaly detection methods to improve data quality
6.2.2. Trends in Algorithms
- (1)
- Research on model uncertainty to enhance the credibility of the results
- (2)
- Research on explainable artificial intelligence to deal with the black box characteristic
6.2.3. Trends in Applications
- (1)
- Research on low-cost sensors and self-powered sensors to reduce costs in SHM
- (2)
- Research on smartphones and UAVs to facilitate SHM applications
- (3)
- Research on transfer learning and construction of benchmark datasets to deal with the unification problem
- (4)
- Research on the application of wireless sensors and IoT to SHM systems
6.2.4. SHMDT Architecture
7. Conclusions
- The data and collection methods of DL applied in SHM are analyzed statistically. The application scope and advantages and disadvantages of different data types are further analyzed on this basis. Secondly, various data acquisition methods are compared based on time consumption, cost, and data acquisition accuracy. In terms of data, vibration signals, images, acoustic emission signals, and GW signals are the most common data types, of which vibration signals account for the highest proportion of research, suitable for detecting various damage. Sensors and cameras are the most direct and commonly used tools for data acquisition. In addition, the rapid development of drones and smartphones have also become popular image acquisition tools.
- The statistical analysis of the DL method used by DL in SHM is carried out. Firstly, the architecture and application range of DL algorithms such as the CNN, RNN, auto-encoder, and GAN are introduced. Next, we further summarize the data types, core functions, and applications applicable to the different DL methods. At the same time, the data scale involved in the DL algorithm is clarified by enumerating the size and nature of some literature datasets. The last part shows the literature comparing different DL algorithm performances.
- The application object and function of DL in SHM are analyzed statistically. This paper divides the application objects into two categories: facilities and facilities components. Facilities include bridges, frame structures, buildings, etc., and facilities components include concrete blocks, metal plates, beams, etc. Among them, the research on bridges accounts for the highest proportion. Regarding application function, the most common injuries reported in the literature include cracks, stiffness reduction, bolt loosening, support damage, and simulated damage. In addition, data loss and anomalies are also becoming a concern for researchers. The research stage can be divided into the experimental and practical application stages. Only some literature selects research objects and data from actual structures, mainly bridge databases such as Yonghe Bridge in Tianjin, Saigon Bridge in Vietnam, and bridge inspection records in South Korea.
- Challenges and trends are identified in part based on bibliometric and literature analysis. First, we identify the challenges of applying DL to SHM from three levels: data, algorithm, and application. The issues involved include the lack of data, uncertainty of the model algorithm, application cost, etc. Given the challenges, we put forward the corresponding solutions in the trend section and as a future research direction for reference. For example, researchers can focus on the FE, unsupervised algorithms, data recovery, self-powered sensors, IoT, and other research directions in the future. Moreover, SHM can be combined with the current research focus on DT to build a five-dimensional model framework of SHMDT, which supports SHM development in integration, intelligence, digitalization, and visualization.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
1D-CNN | One-Dimensional Convolutional Neural Networks |
2D-CNN | Two-Dimensional Convolutional Neural Networks |
AE | Acoustic Emission |
ANN | Artificial Neural Network |
ASCE | American Society of Civil Engineers |
BPTT | Back-Propagation Through Time |
BSHM | Bridge Structure Health Monitoring |
BWIM | Bridge Weigh-In-Motion |
CFRP | Carbon Fiber-Reinforced Polymer |
CNN | Convolutional Neural Network |
CWT | Continuous Wavelet Transform |
DCGAN | Deep Convolutional GANs |
DCNN | Deep Convolutional Neural Network |
DD | Damage Detection |
DGBO | Deep Generative Bayesian Optimization |
DL | Deep Learning |
DNNs | Deep Neural Networks |
DT | Digital Twin |
EMI | Electro-Mechanical Impedance |
FCN | Fully Convolutional Networks |
FEM | Finite Element Model |
GAN | Generative Adversarial Networks |
GNN | Graph Neural Network |
GPR | Ground Penetrating Radar |
GRU | Gated Recurrent Unit |
GW | Guided Wave |
IASC | International Association for Structural Control |
IoT | Internet of Things |
LSTM | Long Short-Term Memory |
MAP | Mean Average Precision |
Mask R-CNN | Mask Region-Based Convolutional Neural Networks |
METU | Middle East Technical University |
ML | Machine Learning |
MLP | Multi-Layer Perceptron |
NDT | Non-Destructive Testing |
PZT | Piezoelectric Transducer |
QUGS | Qatar University Grandstand Simulator |
R-CNN | Region-based Convolutional Neural Networks |
RNN | Recurrent Neural Networks |
SHM | Structural Health Monitoring |
SHMDT | Structural Health Monitoring Digital Twin |
SSD | Single Shot MultiBox Detector |
TCRF | Continuous Rigid Frame Bridge |
UAVs | Unmanned Air Vehicles |
UGW | Ultrasonic Guided Wave |
YOLO | You Look Only Once |
References
- Sony, S.; Gamage, S.; Sadhu, A.; Samarabandu, J. Multiclass Damage Identification in a Full-Scale Bridge Using Optimally Tuned One-Dimensional Convolutional Neural Network. J. Comput. Civil Eng. 2022, 36, 14. [Google Scholar] [CrossRef]
- Ma, Z.; Shen, J.; Wang, C.; Wu, H. Characterization of sustainable mortar containing high-quality recycled manufactured sand crushed from recycled coarse aggregate. Cem. Concr. Compos. 2022, 132, 104629. [Google Scholar] [CrossRef]
- Wu, H.; Hu, R.; Yang, D.; Ma, Z. Micro-macro characterizations of mortar containing construction waste fines as replacement of cement and sand: A comparative study. Constr. Build. Mater. 2023, 383, 131328. [Google Scholar] [CrossRef]
- Housner, G.W.; Bergman, L.A.; Caughey, T.K.; Chassiakos, A.G.; Claus, R.O.; Masri, S.F.; Skelton, R.E.; Soong, T.T.; Spencer, B.F.; Yao, J.T.P. Structural control: Past, present, and future. J. Eng. Mech. 1997, 123, 897–971. [Google Scholar] [CrossRef]
- Dong, C.-Z.; Catbas, F.N. A review of computer vision-based structural health monitoring at local and global levels. Struct. Health Monit. 2021, 20, 692–743. [Google Scholar] [CrossRef]
- Rytter, A. Vibrational Based Inspection of Civil Engineering Structures. Ph.D. Thesis, Aalborg University, Aalborg, Denmark, 1993. [Google Scholar]
- Sony, S.; Laventure, S.; Sadhu, A. A literature review of next-generation smart sensing technology in structural health monitoring. Struct. Control Health Monit. 2019, 26, e2321. [Google Scholar] [CrossRef]
- Wang, R.H.; Li, J.; Chencho; An, S.J.; Hao, H.; Liu, W.Q.; Li, L. Densely connected convolutional networks for vibration based structural damage identification. Eng. Struct. 2021, 245, 14. [Google Scholar] [CrossRef]
- Guo, S.F.; Ding, H.; Li, Y.H.; Feng, H.W.; Xiong, X.H.; Su, Z.Q.; Feng, W. A hierarchical deep convolutional regression framework with sensor network fail-safe adaptation for acoustic-emission-based structural health monitoring. Mech. Syst. Signal Proc. 2022, 181, 17. [Google Scholar] [CrossRef]
- Mariani, S.; Rendu, Q.; Urbani, M.; Sbarufatti, C. Causal dilated convolutional neural networks for automatic inspection of ultrasonic signals in non-destructive evaluation and structural health monitoring. Mech. Syst. Signal Proc. 2021, 157, 22. [Google Scholar] [CrossRef]
- Sakurai, H.; Suzuki, K.; Ishii, S.; Hoshi, K.; Nozawa, T.; Ozaki, H.; Haga, H.; Tanigawa, H.; Someya, Y.; Tsuchiya, M.; et al. Development of non-destructive testing (NDT) technique for HIPed interface by Compton scattering X-ray spectroscopy. Nucl. Mater. Energy 2022, 31, 101171. [Google Scholar] [CrossRef]
- Sacarea, A.I.; Oancea, G.; Parv, L. Magnetic Particle Inspection Optimization Solution within the Frame of NDT 4.0. Processes 2021, 9, 1067. [Google Scholar] [CrossRef]
- Sophian, A.; Tian, G.; Fan, M. Pulsed Eddy Current Non-destructive Testing and Evaluation: A Review. Chin. J. Mech. Eng. 2017, 30, 500–514. [Google Scholar] [CrossRef]
- Shao, Y.; Li, L.; Li, J.; An, S.; Hao, H. Computer vision based target-free 3D vibration displacement measurement of structures. Eng. Struct. 2021, 246, 113040. [Google Scholar] [CrossRef]
- Hurtado, A.C.; Kaur, K.; Alamdari, M.M.; Atroshchenko, E.; Chang, K.; Kim, C.W. Unsupervised learning-based framework for indirect structural health monitoring using adversarial autoencoder. J. Sound Vibr. 2023, 550, 23. [Google Scholar] [CrossRef]
- Xiao, H.T.; Ogai, H.; Wang, W.J. A new deep transfer learning method for intelligent bridge damage diagnosis based on muti-channel sub-domain adaptation. Struct. Infrastruct. Eng. 2023, 16. [Google Scholar] [CrossRef]
- He, Y.Y.; Huang, Z.H.; Liu, D.; Zhang, L.K.; Liu, Y. A Novel Structural Damage Identification Method Using a Hybrid Deep Learning Framework. Buildings 2022, 12, 2130. [Google Scholar] [CrossRef]
- Sandhu, H.K.; Bodda, S.S.; Gupta, A. Post-hazard condition assessment of nuclear piping-equipment systems: Novel approach to feature extraction and deep learning. Int. J. Pressure Vessels Pip. 2023, 201, 16. [Google Scholar] [CrossRef]
- Sikdar, S.; Liu, D.Z.; Kundu, A. Acoustic emission data based deep learning approach for classification and detection of damage-sources in a composite panel. Compos. Pt. B-Eng. 2022, 228, 9. [Google Scholar] [CrossRef]
- Hesser, D.F.; Mostafavi, S.; Kocur, G.K.; Markert, B. Identification of acoustic emission sources for structural health monitoring applications based on convolutional neural networks and deep transfer learning. Neurocomputing 2021, 453, 1–12. [Google Scholar] [CrossRef]
- Chen, J.; Wu, W.; Ren, Y.; Yuan, S. Fatigue Crack Evaluation with the Guided Wave-Convolutional Neural Network Ensemble and Differential Wavelet Spectrogram. Sensors 2022, 22, 307. [Google Scholar] [CrossRef]
- Liao, Y.L.; Qing, X.L.; Wang, Y.H.; Zhang, F.H. Damage localization for composite structure using guided wave signals with Gramian angular field image coding and convolutional neural networks. Compos. Struct. 2023, 312, 14. [Google Scholar] [CrossRef]
- Sawant, S.; Sethi, A.; Banerjee, S.; Tallur, S. Unsupervised learning framework for temperature compensated damage identification and localization in ultrasonic guided wave SHM with transfer learning. Ultrasonics 2023, 130, 10. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Tang, F.J.; Cao, Q.; Pan, H.; Wang, X.Y.; Lin, Z.B. Deep Learning-Enriched Stress Level Identification of Pretensioned Rods via Guided Wave Approaches. Buildings 2022, 12, 1772. [Google Scholar] [CrossRef]
- Lomazzi, L.; Fabiano, S.; Parziale, M.; Giglio, M.; Cadini, F. On the explainability of convolutional neural networks processing ultrasonic guided waves for damage diagnosis. Mech. Syst. Signal Proc. 2023, 183, 18. [Google Scholar] [CrossRef]
- Alazzawi, O.; Wang, D.S. Damage identification using the PZT impedance signals and residual learning algorithm. J. Civ. Struct. Health Monit. 2021, 11, 1225–1238. [Google Scholar] [CrossRef]
- Parida, L.; Moharana, S.; Ferreira, V.M.; Giri, S.K.; Ascensao, G. A Novel CNN-LSTM Hybrid Model for Prediction of Electro-Mechanical Impedance Signal Based Bond Strength Monitoring. Sensors 2022, 22, 26. [Google Scholar] [CrossRef]
- Rosafalco, L.; Torzoni, M.; Manzoni, A.; Mariani, S.; Corigliano, A. Online structural health monitoring by model order reduction and deep learning algorithms. Comput. Struct. 2021, 255, 18. [Google Scholar] [CrossRef]
- Zhen, W. Research on English Vocabulary and Speech Corpus Recognition Based on Deep Learning. Wirel. Commun. Mob. Comput. 2022, 2022, 2882964. [Google Scholar] [CrossRef]
- Dokuz, Y.; Tufekci, Z. Feature-based hybrid strategies for gradient descent optimization in end-to-end speech recognition. Multimed. Tools Appl. 2022, 81, 9969–9988. [Google Scholar] [CrossRef]
- Zhang, W. An Automatic Error Detection Method for Machine Translation Results via Deep Learning. IEEE Access 2023, 11, 53237–53248. [Google Scholar] [CrossRef]
- Chen, M. A Deep Learning-Based Intelligent Quality Detection Model for Machine Translation. IEEE Access 2023, 11, 89469–89477. [Google Scholar] [CrossRef]
- Liu, B.; Zuo, X.; Yu, A.; Sun, Y.; Wang, R. Semi-supervised classification of hyperspectral images based on multi-view consistency. Remote Sens. Lett. 2023, 14, 479–490. [Google Scholar] [CrossRef]
- Chen, W.; Su, L.; Chen, X.; Huang, Z. Rock image classification using deep residual neural network with transfer learning. Front. Earth Sci. 2023, 10, 1079447. [Google Scholar] [CrossRef]
- Hou, L.; Chen, H.S.; Zhang, G.M.; Wang, X.Y. Deep Learning-Based Applications for Safety Management in the AEC Industry: A Review. Appl. Sci. 2021, 11, 821. [Google Scholar] [CrossRef]
- Kao, S.P.; Chang, Y.C.; Wang, F.L. Combining the YOLOv4 Deep Learning Model with UAV Imagery Processing Technology in the Extraction and Quantization of Cracks in Bridges. Sensors 2023, 23, 2572. [Google Scholar] [CrossRef] [PubMed]
- Sony, S.; Dunphy, K.; Sadhu, A.; Capretz, M. A systematic review of convolutional neural network-based structural condition assessment techniques. Eng. Struct. 2021, 226, 16. [Google Scholar] [CrossRef]
- Li, Z.J.; Adamu, K.; Yan, K.; Xu, X.L.; Shao, P.; Li, X.H.; Bashir, H.M. Detection of Nut-Bolt Loss in Steel Bridges Using Deep Learning Techniques. Sustainability 2022, 14, 10837. [Google Scholar] [CrossRef]
- Panta, M.; Hoque, M.T.; Abdelguerfi, M.; Flanagin, M.C. IterLUNet: Deep Learning Architecture for Pixel-Wise Crack Detection in Levee Systems. IEEE Access 2023, 11, 12249–12262. [Google Scholar] [CrossRef]
- Zhang, L.X.; Shen, J.K.; Zhu, B.J. A research on an improved Unet-based concrete crack detection algorithm. Struct. Health Monit. 2021, 20, 1864–1879. [Google Scholar] [CrossRef]
- Wang, S.; Liu, C.; Zhang, Y.H. Fully convolution network architecture for steel-beam crack detection in fast-stitching images. Mech. Syst. Signal Proc. 2022, 165, 20. [Google Scholar] [CrossRef]
- Gao, X.J.; Huang, C.S.; Teng, S.; Chen, G.F. A Deep-Convolutional-Neural-Network-Based Semi-Supervised Learning Method for Anomaly Crack Detection. Appl. Sci. 2022, 12, 9244. [Google Scholar] [CrossRef]
- Dunphy, K.; Fekri, M.N.; Grolinger, K.; Sadhu, A. Data Augmentation for Deep-Learning-Based Multiclass Structural Damage Detection Using Limited Information. Sensors 2022, 22, 6193. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.L.; Li, J.J.; Kang, F. Crack Location and Degree Detection Method Based on YOLOX Model. Appl. Sci. 2022, 12, 12572. [Google Scholar] [CrossRef]
- Pal, J.; Sikdar, S.; Banerjee, S. A deep-learning approach for health monitoring of a steel frame structure with bolted connections. Struct. Control Health Monit. 2022, 29, e2873. [Google Scholar] [CrossRef]
- Zhang, T.; Biswal, S.; Wang, Y. SHMnet: Condition assessment of bolted connection with beyond human-level performance. Struct. Health Monit. 2020, 19, 1188–1201. [Google Scholar] [CrossRef]
- Lu, Q.Z.; Jing, Y.C.; Zhao, X.F. Bolt Loosening Detection Using Key-Point Detection Enhanced by Synthetic Datasets. Appl. Sci. 2023, 13, 2020. [Google Scholar] [CrossRef]
- Li, Z.Q.; Li, D.S. A high-frequency feature enhancement network for the surface defect detection of welded rebar. Struct. Control Health Monit. 2022, 29, 13. [Google Scholar] [CrossRef]
- Rubio, J.J.; Kashiwa, T.; Laiteerapong, T.; Deng, W.; Nagai, K.; Escalera, S.; Nakayama, K.; Matsuo, Y.; Prendinger, H. Multi-class structural damage segmentation using fully convolutional networks. Comput. Ind. 2019, 112, 103121. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, P.; Zhao, X.F. Structural displacement monitoring based on mask regions with convolutional neural network. Constr. Build. Mater. 2021, 267, 8. [Google Scholar] [CrossRef]
- Song, Q.S.; Wu, J.R.; Wang, H.L.; An, Y.S.; Tang, G.W. Computer vision-based illumination-robust and multi-point simultaneous structural displacement measuring method. Mech. Syst. Signal Proc. 2022, 170, 14. [Google Scholar] [CrossRef]
- Lydon, D.; Kromanis, R.; Lydon, M.; Early, J.; Taylor, S. Use of a roving computer vision system to compare anomaly detection techniques for health monitoring of bridges. J. Civ. Struct. Health Monit. 2022, 12, 1299–1316. [Google Scholar] [CrossRef]
- Pan, X.; Yang, T.Y.; Xiao, Y.F.; Yao, H.C.; Adeli, H. Vision-based real-time structural vibration measurement through deep-learning-based detection and tracking methods. Eng. Struct. 2023, 281, 12. [Google Scholar] [CrossRef]
- Zhao, S.Z.; Kang, F.; Li, J.J. Concrete dam damage detection and localisation based on YOLOv5s-HSC and photogrammetric 3D reconstruction. Autom. Constr. 2022, 143, 18. [Google Scholar] [CrossRef]
- Azimi, M.; Eslamlou, A.D.; Pekcan, G. Data-Driven Structural Health Monitoring and Damage Detection through Deep Learning: State-of-the-Art Review. Sensors 2020, 20, 2778. [Google Scholar] [CrossRef] [PubMed]
- Wuttke, F.; Lyu, H.; Sattari, A.S.; Rizvi, Z.H. Wave based damage detection in solid structures using spatially asymmetric encoder-decoder network. Sci. Rep. 2021, 11, 20968. [Google Scholar] [CrossRef] [PubMed]
- Geetha, G.K.; Yang, H.J.; Sim, S.H. Fast Detection of Missing Thin Propagating Cracks during Deep-Learning-Based Concrete Crack/Non-Crack Classification. Sensors 2023, 23, 1419. [Google Scholar] [CrossRef]
- Sattarifar, A.; Nestorovi, T. Damage localization and characterization using one-dimensional convolutional neural network and a sparse network of transducers. Eng. Appl. Artif. Intell. 2022, 115, 13. [Google Scholar] [CrossRef]
- Jian, X.; Zhong, H.; Xia, Y.; Sun, L. Faulty data detection and classification for bridge structural health monitoring via statistical and deep-learning approach. Struct. Control Health Monit. 2021, 28, e2824. [Google Scholar] [CrossRef]
- Zhao, J. Efficient Detection of Large-Scale Multimedia Network Information Data Anomalies Based on the Rule-Extracting Matrix Algorithm. Adv. Multimed. 2021, 2021, 3299891. [Google Scholar] [CrossRef]
- Sony, S.; Gamage, S.; Sadhu, A.; Samarabandu, J. Vibration-based multiclass damage detection and localization using long short-term memory networks. Structures 2022, 35, 436–451. [Google Scholar] [CrossRef]
- Siracusano, G.; Garesci, F.; Finocchio, G.; Tomasello, R.; Lamonaca, F.; Scuro, C.; Carpentieri, M.; Chiappini, M.; La Corte, A. Automatic Crack Classification by Exploiting Statistical Event Descriptors for Deep Learning. Appl. Sci. 2021, 11, 12059. [Google Scholar] [CrossRef]
- Zhang, B.; Hong, X.B.; Liu, Y. Distribution adaptation deep transfer learning method for cross-structure health monitoring using guided waves. Struct. Health Monit. 2022, 21, 853–871. [Google Scholar] [CrossRef]
- Li, Y.; Bao, T.; Gao, Z.; Shu, X.; Zhang, K.; Xie, L.; Zhang, Z. A new dam structural response estimation paradigm powered by deep learning and transfer learning techniques. Struct. Health Monit. 2022, 21, 770–787. [Google Scholar] [CrossRef]
- Li, Y.; Bao, T.; Gong, J.; Shu, X.; Zhang, K. The Prediction of Dam Displacement Time Series Using STL, Extra-Trees, and Stacked LSTM Neural Network. IEEE Access 2020, 8, 94440–94452. [Google Scholar] [CrossRef]
- Huang, B.; Kang, F.; Li, J.J.; Wang, F. Displacement prediction model for high arch dams using long short-term memory based encoder-decoder with dual-stage attention considering measured dam temperature. Eng. Struct. 2023, 280, 15. [Google Scholar] [CrossRef]
- Son, H.; Jang, Y.; Kim, S.-E.; Kim, D.; Park, J.-W. Deep Learning-Based Anomaly Detection to Classify Inaccurate Data and Damaged Condition of a Cable-Stayed Bridge. IEEE Access 2021, 9, 124549–124559. [Google Scholar] [CrossRef]
- Li, L.; Liu, G.; Zhang, L.; Li, Q. FS-LSTM-Based Sensor Fault and Structural Damage Isolation in SHM. IEEE Sens. J. 2021, 21, 3250–3259. [Google Scholar] [CrossRef]
- Liu, B.; Xu, Q.; Chen, J.Y.; Li, J.; Wang, M.M. A New Framework for Isolating Sensor Failures and Structural Damage in Noisy Environments Based on Stacked Gated Recurrent Unit Neural Networks. Buildings 2022, 12, 1286. [Google Scholar] [CrossRef]
- Zhang, R.Y.; Meng, L.B.; Mao, Z.; Sun, H. Spatiotemporal Deep Learning for Bridge Response Forecasting. J. Struct. Eng. 2021, 147, 9. [Google Scholar] [CrossRef]
- Hou, J.L.; Jiang, H.C.; Wan, C.F.; Yi, L.T.; Gao, S.; Ding, Y.L.; Xue, S.T. Deep learning and data augmentation based data imputation for structural health monitoring system in multi-sensor damaged state. Measurement 2022, 196, 17. [Google Scholar] [CrossRef]
- Deng, Y.; Ju, H.W.; Li, Y.H.; Hu, Y.A.; Li, A.Q. Abnormal Data Recovery of Structural Health Monitoring for Ancient City Wall Using Deep Learning Neural Network. Int. J. Archit. Herit. 2022, 19. [Google Scholar] [CrossRef]
- Ju, H.W.; Deng, Y.; Zhai, W.Q.; Li, A.Q. Recovery of Abnormal Data for Bridge Structural Health Monitoring Based on Deep Learning and Temporal Correlation. Sens. Mater. 2022, 34, 4491–4505. [Google Scholar] [CrossRef]
- Rosafalco, L.; Manzoni, A.; Mariani, S.; Corigliano, A. An Autoencoder-Based Deep Learning Approach for Load Identification in Structural Dynamics. Sensors 2021, 21, 32. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Hong, X.B.; Liu, Y. Deep Convolutional Neural Network Probability Imaging for Plate Structural Health Monitoring Using Guided Waves. IEEE Trans. Instrum. Meas. 2021, 70, 10. [Google Scholar] [CrossRef]
- Chen, G.F.; Teng, S.; Lin, M.S.; Yang, X.M.; Sun, X.L. Crack Detection Based on Generative Adversarial Networks and Deep Learning. KSCE J. Civ. Eng. 2022, 26, 1803–1816. [Google Scholar] [CrossRef]
- Jiang, H.; Wan, C.; Yang, K.; Ding, Y.; Xue, S. Continuous missing data imputation with incomplete dataset by generative adversarial networks-based unsupervised learning for long-term bridge health monitoring. Struct. Health Monit. 2022, 21, 1093–1109. [Google Scholar] [CrossRef]
- Fan, G.; Li, J.; Hao, H.; Xin, Y. Data driven structural dynamic response reconstruction using segment based generative adversarial networks. Eng. Struct. 2021, 234, 111970. [Google Scholar] [CrossRef]
- Lei, X.M.; Sun, L.M.; Xia, Y. Lost data reconstruction for structural health monitoring using deep convolutional generative adversarial networks. Struct. Health Monit. 2021, 20, 2069–2087. [Google Scholar] [CrossRef]
- Ebrahimkhanlou, A.; Dubuc, B.; Salamone, S. A generalizable deep learning framework for localizing and characterizing acoustic emission sources in riveted metallic panels. Mech. Syst. Signal Proc. 2019, 130, 248–272. [Google Scholar] [CrossRef]
- Ebrahimkhanlou, A.; Salamone, S. Single-sensor acoustic emission source localization in plate-like structures: A deep learning approach. In Proceedings of the SPIE Conference on Health Monitoring of Structural and Biological Systems XII, Denver, CO, USA, 5–8 March 2018. [Google Scholar]
- Rastin, Z.; Amiri, G.G.; Darvishan, E. Generative Adversarial Network for Damage Identification in Civil Structures. Shock Vib. 2021, 2021, 12. [Google Scholar] [CrossRef]
- Qi, Y.Z.; Yuan, C.; Li, P.Z.; Kong, Q.Z. Damage analysis and quantification of RC beams assisted by Damage-T Generative Adversarial Network. Eng. Appl. Artif. Intell. 2023, 117, 11. [Google Scholar] [CrossRef]
- Dunphy, K.; Sadhu, A.; Wang, J.F. Multiclass damage detection in concrete structures using a transfer learning-based generative adversarial networks. Struct. Control Health Monit. 2022, 29, 20. [Google Scholar] [CrossRef]
- Toh, G.; Park, J. Review of Vibration-Based Structural Health Monitoring Using Deep Learning. Appl. Sci. 2020, 10, 1680. [Google Scholar] [CrossRef]
- Jayawickrema, U.M.N.; Herath, H.; Hettiarachchi, N.K.; Sooriyaarachchi, H.P.; Epaarachchi, J.A. Fibre-optic sensor and deep learning-based structural health monitoring systems for civil structures: A review. Measurement 2022, 199, 31. [Google Scholar] [CrossRef]
- Capineri, L.; Bulletti, A. Ultrasonic Guided-Waves Sensors and Integrated Structural Health Monitoring Systems for Impact Detection and Localization: A Review. Sensors 2021, 21, 2929. [Google Scholar] [CrossRef]
- Kiranyaz, S.; Avci, O.; Abdeljaber, O.; Ince, T.; Gabbouj, M.; Inman, D.J. 1D convolutional neural networks and applications: A survey. Mech. Syst. Signal Proc. 2021, 151, 21. [Google Scholar] [CrossRef]
- Salehi, H.; Burgueno, R. Emerging artificial intelligence methods in structural engineering. Eng. Struct. 2018, 171, 170–189. [Google Scholar] [CrossRef]
- Sharma, V.B.; Tewari, S.; Biswas, S.; Lohani, B.; Dwivedi, U.D.; Dwivedi, D.; Sharma, A.; Jung, J.P. Recent Advancements in AI-Enabled Smart Electronics Packaging for Structural Health Monitoring. Metals 2021, 11, 48. [Google Scholar] [CrossRef]
- Bao, Y.Q.; Li, H. Machine learning paradigm for structural health monitoring. Struct. Health Monit. 2021, 20, 1353–1372. [Google Scholar] [CrossRef]
- Gomez-Cabrera, A.; Escamilla-Ambrosio, P.J. Review of Machine-Learning Techniques Applied to Structural Health Monitoring Systems for Building and Bridge Structures. Appl. Sci. 2022, 12, 10754. [Google Scholar] [CrossRef]
- Fan, W.Y.; Chen, Y.; Li, J.Q.; Sun, Y.; Feng, J.; Hassanin, H.; Sareh, P. Machine learning applied to the design and inspection of reinforced concrete bridges: Resilient methods and emerging applications. Structures 2021, 33, 3954–3963. [Google Scholar] [CrossRef]
- Ahmed, H.; La, H.M.; Gucunski, N. Review of Non-Destructive Civil Infrastructure Evaluation for Bridges: State-of-the-Art Robotic Platforms, Sensors and Algorithms. Sensors 2020, 20, 3954. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Shang, Z.; Xia, Y.; Bhowmick, S.; Nagarajaiah, S. Review of Bridge Structural Health Monitoring Aided by Big Data and Artificial Intelligence: From Condition Assessment to Damage Detection. J. Struct. Eng. 2020, 146, 22. [Google Scholar] [CrossRef]
- Khazaee, M.; Derian, P.; Mouraud, A. A comprehensive study on Structural Health Monitoring (SHM) of wind turbine blades by instrumenting tower using machine learning methods. Renew. Energy 2022, 199, 1568–1579. [Google Scholar] [CrossRef]
- Hassani, S.; Mousavi, M.; Gandomi, A.H. Structural Health Monitoring in Composite Structures: A Comprehensive Review. Sensors 2022, 22, 153. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.Y.; Liu, J.H.; Gong, H.; Deng, X.J. A comprehensive review of loosening detection methods for threaded fasteners. Mech. Syst. Signal Proc. 2022, 168, 29. [Google Scholar] [CrossRef]
- Deng, J.H.; Singh, A.; Zhou, Y.Y.; Lu, Y.; Lee, V.C.S. Review on computer vision-based crack detection and quantification methodologies for civil structures. Constr. Build. Mater. 2022, 356, 20. [Google Scholar] [CrossRef]
- Hamishebahar, Y.; Guan, H.; So, S.P.; Jo, J. A Comprehensive Review of Deep Learning-Based Crack Detection Approaches. Appl. Sci. 2022, 12, 1374. [Google Scholar] [CrossRef]
- Pal, M.; Palevicius, P.; Landauskas, M.; Orinaite, U.; Timofejeva, I.; Ragulskis, M. An Overview of Challenges Associated with Automatic Detection of Concrete Cracks in the Presence of Shadows. Appl. Sci. 2021, 11, 11396. [Google Scholar] [CrossRef]
- Bao, Y.; Chen, Z.; Wei, S.; Xu, Y.; Tang, Z.; Li, H. The State of the Art of Data Science and Engineering in Structural Health Monitoring. Engineering 2019, 5, 234–242. [Google Scholar] [CrossRef]
- Baduge, S.K.; Thilakarathna, S.; Perera, J.S.; Arashpour, M.; Sharafi, P.; Teodosio, B.; Shringi, A.; Mendis, P. Artificial intelligence and smart vision for building and construction 4.0: Machine and deep learning methods and applications. Autom. Constr. 2022, 141, 26. [Google Scholar] [CrossRef]
- Akinosho, T.D.; Oyedele, L.O.; Bilal, M.; Ajayi, A.O.; Delgado, M.D.; Akinade, O.O.; Ahmed, A.A. Deep learning in the construction industry: A review of present status and future innovations. J. Build. Eng. 2020, 32, 14. [Google Scholar] [CrossRef]
- Avci, O.; Abdeljaber, O.; Kiranyaz, S.; Hussein, M.; Gabbouj, M.; Inman, D.J. A Review of Vibration-Based Damage Detection in Civil Structures: From Traditional Methods to Machine Learning and Deep Learning Applications. arXiv 2020, arXiv:2004.04373. [Google Scholar] [CrossRef]
- Maia, N.M.M.; Silva, J.M.M.; Almas, E.A.M.; Sampaio, R.P.C. Damage detection in structures: From mode shape to frequency response function methods. Mech. Syst. Signal Proc. 2003, 17, 489–498. [Google Scholar] [CrossRef]
- Radzienski, M.; Krawczuk, M.; Palacz, M. Improvement of damage detection methods based on experimental modal parameters. Mech. Syst. Signal Proc. 2011, 25, 2169–2190. [Google Scholar] [CrossRef]
- Teng, Z.Q.; Teng, S.; Zhang, J.Q.; Chen, G.F.; Cui, F.S. Structural Damage Detection Based on Real-Time Vibration Signal and Convolutional Neural Network. Appl. Sci. 2020, 10, 4720. [Google Scholar] [CrossRef]
- Yang, J.; Yang, F.; Zhou, Y.; Wang, D.; Li, R.; Wang, G.; Chen, W. A data-driven structural damage detection framework based on parallel convolutional neural network and bidirectional gated recurrent unit. Inf. Sci. 2021, 566, 103–117. [Google Scholar] [CrossRef]
- Fathnejat, H.; Ahmadi-Nedushan, B.; Hosseininejad, S.; Noori, M.; Altabey, W.A. A data-driven structural damage identification approach using deep convolutional-attention-recurrent neural architecture under temperature variations. Eng. Struct. 2023, 276, 14. [Google Scholar] [CrossRef]
- Seventekidis, P.; Giagopoulos, D. Model error effects in supervised damage identification of structures with numerically trained classifiers. Mech. Syst. Signal Proc. 2023, 184, 31. [Google Scholar] [CrossRef]
- Dang, V.H.; Vu, T.C.; Nguyen, B.D.; Nguyen, Q.H.; Nguyen, T.D. Structural damage detection framework based on graph convolutional network directly using vibration data. Structures 2022, 38, 40–51. [Google Scholar] [CrossRef]
- He, Y.Y.; Zhang, L.K.; Chen, Z.S.; Li, C.Y. A framework of structural damage detection for civil structures using a combined multi-scale convolutional neural network and echo state network. Eng. Comput. 2023, 39, 1771–1789. [Google Scholar] [CrossRef]
- Li, S.J.; Liu, F.Y.; Peng, G.L.; Cheng, F.; Zhao, B.Q.; Ji, M.Y. A Lightweight SHM Framework Based on Adaptive Multisensor Fusion Network and Multigeneration Knowledge Distillation. IEEE Trans. Instrum. Meas. 2022, 71, 19. [Google Scholar] [CrossRef]
- Yang, Q.; Shen, D.J. Learning Damage Representations with Sequence-to-Sequence Models. Sensors 2022, 22, 452. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Y.; Xia, Y. Knowledge transfer for structural damage detection through re-weighted adversarial domain adaptation. Mech. Syst. Signal Proc. 2022, 172, 19. [Google Scholar] [CrossRef]
- Wang, R.H.; Chencho; An, S.J.; Li, J.; Li, L.; Hao, H.; Liu, W.Q. Deep residual network framework for structural health monitoring. Struct. Health Monit. 2021, 20, 1443–1461. [Google Scholar] [CrossRef]
- Wang, L.X.; Liu, H.B.; Chen, Z.H.; Zhang, F.; Guo, L.L. Combined digital twin and hierarchical deep learning approach for intelligent damage identification in cable dome structure. Eng. Struct. 2023, 274, 18. [Google Scholar] [CrossRef]
- He, Y.Y.; Chen, H.Y.; Liu, D.; Zhang, L.K. A Framework of Structural Damage Detection for Civil Structures Using Fast Fourier Transform and Deep Convolutional Neural Networks. Appl. Sci. 2021, 11, 9345. [Google Scholar] [CrossRef]
- Wang, X.W.; Zhang, X.N.; Shahzad, M.M. A novel structural damage identification scheme based on deep learning framework. Structures 2021, 29, 1537–1549. [Google Scholar] [CrossRef]
- Rastin, Z.; Ghodrati Amiri, G.; Darvishan, E. Unsupervised Structural Damage Detection Technique Based on a Deep Convolutional Autoencoder. Shock Vib. 2021, 2021, 6658575. [Google Scholar] [CrossRef]
- Liao, S.Y.; Liu, H.J.; Yang, J.X.; Ge, Y.X. A channel-spatial-temporal attention-based network for vibration-based damage detection. Inf. Sci. 2022, 606, 213–229. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, L.; Chen, C.; Li, Y.; Li, R.; Wang, G.; Jiang, S.; Zeng, Z. A hierarchical deep convolutional neural network and gated recurrent unit framework for structural damage detection. Inf. Sci. 2020, 540, 117–130. [Google Scholar] [CrossRef]
- Chamangard, M.; Ghodrati Amiri, G.; Darvishan, E.; Rastin, Z. Transfer Learning for CNN-Based Damage Detection in Civil Structures with Insufficient Data. Shock Vib. 2022, 2022, 3635116. [Google Scholar] [CrossRef]
- Dang, H.V.; Raza, M.; Nguyen, T.V.; Bui-Tien, T.; Nguyen, H.X. Deep learning-based detection of structural damage using time-series data. Struct. Infrastruct. Eng. 2021, 17, 1474–1493. [Google Scholar] [CrossRef]
- Sajedi, S.; Liang, X. Dual Bayesian inference for risk-informed vibration-based damage diagnosis. Comput.-Aided Civ. Infrastruct. Eng. 2021, 36, 1168–1184. [Google Scholar] [CrossRef]
- Karmakov, S.; Aliabadi, M.H.F. Deep Learning Approach to Impact Classification in Sensorized Panels Using Self-Attention. Sensors 2022, 22, 17. [Google Scholar] [CrossRef]
- Jiang, K.J.; Han, Q.; Du, X.L. Lost data neural semantic recovery framework for structural health monitoring based on deep learning. Comput.-Aided Civ. Infrastruct. Eng. 2022, 37, 1160–1187. [Google Scholar] [CrossRef]
- Ni, F.; Zhang, J.; Noori, M.N. Deep learning for data anomaly detection and data compression of a long-span suspension bridge. Comput.-Aided Civ. Infrastruct. Eng. 2020, 35, 685–700. [Google Scholar] [CrossRef]
- Agyemang, I.O.; Zhang, X.L.; Acheampong, D.; Adjei-Mensah, I.; Kusi, G.A.; Mawuli, B.C.; Agbley, B.L.Y. Autonomous health assessment of civil infrastructure using deep learning and smart devices. Autom. Constr. 2022, 141, 15. [Google Scholar] [CrossRef]
- Ye, X.W.; Ma, S.Y.; Liu, Z.X.; Ding, Y.; Li, Z.X.; Jin, T. Post-earthquake damage recognition and condition assessment of bridges using UAV integrated with deep learning approach. Struct. Control Health Monit. 2022, 29, 15. [Google Scholar] [CrossRef]
- Arafin, P.; Issa, A.; Billah, A. Performance Comparison of Multiple Convolutional Neural Networks for Concrete Defects Classification. Sensors 2022, 22, 18. [Google Scholar] [CrossRef]
- Deng, W.L.; Mou, Y.L.; Kashiwa, T.; Escalera, S.; Nagai, K.; Nakayama, K.; Matsuo, Y.; Prendinger, H. Vision based pixel-level bridge structural damage detection using a link ASPP network. Autom. Constr. 2020, 110, 9. [Google Scholar] [CrossRef]
- Hou, R.; Jeong, S.; Lynch, J.P.; Law, K.H. Cyber-physical system architecture for automating the mapping of truck loads to bridge behavior using computer vision in connected highway corridors. Transp. Res. Part C-Emerg. Technol. 2020, 111, 547–571. [Google Scholar] [CrossRef]
- Zhou, Y.; Pei, Y.; Li, Z.; Fang, L.; Zhao, Y.; Yi, W. Vehicle weight identification system for spatiotemporal load distribution on bridges based on non-contact machine vision technology and deep learning algorithms. Measurement 2020, 159, 107801. [Google Scholar] [CrossRef]
- Xu, X.Y.; Yang, H. Vision Measurement of Tunnel Structures with Robust Modelling and Deep Learning Algorithms. Sensors 2020, 20, 15. [Google Scholar] [CrossRef]
- Kang, D.H.; Cha, Y.J. Autonomous UAVs for Structural Health Monitoring Using Deep Learning and an Ultrasonic Beacon System with Geo-Tagging. Comput.-Aided Civ. Infrastruct. Eng. 2018, 33, 885–902. [Google Scholar] [CrossRef]
- Gao, Y.; Zhai, P.; Mosalam, K.M. Balanced semisupervised generative adversarial network for damage assessment from low-data imbalanced-class regime. Comput.-Aided Civ. Infrastruct. Eng. 2021, 36, 1094–1113. [Google Scholar] [CrossRef]
- Wang, S.H.; Zargar, S.A.; Yuan, F.G. Augmented reality for enhanced visual inspection through knowledge-based deep learning. Struct. Health Monit. 2021, 20, 426–442. [Google Scholar] [CrossRef]
- Park, S.E.; Eem, S.H.; Jeon, H. Concrete crack detection and quantification using deep learning and structured light. Constr. Build. Mater. 2020, 252, 8. [Google Scholar] [CrossRef]
- Kim, B.; Yuvaraj, N.; Preethaa, K.R.S.; Pandian, R.A. Surface crack detection using deep learning with shallow CNN architecture for enhanced computation. Neural Comput. Appl. 2021, 33, 9289–9305. [Google Scholar] [CrossRef]
- Islam, M.M.M.; Kim, J.-M. Vision-Based Autonomous Crack Detection of Concrete Structures Using a Fully Convolutional Encoder-Decoder Network. Sensors 2019, 19, 4251. [Google Scholar] [CrossRef]
- Chen, F.C.; Jahanshahi, M.R. ARF-Crack: Rotation invariant deep fully convolutional network for pixel-level crack detection. Mach. Vis. Appl. 2020, 31, 12. [Google Scholar] [CrossRef]
- Sajedi, S.O.; Liang, X. Uncertainty-assisted deep vision structural health monitoring. Comput.-Aided Civ. Infrastruct. Eng. 2021, 36, 126–142. [Google Scholar] [CrossRef]
- Jang, K.; Kim, N.; An, Y.-K. Deep learning-based autonomous concrete crack evaluation through hybrid image scanning. Struct. Health Monit. 2019, 18, 1722–1737. [Google Scholar] [CrossRef]
- Chen, S.-X.; Zhou, L.; Ni, Y.-Q.; Liu, X.-Z. An acoustic-homologous transfer learning approach for acoustic emission-based rail condition evaluation. Struct. Health Monit. 2021, 20, 2161–2181. [Google Scholar] [CrossRef]
- Yang, L.; Xu, F.Y. A Novel Acoustic Emission Sources Localization and Identification Method in Metallic Plates Based on Stacked Denoising Autoencoders. IEEE Access 2020, 8, 141123–141142. [Google Scholar] [CrossRef]
- Garrett, J.C.; Mei, H.F.; Giurgiutiu, V. An Artificial Intelligence Approach to Fatigue Crack Length Estimation from Acoustic Emission Waves in Thin Metallic Plates. Appl. Sci. 2022, 12, 1372. [Google Scholar] [CrossRef]
- Pandey, P.; Rai, A.; Mitra, M. Explainable 1-D convolutional neural network for damage detection using Lamb wave. Mech. Syst. Signal Proc. 2022, 164, 12. [Google Scholar] [CrossRef]
- Gao, F.; Hua, J.D. Damage characterization using CNN and SAE of broadband Lamb waves. Ultrasonics 2022, 119, 10. [Google Scholar] [CrossRef]
- de Oliveira, M.A.; Monteiro, A.V.; Vieira Filho, J. A New Structural Health Monitoring Strategy Based on PZT Sensors and Convolutional Neural Network. Sensors 2018, 18, 2955. [Google Scholar] [CrossRef]
- Chen, L.; Gallet, A.; Huang, S.S.; Liu, D.; Smyl, D. Probabilistic cracking prediction via deep learned electrical tomography. Struct. Health Monit. 2022, 21, 1574–1589. [Google Scholar] [CrossRef]
- Ahmed, H.; La, H.M.; Tran, K. Rebar detection and localization for bridge deck inspection and evaluation using deep residual networks. Autom. Constr. 2020, 120, 18. [Google Scholar] [CrossRef]
- Hosoda, A.; Akmal, A.; Toshida, Y.; Saleem, M. Prediction of maximum crack width by machine learning using concrete construction data in yamaguchi system. Int. J. Intell. Inform. Infrastruct. Data Sci. Pap. 2022, 3, 898–905. [Google Scholar]
- Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2017, 60, 84–89. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Peng, M.; Wang, C.; Chen, T.; Liu, G. Nirfacenet: A convolutional neural network for near-infrared face identification. Information 2016, 7, 61. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Zhou, G.C.; Han, Y.; Lin, H.L.; Wu, Y.Y. Application of Internet of Things Technology and Convolutional Neural Network Model in Bridge Crack Detection. IEEE Access 2018, 6, 39442–39451. [Google Scholar] [CrossRef]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the 27th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, Italy, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. arXiv 2016, arXiv:1506.01497.s, s. [Google Scholar] [CrossRef]
- Pham, H.C.; Ta, Q.B.; Kim, J.T.; Ho, D.D.; Tran, X.L.; Huynh, T.C. Bolt-Loosening Monitoring Framework Using an Image-Based Deep Learning and Graphical Model. Sensors 2020, 20, 19. [Google Scholar] [CrossRef]
- Li, C.; Xu, P.; Niu, L.; Chen, Y.; Sheng, L.; Liu, M. Tunnel crack detection using coarse-to-fine region localization and edge detection. Wiley Interdiscip. Rev. -Data Min. Knowl. Discov. 2019, 9, e1308. [Google Scholar] [CrossRef]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; pp. 21–37. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Ding, L.; Fang, W.; Luo, H.; Love, P.E.; Zhong, B.; Ouyang, X. A deep hybrid learning model to detect unsafe behavior: Integrating convolution neural networks and long short-term memory. Autom. Constr. 2018, 86, 118–124. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Jégou, S.; Drozdzal, M.; Vazquez, D.; Romero, A.; Bengio, Y. The one hundred layers tiramisu: Fully convolutional densenets for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 11–19. [Google Scholar]
- Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. In Proceedings of the 15th European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 833–851. [Google Scholar]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE international conference on computer vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar]
- Qiu, D.W.; Liang, H.R.; Wang, Z.L.; Tong, Y.C.; Wan, S.S. Hybrid-Supervised-Learning-Based Automatic Image Segmentation for Water Leakage in Subway Tunnels. Appl. Sci. 2022, 12, 11799. [Google Scholar] [CrossRef]
- Kiranyaz, S.; Ince, T.; Hamila, R.; Gabbouj, M. Convolutional Neural Networks for Patient-Specific ECG Classification. In Proceedings of the 37th Annual International Conference of the IEEE-Engineering-in-Medicine-and-Biology-Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 2608–2611. [Google Scholar]
- Zhang, S.Y.; Li, C.M.; Ye, W.J. Damage localization in plate-like structures using time-varying feature and one-dimensional convolutional neural network. Mech. Syst. Signal Proc. 2021, 147, 15. [Google Scholar] [CrossRef]
- Wu, C.S.; Peng, Y.X.; Zhuo, D.B.; Zhang, J.Q.; Ren, W.; Feng, Z.Y. Energy Ratio Variation-Based Structural Damage Detection Using Convolutional Neural Network. Appl. Sci. 2022, 12, 10220. [Google Scholar] [CrossRef]
- Dang, H.V.; Tran-Ngoc, H.; Nguyen, T.V.; Bui-Tien, T.; De Roeck, G.; Nguyen, H.X. Data-Driven Structural Health Monitoring Using Feature Fusion and Hybrid Deep Learning. IEEE Trans. Autom. Sci. Eng. 2021, 18, 2087–2103. [Google Scholar] [CrossRef]
- Ma, Z.R.; Gao, L. Predicting Mechanical State of High-Speed Railway Elevated Station Track System Using a Hybrid Prediction Model. KSCE J. Civ. Eng. 2021, 25, 2474–2486. [Google Scholar] [CrossRef]
- Shin, R.; Okada, Y.; Yamamoto, K. Application of C-LSTM Networks to Automatic Labeling of Vehicle Dynamic Response Data for Bridges. Sensors 2022, 22, 12. [Google Scholar] [CrossRef]
- Du, B.W.; Lin, C.M.; Sun, L.L.; Zhao, Y.P.; Li, L.C. Response Prediction Based on Temporal and Spatial Deep Learning Model for Intelligent Structural Health Monitoring. IEEE Internet Things J. 2022, 9, 13364–13375. [Google Scholar] [CrossRef]
- Yue, Z.X.; Ding, Y.L.; Zhao, H.W.; Wang, Z.W. Ultra-high precise Stack-LSTM-CNN model of temperature-induced deflection of a cable-stayed bridge for detecting bridge state driven by monitoring data. Structures 2022, 45, 110–125. [Google Scholar] [CrossRef]
- Parziale, M.; Lomazzi, L.; Giglio, M.; Cadini, F. Vibration-based structural health monitoring exploiting a combination of convolutional neural networks and autoencoders for temperature effects neutralization. Struct. Control Health Monit. 2022, 29, 20. [Google Scholar] [CrossRef]
- Graves, A.; Graves, A. Long short-term memory. In Supervised Sequence Labelling with Recurrent Neural Networks; Springer: Berlin/Heidelberg, Germany, 2012; pp. 37–45. [Google Scholar]
- Cho, K.; van Merrienboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. arXiv 2014, arXiv:1406.1078. [Google Scholar]
- Li, Y.; Bao, T.; Chen, H.; Zhang, K.; Shu, X.; Chen, Z.; Hu, Y. A large-scale sensor missing data imputation framework for dams using deep learning and transfer learning strategy. Measurement 2021, 178, 109377. [Google Scholar] [CrossRef]
- Deng, Y.; Ju, H.W.; Zhai, W.Q.; Li, A.Q.; Ding, Y.L. Correlation model of deflection, vehicle load, and temperature for in-service bridge using deep learning and structural health monitoring. Struct. Control Health Monit. 2022, 29, 20. [Google Scholar] [CrossRef]
- Ai, L.; Soltangharaei, V.; Ziehl, P. Evaluation of ASR in concrete using acoustic emission and deep learning. Nucl. Eng. Des. 2021, 380, 10. [Google Scholar] [CrossRef]
- Pathirage, C.S.N.; Li, J.; Li, L.; Hao, H.; Liu, W.Q.; Ni, P.H. Structural damage identification based on autoencoder neural networks and deep learning. Eng. Struct. 2018, 172, 13–28. [Google Scholar] [CrossRef]
- Lei, X.M.; Siringoringo, D.M.; Sun, Z.; Fujino, Y. Displacement response estimation of a cable-stayed bridge subjected to various loading conditions with one-dimensional residual convolutional autoencoder method. Struct. Health Monit. 2022, 22, 1790–1806. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial networks. Commun. ACM 2020, 63, 139–144. [Google Scholar] [CrossRef]
- Radford, A.; Metz, L.; Chintala, S.J.a.p.a. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv 2015, arXiv:1511.06434. [Google Scholar]
- Kohiyama, M.; Oka, K.; Yamashita, T. Detection method of unlearned pattern using support vector machine in damage classification based on deep neural network. Struct. Control Health Monit. 2020, 27, 23. [Google Scholar] [CrossRef]
- Sabour, S.; Frosst, N.; Hinton, G.E. Dynamic routing between capsules. In Proceedings of the 31st Annual Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 3856–3866. [Google Scholar]
- Barraza, J.F.; Droguett, E.L.; Naranjo, V.M.; Martins, M.R. Capsule Neural Networks for structural damage localization and quantification using transmissibility data. Appl. Soft. Comput. 2020, 97, 106732. [Google Scholar] [CrossRef]
- Son, H.; Pham, V.T.; Jang, Y.; Kim, S.E. Damage Localization and Severity Assessment of a Cable-Stayed Bridge Using a Message Passing Neural Network. Sensors 2021, 21, 3118. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.Q.; Li, D.S.; Sun, T.S. A Transformer-Based Bridge Structural Response Prediction Framework. Sensors 2022, 22, 3100. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.S.; Luo, Q.T.; Xie, H.; Li, Q.; Sun, G.Y. Digital image correlation (DIC) based damage detection for CFRP laminates by using machine learning based image semantic segmentation. Int. J. Mech. Sci. 2022, 230, 13. [Google Scholar] [CrossRef]
- Baquerizo, J.; Tutiven, C.; Puruncajas, B.; Vidal, Y.; Sampietro, J. Siamese Neural Networks for Damage Detection and Diagnosis of Jacket-Type Offshore Wind Turbine Platforms. Mathematics 2022, 10, 1131. [Google Scholar] [CrossRef]
- Coraca, E.M.; Ferreira, J.V.; Nobrega, E.G.O. An unsupervised structural health monitoring framework based on Variational Autoencoders and Hidden Markov Models. Reliab. Eng. Syst. Saf. 2023, 231, 15. [Google Scholar] [CrossRef]
- Lomazzi, L.; Giglio, M.; Cadini, F. Towards a deep learning-based unified approach for structural damage detection, localisation and quantification. Eng. Appl. Artif. Intell. 2023, 121, 15. [Google Scholar] [CrossRef]
- Kulkarni, N.N.; Raisi, K.; Valente, N.A.; Benoit, J.; Yu, T.Y.; Sabato, A. Deep learning augmented infrared thermography for unmanned aerial vehicles structural health monitoring of roadways. Autom. Constr. 2023, 148, 13. [Google Scholar] [CrossRef]
- Choi, W.; Cha, Y.J. SDDNet: Real-Time Crack Segmentation. IEEE Trans. Ind. Electron. 2020, 67, 8016–8025. [Google Scholar] [CrossRef]
- Tang, Q.Z.; Xin, J.Z.; Jiang, Y.; Zhou, J.T.; Li, S.J.; Chen, Z.Y. Novel identification technique of moving loads using the random response power spectral density and deep transfer learning. Measurement 2022, 195, 14. [Google Scholar] [CrossRef]
- Ijjeh, A.A.; Kudela, P. Deep learning based segmentation using full wavefield processing for delamination identification: A comparative study. Mech. Syst. Signal Proc. 2022, 168, 16. [Google Scholar] [CrossRef]
- Kalayci, A.S.; Yalim, B.; Mirmiran, A. Effect of Untreated Surface Disbonds on Performance of FRP-Retrofitted Concrete Beams. J. Compos. Constr. 2009, 13, 476–485. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, Y.; Yao, G.; Wei, F.; Wong, M. Autonomous Crack and Bughole Detection for Concrete Surface Image Based on Deep Learning. IEEE Access 2021, 9, 85709–85720. [Google Scholar] [CrossRef]
- Wei, W.; Ding, L.Y.; Luo, H.B.; Li, C.; Li, G.W. Automated bughole detection and quality performance assessment of concrete using image processing and deep convolutional neural networks. Constr. Build. Mater. 2021, 281, 11. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, X.F.; Liu, P. Multi-Point Displacement Monitoring Based on Full Convolutional Neural Network and Smartphone. IEEE Access 2019, 7, 139628–139634. [Google Scholar] [CrossRef]
- Ijjeh, A.A.; Ullah, S.; Kudela, P. Full wavefield processing by using FCN for delamination detection. Mech. Syst. Signal Proc. 2021, 153, 16. [Google Scholar] [CrossRef]
- Cristiani, D.; Falcetelli, F.; Yue, N.; Sbarufatti, C.; Di Sante, R.; Zarouchas, D.; Giglio, M. Strain-based delamination prediction in fatigue loaded CFRP coupon specimens by deep learning and static loading data. Compos. Part B-Eng. 2022, 241, 12. [Google Scholar] [CrossRef]
- Zhou, L.; Chen, S.-X.; Ni, Y.-Q.; Jiang, L. Pitch-catch UGW-based multiple damage inference: A heterogeneous graph interpretation. Smart Mater. Struct. 2022, 31, 015005. [Google Scholar] [CrossRef]
- Miorelli, R.; Fisher, C.; Kulakovskyi, A.; Chapuis, B.; Mesnil, O.; D’Almeida, O. Defect sizing in guided wave imaging structural health monitoring using convolutional neural networks. Ndt E Int. 2021, 122, 102480. [Google Scholar] [CrossRef]
- Seventekidis, P.; Giagopoulos, D.; Arailopoulos, A.; Markogiannaki, O. Structural Health Monitoring using deep learning with optimal finite element model generated data. Mech. Syst. Signal Proc. 2020, 145, 21. [Google Scholar] [CrossRef]
- Luan, L.L.; Zheng, J.W.; Wang, M.L.; Yang, Y.C.; Rizzo, P.; Sun, H. Extracting full-field subpixel structural displacements from videos via deep learning. J. Sound Vibr. 2021, 505, 19. [Google Scholar] [CrossRef]
- Ye, X.-W.; Jin, T.; Chen, P.-Y. Structural crack detection using deep learning-based fully convolutional networks. Adv. Struct. Eng. 2019, 22, 3412–3419. [Google Scholar] [CrossRef]
- Kong, S.Y.; Fan, J.S.; Liu, Y.F.; Wei, X.C.; Ma, X.W. Automated crack assessment and quantitative growth monitoring. Comput.-Aided Civ. Infrastruct. Eng. 2021, 36, 656–674. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Phan, T.T.V.; Ho, D.D.; Pradhan, A.M.S.; Huynh, T.C. Deep learning-based autonomous damage-sensitive feature extraction for impedance-based prestress monitoring. Eng. Struct. 2022, 259, 18. [Google Scholar] [CrossRef]
- Seventekidis, P.; Giagopoulos, D. A combined finite element and hierarchical Deep learning approach for structural health monitoring: Test on a pin-joint composite truss structure. Mech. Syst. Signal Proc. 2021, 157, 23. [Google Scholar] [CrossRef]
- Han, G.; Kim, Y.-M.; Kim, H.; Oh, T.-M.; Song, K.-I.; Kim, A.; Kim, Y.; Cho, Y.; Kwon, T.-H. Auto-detection of acoustic emission signals from cracking of concrete structures using convolutional neural networks: Upscaling from specimen. Expert Syst. Appl. 2021, 186, 115863. [Google Scholar] [CrossRef]
- Hallee, M.J.; Napolitano, R.K.; Reinhart, W.F.; Glisic, B. Crack Detection in Images of Masonry Using CNNs. Sensors 2021, 21, 4929. [Google Scholar] [CrossRef]
- Ye, X.W.; Jin, T.; Li, Z.X.; Ma, S.Y.; Ding, Y.; Ou, Y.H. Structural Crack Detection from Benchmark Data Sets Using Pruned Fully Convolutional Networks. J. Struct. Eng. 2021, 147, 13. [Google Scholar] [CrossRef]
- Tang, Z.; Chen, Z.; Bao, Y.; Li, H. Convolutional neural network-based data anomaly detection method using multiple information for structural health monitoring. Struct. Control Health Monit. 2019, 26, e2296. [Google Scholar] [CrossRef]
- Wang, Z.W.; Li, A.D.; Zhang, W.M.; Zhang, Y.F. Long-term missing wind data recovery using free access databases and deep learning for bridge health monitoring. J. Wind Eng. Ind. Aerodyn. 2022, 230, 14. [Google Scholar] [CrossRef]
- Kuok, S.-C.; Yuen, K.-V. Multi-resolution broad learning for model updating using incomplete modal data. Struct. Control Health Monit. 2020, 27, e2571. [Google Scholar] [CrossRef]
- Sarwar, M.Z.; Cantero, D. Deep autoencoder architecture for bridge damage assessment using responses from several vehicles. Eng. Struct. 2021, 246, 16. [Google Scholar] [CrossRef]
- Toan, P.-B.; Nhi, N.-K.; Luan, V.-C.; Tam, N.-N. Energy dissipation-based material deterioration assessment using random decrement technique and convolutional neural network: A case study of Saigon bridge in Ho Chi Minh City, Vietnam. Struct. Control Health Monit. 2022, 29, e2956. [Google Scholar] [CrossRef]
- Moses, F. Weigh-in-motion system using instrumented bridges. Transp. Eng. J. ASCE 1979, 105, 233–249. [Google Scholar] [CrossRef]
- Ge, L.; Dan, D.; Li, H. An accurate and robust monitoring method of full-bridge traffic load distribution based on YOLO-v3 machine vision. Struct. Control Health Monit. 2020, 27, e2636. [Google Scholar] [CrossRef]
- Johnson, E.A.; Lam, H.-F.; Katafygiotis, L.S.; Beck, J.L. Phase I IASC-ASCE structural health monitoring benchmark problem using simulated data. J. Eng. Mech. 2004, 130, 3–15. [Google Scholar] [CrossRef]
- Abdeljaber, O.; Avci, O.; Kiranyaz, M.S.; Boashash, B.; Sodano, H.; Inman, D.J. 1-D CNNs for structural damage detection: Verification on a structural health monitoring benchmark data. Neurocomputing 2018, 275, 1308–1317. [Google Scholar] [CrossRef]
- Zhao, X.F.; Zhang, Y.; Wang, N.N. Bolt loosening angle detection technology using deep learning. Struct. Control Health Monit. 2019, 26, 14. [Google Scholar] [CrossRef]
- Oh, B.K.; Jung, W.C.; Park, H.S. Artificial intelligence-based damage localization method for building structures using correlation of measured structural responses. Eng. Appl. Artif. Intell. 2023, 121, 17. [Google Scholar] [CrossRef]
- Sajedi, S.O.; Liang, X. Vibration-based semantic damage segmentation for large-scale structural health monitoring. Comput.-Aided Civ. Infrastruct. Eng. 2020, 35, 579–596. [Google Scholar] [CrossRef]
- Morales-Valdez, J.; Lopez-Pacheco, M.; Yu, W. Automated damage location for building structures using the hysteretic model and frequency domain neural networks. Struct. Control Health Monit. 2020, 27, 15. [Google Scholar] [CrossRef]
- Guan, H.; Li, J.; Yu, Y.; Chapman, M.; Wang, H.; Wang, C.; Zhai, R. Iterative Tensor Voting for Pavement Crack Extraction Using Mobile Laser Scanning Data. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1527–1537. [Google Scholar] [CrossRef]
- Roberts, R.; Giancontieri, G.; Inzerillo, L.; Di Mino, G. Towards Low-Cost Pavement Condition Health Monitoring and Analysis Using Deep Learning. Appl. Sci. 2020, 10, 319. [Google Scholar] [CrossRef]
- Kanarachos, S.; Christopoulos, S.-R.G.; Chroneos, A.; Fitzpatrick, M.E. Detecting anomalies in time series data via a deep learning algorithm combining wavelets, neural networks and Hilbert transform. Expert Syst. Appl. 2017, 85, 292–304. [Google Scholar] [CrossRef]
- Iyer, S.; Velmurugan, T.; Gandomi, A.H.; Noor Mohammed, V.; Saravanan, K.; Nandakumar, S. Structural health monitoring of railway tracks using IoT-based multi-robot system. Neural Comput. Appl. 2021, 33, 5897–5915. [Google Scholar] [CrossRef]
- Chen, M.; Zhai, W.M.; Zhu, S.Y.; Xu, L.; Sun, Y. Vibration-based damage detection of rail fastener using fully convolutional networks. Veh. Syst. Dyn. 2022, 60, 2191–2210. [Google Scholar] [CrossRef]
- Ren, Y.; Huang, J.; Hong, Z.; Lu, W.; Yin, J.; Zou, L.; Shen, X. Image-based concrete crack detection in tunnels using deep fully convolutional networks. Constr. Build. Mater. 2020, 234, 117367. [Google Scholar] [CrossRef]
- Attard, L.; Debono, C.J.; Valentino, G.; Di Castro, M. Vision-Based Tunnel Lining Health Monitoring via Bi-Temporal Image Comparison and Decision-Level Fusion of Change Maps. Sensors 2021, 21, 4040. [Google Scholar] [CrossRef]
- Bao, X.X.; Fan, T.X.; Shi, C.; Yang, G.L. One-dimensional convolutional neural network for damage detection of jacket-type offshore platforms. Ocean Eng. 2021, 219, 20. [Google Scholar] [CrossRef]
- Puruncajas, B.; Vidal, Y.; Tutiven, C. Vibration-Response-Only Structural Health Monitoring for Offshore Wind Turbine Jacket Foundations via Convolutional Neural Networks. Sensors 2020, 20, 3429. [Google Scholar] [CrossRef]
- Jana, D.; Patil, J.; Herkal, S.; Nagarajaiah, S.; Duenas-Osorio, L. CNN and Convolutional Autoencoder (CAE) based real-time sensor fault detection, localization, and correction. Mech. Syst. Signal Proc. 2022, 169, 30. [Google Scholar] [CrossRef]
- Fan, G.; Li, J.; Hao, H. Lost data recovery for structural health monitoring based on convolutional neural networks. Struct. Control Health Monit. 2019, 26, 21. [Google Scholar] [CrossRef]
- Li, L.C.; Zhou, H.J.; Liu, H.N.; Zhang, C.D.; Liu, J.H. A hybrid method coupling empirical mode decomposition and a long short-term memory network to predict missing measured signal data of SHM systems. Struct. Health Monit. 2021, 20, 1778–1793. [Google Scholar] [CrossRef]
- Sajedi, S.; Liang, X. Deep generative Bayesian optimization for sensor placement in structural health monitoring. Comput.-Aided Civ. Infrastruct. Eng. 2022, 37, 1109–1127. [Google Scholar] [CrossRef]
- Huang, Y.; Huang, S.Y. Neural network-based prediction of topside mass of an in-service jacket platform. Ocean Eng. 2022, 246, 12. [Google Scholar] [CrossRef]
- Liu, D.; Bao, Y.H.; He, Y.Y.; Zhang, L.K. A Data Loss Recovery Technique Using EMD-BiGRU Algorithm for Structural Health Monitoring. Appl. Sci. 2021, 11, 10072. [Google Scholar] [CrossRef]
- Fan, G.; Li, J.; Hao, H. Vibration signal denoising for structural health monitoring by residual convolutional neural networks. Measurement 2020, 157, 15. [Google Scholar] [CrossRef]
- Zhou, Y.; Pei, Y.; Zhou, S.; Zhao, Y.; Hu, J.; Yi, W. Novel methodology for identifying the weight of moving vehicles on bridges using structural response pattern extraction and deep learning algorithms. Measurement 2021, 168, 108384. [Google Scholar] [CrossRef]
- Ibrahim, A.; Eltawil, A.; Na, Y.S.; El-Tawil, S. A Machine Learning Approach for Structural Health Monitoring Using Noisy Data Sets. IEEE Trans. Autom. Sci. Eng. 2020, 17, 900–908. [Google Scholar] [CrossRef]
- Oh, B.K.; Kim, J. Multi-Objective Optimization Method to Search for the Optimal Convolutional Neural Network Architecture for Long-Term Structural Health Monitoring. IEEE Access 2021, 9, 44738–44750. [Google Scholar] [CrossRef]
- Alazzawi, O.; Wang, D.S. A novel structural damage identification method based on the acceleration responses under ambient vibration and an optimized deep residual algorithm. Struct. Health Monit. 2022, 21, 2587–2617. [Google Scholar] [CrossRef]
- Gao, Y.Q.; Mosalam, K.M. Deep learning visual interpretation of structural damage images. J. Build. Eng. 2022, 60, 17. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, Y.; Zhao, L.; Fan, Z. An event recognition method for Φ-OTDR sensing system based on deep learning. Sensors 2019, 19, 3421. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Hong, X.B.; Liu, Y. Multi-Task Deep Transfer Learning Method for Guided Wave-Based Integrated Health Monitoring Using Piezoelectric Transducers. IEEE Sens. J. 2020, 20, 14391–14400. [Google Scholar] [CrossRef]
- Tang, Z.Y.; Bao, Y.Q.; Li, H. Group sparsity-aware convolutional neural network for continuous missing data recovery of structural health monitoring. Struct. Health Monit. 2021, 20, 1738–1759. [Google Scholar] [CrossRef]
- Angelov, P.P.; Soares, E.A.; Jiang, R.C.; Arnold, N.I.; Atkinson, P.M. Explainable artificial intelligence: An analytical review. Wiley Interdiscip. Rev. -Data Min. Knowl. Discov. 2021, 11, e1424. [Google Scholar] [CrossRef]
- Grieves, M.; Vickers, J. Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems. In Transdisciplinary Perspectives on Complex Systems: New Findings and Approaches; Springer: Berlin/Heidelberg, Germany, 2017; pp. 85–113. [Google Scholar]
- Grieves, M. Digital twin: Manufacturing excellence through virtual factory replication. White Pap. 2014, 1, 1–7. [Google Scholar]
- Tao, F.; Zhang, M.; Liu, Y.; Nee, A.Y.C. Digital twin driven prognostics and health management for complex equipment. Cirp Ann.-Manuf. Technol. 2018, 67, 169–172. [Google Scholar] [CrossRef]
Data Type | Damaged Type | Data Acquisition Key Points | Data Processing Key Points | Pros and Cons of Application |
---|---|---|---|---|
Vibration signal | Various damages | Sensors and noise | Time-varying characteristics | Insensitive to minor injuries |
Image | Surface damages | Shooting equipment and environment | Computational complexity | Damage visualization |
AE signal | AE source location | Sensors and noise | AE signal uncertainty | Dependence on the laboratory environment |
GW signal | Metal structure damages | Sensors and noise | GW signal multi-modal | Sensitive to minor injuries |
Acquisition Method | Time Spent | Cost | Data Accuracy |
---|---|---|---|
Sensor | Long-term | Relatively low | High |
FE simulation | Medium-term | Relatively high | Moderate |
Public dataset | Short-term | Low | Moderate |
Online searching | Short-term | Low | Moderate |
Camera | Medium-term | High | High |
Video camera | Medium-term | High | High |
Mobile phone | Medium-term | Moderate | Moderate |
UAV | Medium-term | High | High |
Algorithm Type | Data Type | Core Function | Applications Function | Pros and Cons |
---|---|---|---|---|
CNN | Images, Time series data | Object recognition Image classification Semantic segmentation | Crack, corrosion, stiffness reduction, support failure, bolt loosening, displacement, stress, delamination detection, denoising, data recovery | It extracts high-level features but suffers from overfitting and data dependence. |
RNN | Time series data | Object recognition Sequence identification | Stiffness reduction, displacement, delamination detection, data anomaly detection | It is good at capturing time sequence information but has the problem of disappearing gradients. |
Auto-encoder | Images, Time series data | Object recognition Semantic segmentation Data enhancement | Crack, erosion, cable tension, stiffness, displacement detection, AE source location Data anomaly detection | It is good at dimensionality reduction of data similar to training samples |
GAN | Images, Time series data | Object recognition Image classification Semantic segmentation Data enhancement | Crack, spalling detection, Image generation Missing data interpolation | It can be used to generate images, but training is unstable. |
Reference(s) | Function | Data Type | Data Set | Percentage of Training Set and Test Set |
---|---|---|---|---|
Xiao et al. [16] | Transfer learning in bridge damage diagnosis | Vibration signal | Three datasets, each containing 2800 samples | 1:1 |
Coraca et al. [200] | Bearing damage and cable slack detection | Vibration signal | 2085 undamaged and 3184 damaged samples | 1587:828:769 |
Fathnejat et al. [110] | Combination of 1D-CNN and RNN for damage detection | Vibration signal | IASC-ASCE benchmark model with nine scenarios under each scenario with an input matrix dimension of 72,000 × 16 | 6:2:2 |
He et al. [17] | Aluminum frame stiffness reduction identification | Vibration signal | A total of 13,140 acceleration samples for the four stiffness states | 6:2:2 |
Jiang et al. [128] | Recovery of random data loss | Vibration signal | 128 five-minute sample segments, 38,144 actual acceleration samples | 8:1:1 |
Guo et al. [9] | Acoustic emission-based impact source localization problem | AE | 500 good single-channel signals and 100 bad signals that are poorly clamped, loosely connected, etc. | 9:1 |
Ebrahimkhanlou et al. [81] | Localization of AE sources from metal plates | AE | Acoustic emission signals collected from 576 analog sources | 8:1:1 |
Liao et al. [22] | Damage localization in composite structures | GW | The Gramian angular field was used to convert GW signals into 2D images, resulting in 10,620 128 × 128 × 3pixel images | 7:2:1 |
Lomazzi et al. [201] | Localization and quantification of cracks in aluminum panels | GW | 100 damaged Lamb wave replicas and 51,600 undamaged Lamb wave replicas | 70:28:2 |
Sawant et al. [23] | Temperature-compensated damage identification and localization | GW | Generated 16,000 samples based on the OGW dataset with added noise | 70:24:6 |
Kao et al. [36] | Identification and quantification of bridge cracks | Image | 1463 mobile phone images and 3006 SDNET dataset images | 8:2 |
Kulkarni et al. [202] | Pavement void inspection | Image | 4900 principal component thermography and sparse principal component thermography maps | 3920:980 |
Lu et al. [47] | Loose Bolt Detection | Image | 300 cell phone captured images, 1600 composite images | 4:1:1 (Real datasets); 6:1:1 (Synthetic datasets) |
Panta et al. [39] | Pixel-level detection of cracks in dams | Image | Dam crack image 1650, extended image 101, DeepCrack dataset 237, and enhanced image | _ |
Wang et al. [44] | Crack localization and assessment | Image | 2177 small images with a resolution of 500 × 500 | 7:2:1 |
Zhao et al. [54] | Concrete dam void, spalling cracks, and six other types of damage detection | Image | 2500 images of 640×640pixel resolution | 6:2:2 |
Dunphy et al. [84] | Detection of multiple types of damage to concrete structures | Image | Extracted 5115 images from the SDNET2018 dataset, containing 2450 undamaged images and 2665 damaged images | 7:2:1 |
Li et al. [48] | Detection of surface defects in welded steel bars | Image | 1580 images with a resolution of 3204 × 4032 taken by a cell phone | 7:1:2 |
Song et al. [51] | Measurement of structural displacement using computer vision | Image | 300 images decomposed from video | 180:120 |
Choi et al. [203] | Segmentation of concrete cracks in the image | Image | 200 images of different pixel resolutions were collected through mobile phones and the Internet | 4:1 |
Reference(s) | Goal | DL Algorithm(s) | Effect | ||
---|---|---|---|---|---|
Wang et al. [44] | Image-based crack location and evaluation | YOLOX | 88.5% | MAP | |
Faster R-CNN | 69.77% | ||||
Deconvolutional Single Shot Detector | 86% | ||||
YOLOv5 | 86% | ||||
Li et al. [38] | Image-based inspection of bridge bolts, nuts, and nut holes | CNN | 95.6% | Accuracy | |
LSTM | 93% | ||||
YOLOv4 | 76.5% | ||||
Tang et al. [204] | Bridge weight and speed identification based on random response power spectral density | AlexNet | 96% | Accuracy | |
VGG16 | 96% | ||||
InceptionV3 | 96.75% | ||||
ResNet50 | 93% | ||||
Arafin et al. [132] | Image-based classification of multiple defects on concrete surfaces | Accuracy | Precision | Recall | |
IncptionV3 | 91% | 83% | 100% | ||
Xception | 90% | 81% | 100% | ||
MobileNetV2 | 82% | 71% | 94% | ||
ResNet50 | 82% | 69% | 89% | ||
VGG19 | 61% | 64% | 80% | ||
Ijjeh et al. [205] | Layered detection and localization of composite materials based on full wave field measurements | Accuracy | Precision | Recall | |
Res-UNet | 99.4% | 98.9% | 100% | ||
VGG16 encoder–decoder | 99.1% | 98.1% | 100% | ||
FCN-DenseNet | 99.7% | 99.4% | 100% | ||
PSPNet | 98.4% | 96.8% | 100% | ||
Global Convolutional Network | 100% | 100% | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, J.; Li, Y. Deep Learning for Structural Health Monitoring: Data, Algorithms, Applications, Challenges, and Trends. Sensors 2023, 23, 8824. https://doi.org/10.3390/s23218824
Jia J, Li Y. Deep Learning for Structural Health Monitoring: Data, Algorithms, Applications, Challenges, and Trends. Sensors. 2023; 23(21):8824. https://doi.org/10.3390/s23218824
Chicago/Turabian StyleJia, Jing, and Ying Li. 2023. "Deep Learning for Structural Health Monitoring: Data, Algorithms, Applications, Challenges, and Trends" Sensors 23, no. 21: 8824. https://doi.org/10.3390/s23218824
APA StyleJia, J., & Li, Y. (2023). Deep Learning for Structural Health Monitoring: Data, Algorithms, Applications, Challenges, and Trends. Sensors, 23(21), 8824. https://doi.org/10.3390/s23218824