Synthesis of Multifunctional Mn3O4-Ag2S Janus Nanoparticles for Enhanced T1-Magnetic Resonance Imaging and Photo-Induced Tumor Therapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Mn3O4 Nanoparticles
2.3. Fabrication of Mn3O4-Ag2S JNPs
2.4. Preparation of Mn3O4-Ag2S-PF127 JNPs
2.5. Characterizations
2.6. Measurement of Dissolved Oxygen
2.7. Chemodynamic Activity of Mn3O4-Ag2S-PF127 JNPs
2.8. MRI and Relaxation Properties
2.9. Photothermal Effect of Mn3O4-Ag2S-PF127 JNPs
2.10. Cell Culture
2.11. In Vitro Photothermal Therapy
2.12. Bacterial Culture and Antibacterial Assay
3. Results and Discussions
3.1. Synthesis and Characterizations of Mn3O4-Ag2S JNPs
3.2. Fenton-like Properties of Mn3O4-Ag2S JNPs
3.3. T1 MRI and Relaxivity Properties of Mn3O4-Ag2S-PF127 JNPs
3.4. Biocompatibility and Photothermal Therapy of Mn3O4-Ag2S-PF127 JNPs
3.5. Antibacterial Activities
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Li, J.; Liu, R.; Li, Q.; Zhang, H.; Lam, J.W.Y.; Kwok, R.T.K.; Liu, D.; Ding, D.; Tang, B.Z. Boosting Fluorescence-Photoacoustic-Raman Properties in One Fluorophore for Precise Cancer Surgery. Chem 2019, 5, 2657–2677. [Google Scholar] [CrossRef]
- Herrera, F.G.; Irving, M.; Kandalaft, L.E.; Coukos, G. Rational Combinations of Immunotherapy with Radiotherapy in Ovarian Cancer. Lancet Oncol. 2019, 20, e417–e433. [Google Scholar] [CrossRef]
- Philippou, Y.; Sjoberg, H.; Lamb, A.D.; Camilleri, P.; Bryant, R.J. Harnessing the Potential of Multimodal Radiotherapy in Prostate Cancer. Nat. Rev. Urol. 2020, 17, 321–338. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.C.; Hsu, F.M.; Yang, P.C. Precision Radiotherapy for Non-Small Cell Lung Cancer. J. Biomed. Sci. 2020, 27, 82. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Yang, S.; Cui, Z.; Liu, X.; Yang, Y.; Wang, T.; Ma, W.; Zhou, Y.; Liang, R.; Yan, D.; et al. In-Situ Activation of CuAl-LDH Nanosheets to Catalyze Bioorthogonal Chemistry in Vivo in Tumor Microenvironment for Precise Chemotherapy and Chemodynamic Therapy. Chem. Eng. J. 2023, 457, 141186. [Google Scholar] [CrossRef]
- Wu, D.; Shi, X.; Zhao, F.; Chilengue, S.T.F.; Deng, L.; Dong, A.; Kong, D.; Wang, W.; Zhang, J. An Injectable and Tumor-Specific Responsive Hydrogel with Tissue-Adhesive and Nanomedicine-Releasing Abilities for Precise Locoregional Chemotherapy. Acta Biomater. 2019, 96, 123–136. [Google Scholar] [CrossRef]
- Wang, Z.; Kuang, G.; Yu, Z.; Li, A.; Zhou, D.; Huang, Y. Light-Activatable Dual Prodrug Polymer Nanoparticle for Precise Synergistic Chemotherapy Guided by Drug-Mediated Computed Tomography Imaging. Acta Biomater. 2019, 94, 459–468. [Google Scholar] [CrossRef]
- Gavas, S.; Quazi, S.; Karpiński, T.M. Nanoparticles for Cancer Therapy: Current Progress and Challenges. Nanoscale Res. Lett. 2021, 16, 173. [Google Scholar] [CrossRef]
- Chen, H.; Gu, Z.; An, H.; Chen, C.; Chen, J.; Cui, R.; Chen, S.; Chen, W.; Chen, X.; Chen, X. Precise Nanomedicine for Intelligent Therapy of Cancer. Sci. China Chem. 2018, 61, 1503–1552. [Google Scholar] [CrossRef]
- Li, M.; Long, S.; Kang, Y.; Guo, L.; Wang, J.; Fan, J.; Du, J.; Peng, X. De Novo Design of Phototheranostic Sensitizers Based on Structure-Inherent Targeting for Enhanced Cancer Ablation. J. Am. Chem. Soc. 2018, 140, 15820–15826. [Google Scholar] [CrossRef] [PubMed]
- Gan, W.W.; Chan, L.W.; Li, W.; Wong, T.W. Critical Clinical Gaps in Cancer Precision Nanomedicine Development. J. Control. Release 2022, 345, 811–818. [Google Scholar] [CrossRef] [PubMed]
- Kagan, C.R.; Fernandez, L.E.; Gogotsi, Y.; Hammond, P.T.; Hersam, M.C.; Nel, A.E.; Penner, R.M.; Willson, C.G.; Weiss, P.S. Nano Day: Celebrating the Next Decade of Nanoscience and Nanotechnology. ACS Nano 2016, 10, 9093–9103. [Google Scholar] [CrossRef]
- Chan, W.C.W.; Udugama, B.; Kadhiresan, P.; Kim, J.; Mubareka, S.; Weiss, P.S.; Parak, W.J. Patients, Here Comes More Nanotechnology. ACS Nano 2016, 10, 8139–8142. [Google Scholar] [CrossRef]
- Salamanca-Buentello, F.; Daar, A.S. Nanotechnology, Equity and Global Health. Nat. Nanotechnol. 2021, 16, 358–361. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, M.; Gao, X.; Chen, Y.; Liu, T. Nanotechnology in Cancer Diagnosis: Progress, Challenges and Opportunities. J. Hematol. Oncol. 2019, 12, 137. [Google Scholar] [CrossRef]
- Cheng, Q.; Chen, J.; Song, Y.; Yu, X.; Guan, C.; Wan, C.; Tan, X.; Huang, C. Tunable Janus Geometric Morphology from Aqueous Two-Phase Systems on a Superhydrophobic Substrate. J. Mater. Chem. A Mater. 2023, 11, 4155–4161. [Google Scholar] [CrossRef]
- Bradley, L.C.; Stebe, K.J.; Lee, D. Clickable Janus Particles. J. Am. Chem. Soc. 2016, 138, 11437–11440. [Google Scholar] [CrossRef]
- Aghmiouni, D.K.; Khoee, S. Dual-Drug Delivery by Anisotropic and Uniform Hybrid Nanostructures: A Comparative Study of the Function and Substrate—Drug Interaction Properties. Pharmaceutics 2023, 15, 1214. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, J.; Shao, Y.; Deng, R.; Zhu, J.; Yang, Z. Recent Advances in Scalable Synthesis and Performance of Janus Polymer/Inorganic Nanocomposites. Prog. Mater. Sci. 2022, 124, 100888. [Google Scholar] [CrossRef]
- Agrawal, G.; Agrawal, R. Janus Nanoparticles: Recent Advances in Their Interfacial and Biomedical Applications. ACS Appl. Nano Mater. 2019, 2, 1738–1757. [Google Scholar] [CrossRef]
- Fu, J.; An, D.; Song, Y.; Wang, C.; Qiu, M.; Zhang, H. Janus Nanoparticles for Cellular Delivery Chemotherapy: Recent Advances and Challenges. Coord. Chem. Rev. 2020, 422, 213467. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, K.; Lin, J.; Huang, P. Janus Nanoparticles in Cancer Diagnosis, Therapy and Theranostics. Biomater. Sci. 2019, 7, 1262–1275. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Park, J.; Hong, Y.; Oh, A.; Baik, H.; Lee, K. Janus to Core-Shell to Janus: Facile Cation Movement in Cu2−XS/Ag2S Hexagonal Nanoplates Induced by Surface Strain Control. ACS Nano 2019, 13, 11834–11842. [Google Scholar] [CrossRef]
- Cao, Y.; Li, S.; Yu, X.; Li, W.; Bo, Z. Synthesis of Hybrid Au-Ag2S-Cu2−XS Nanocrystals with Disparate Interfacial Features. J. Colloid Interface Sci. 2021, 603, 11–16. [Google Scholar] [CrossRef]
- Yadav, A.; Follink, B.; Funston, A.M. Anion-Directed Synthesis of Core–Shell and Janus Hybrid Nanostructures. Chem. Mater. 2022, 34, 8987–8998. [Google Scholar] [CrossRef]
- Zhang, L.; Jin, L.; Yang, Y.; Kerns, P.; Su, X.; Meng, M.; Liu, B.; He, J. Oxidative Nucleation and Growth of Janus-Type MnOx-Ag and MnOx-AgI Nanoparticles. Nanoscale 2019, 11, 15147–15155. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.; Zhou, Y.; Zhang, Y.; Zhang, C.; Deng, X.; Dong, C.; Shuang, S. Facile Fabrication Route of Janus Gold-Mesoporous Silica Nanocarriers with Dual-Drug Delivery for Tumor Therapy. ACS Biomater. Sci. Eng. 2020, 6, 1573–1581. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, W.; Su, L.; Ge, X.; Ye, J.; Zhao, C.; He, Y.; Yang, H.; Song, J.; Duan, H. Plasmonic-Fluorescent Janus Ag/Ag2S Nanoparticles for in Situ H2O2-Activated NIR-II Fluorescence Imaging. Nano Lett. 2021, 21, 2625–2633. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Shi, L.; Jing, X.; Miao, H.; Zhao, Y. SERS-Active Composites with Au-Ag Janus Nanoparticles/Perovskite in Immunoassays for Staphylococcus Aureus Enterotoxins. ACS Appl. Mater. Interfaces 2022, 14, 3293–3301. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Lai, J.; Wang, R.; Ye, L.; Tian, Y. Reverse Microemulsion Synthesis of Fe3O4–Ag2S Heteronanocrystals for Dual-Modal Imaging-Guided Photothermal Tumor Ablation. ACS Biomater. Sci. Eng. 2019, 5, 6196–6206. [Google Scholar] [CrossRef] [PubMed]
- Esserman, B.L.; Hylton, N.; Yassa, L.; Barclay, J.; Frankel, S.; Sickles, E. Utility of magnetic resonance imaging in the management of breast cancer: Evidence for improved preoperative staging. J. Clin. Oncol. 2019, 17, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Hwang, E.S.; Bedrosian, I. Patterns of Breast Magnetic Resonance Imaging Use an Opportunity for Data-Driven Resource Allocation. JAMA Intern. Med. 2014, 174, 122–124. [Google Scholar] [CrossRef] [PubMed]
- Hylton, N. Dynamic Contrast-Enhanced Magnetic Resonance Imaging as an Imaging Biomarker. J. Clin. Oncol. 2006, 24, 3293–3298. [Google Scholar] [CrossRef]
- Mathur, M.; Jones, J.R.; Weinreb, J.C. Gadolinium Deposition and Nephrogenic Systemic Fibrosis: A Radiologist’s Primer. Radiographics 2020, 40, 153–162. [Google Scholar] [CrossRef]
- Pan, D.; Schmieder, A.H.; Wickline, S.A.; Lanza, G.M. Manganese-Based MRI Contrast Agents: Past, Present, and Future. Tetrahedron 2011, 67, 8431–8444. [Google Scholar] [CrossRef]
- Gale, E.M.; Atanasova, I.P.; Blasi, F.; Ay, I.; Caravan, P. A Manganese Alternative to Gadolinium for MRI Contrast. J. Am. Chem. Soc. 2015, 137, 15548–15557. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, B.; Auh, Y.; Kim, E. Conjugated Organic Photothermal Films for Spatiotemporal Thermal Engineering. Adv. Mater. 2021, 33, 2005940. [Google Scholar] [CrossRef]
- Zheng, N.; Wang, Q.; Li, C.; Wang, X.; Liu, X.; Wang, X.; Deng, G.; Wang, J.; Zhao, L.; Lu, J. Responsive Degradable Theranostic Agents Enable Controlled Selenium Delivery to Enhance Photothermal Radiotherapy and Reduce Side Effects. Adv. Healthc. Mater. 2021, 10, 2002024. [Google Scholar] [CrossRef]
- Tang, Z.; Ali, I.; Hou, Y.; Akakuru, O.U.; Zhang, Q.; Mushtaq, A.; Zhang, H.; Lu, Y.; Ma, X.; Ge, J.; et al. pH-Responsive Au@Pd bimetallic core–shell nanorods for enhanced synergistic targeted photothermal-augmented nanocatalytic therapy in the second near-infrared window. J. Mater. Chem. B 2022, 10, 6532–6545. [Google Scholar] [CrossRef]
- Goudarzvand, L.; Dabirian, A.; Nourian, M.; Jafarimanesh, H.; Ranjbaran, M. Comparison of Conventional Phototherapy and Phototherapy along with Kangaroo Mother Care on Cutaneous Bilirubin of Neonates with Physiological Jaundice. J. Matern. -Fetal Neonatal Med. 2019, 32, 1280–1284. [Google Scholar] [CrossRef]
- Maisels, M.J. Phototherapy—Traditional and Nontraditional. J. Perinatol. 2001, 21, S93–S97. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Ning, C.; Zhou, Z.; Yu, P.; Zhu, Y.; Tan, G.; Mao, C. Nanomaterials as Photothermal Therapeutic Agents. Prog. Mater. Sci. 2019, 99, 1–26. [Google Scholar] [CrossRef]
- Nasseri, B.; Alizadeh, E.; Bani, F.; Davaran, S.; Akbarzadeh, A.; Rabiee, N.; Bahadori, A.; Ziaei, M.; Bagherzadeh, M.; Saeb, M.R.; et al. Nanomaterials for Photothermal and Photodynamic Cancer Therapy. Appl. Phys. Rev. 2022, 9, 011317. [Google Scholar] [CrossRef]
- Yang, T.; Tang, Y.; Liu, L.; Lv, X.; Wang, Q.; Ke, H.; Deng, Y.; Yang, H.; Yang, X.; Liu, G.; et al. Size-Dependent Ag2S Nanodots for Second Near-Infrared Fluorescence/Photoacoustics Imaging and Simultaneous Photothermal Therapy. ACS Nano 2017, 11, 1848–1857. [Google Scholar] [CrossRef]
- Du, Y.; Xu, B.; Fu, T.; Cai, M.; Li, F.; Zhang, Y.; Wang, Q. Near-Infrared Photoluminescent Ag2S Quantum Dots from a Single Source Precursor. J. Am. Chem. Soc. 2010, 132, 1470–1471. [Google Scholar] [CrossRef]
- Ding, C.; Huang, Y.; Shen, Z.; Chen, X. Synthesis and Bioapplications of Ag2S Quantum Dots with Near-Infrared Fluorescence. Adv. Mater. 2021, 33, 202007768. [Google Scholar] [CrossRef] [PubMed]
- Hagberg, G.E.; Scheffler, K. Effect of r(1) and r(2) relaxivity of gadolinium-based contrast agents on the T1-weighted MR signal at increasing magnetic field strengths. Contrast Media Mol. Imaging 2013, 8, 456–465. [Google Scholar] [CrossRef]
- Mijnendonckx, K.; Leys, N.; Mahillon, J. Antimicrobial silver: Uses, toxicity and potential for resistance. Biometals 2013, 26, 609–621. [Google Scholar] [CrossRef]
- Wang, M.; Li, M.; Wang, Y. Efficient antibacterial activity of hydroxyapatite through ROS generation motivated by trace Mn (iii) coupled H vacancies. J. Mater. Chem. B 2021, 9, 3401–3411. [Google Scholar] [CrossRef]
- Xi, J.; An, L.; Huang, Y. Ultrasmall FeS2 nanoparticles-decorated carbon spheres with laser-mediated ferrous ion release for antibacterial therapy. Small 2021, 17, 2005473. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Wu, Y.; Tang, Z.; Hou, Y.; Cui, M.; Huang, S.; Long, B.; Yu, Z.; Iqbal, M.Z.; Kong, X. Synthesis of Multifunctional Mn3O4-Ag2S Janus Nanoparticles for Enhanced T1-Magnetic Resonance Imaging and Photo-Induced Tumor Therapy. Sensors 2023, 23, 8930. https://doi.org/10.3390/s23218930
Lu Y, Wu Y, Tang Z, Hou Y, Cui M, Huang S, Long B, Yu Z, Iqbal MZ, Kong X. Synthesis of Multifunctional Mn3O4-Ag2S Janus Nanoparticles for Enhanced T1-Magnetic Resonance Imaging and Photo-Induced Tumor Therapy. Sensors. 2023; 23(21):8930. https://doi.org/10.3390/s23218930
Chicago/Turabian StyleLu, Yuguang, Yuling Wu, Zhe Tang, Yike Hou, Mingyue Cui, Shuqi Huang, Binghua Long, Zhangsen Yu, Muhammad Zubair Iqbal, and Xiangdong Kong. 2023. "Synthesis of Multifunctional Mn3O4-Ag2S Janus Nanoparticles for Enhanced T1-Magnetic Resonance Imaging and Photo-Induced Tumor Therapy" Sensors 23, no. 21: 8930. https://doi.org/10.3390/s23218930