Recovery-Based Occluded Face Recognition by Identity-Guided Inpainting
Abstract
:1. Introduction
2. Related Work
2.1. Occluded Face Recognition
2.2. Identity-Preserving Face Inpainting
2.3. Normalization Layers
3. Proposed Method
3.1. Problem Definition
3.2. Identity-Guided Inpainting
3.3. Training Process
4. Experiment Results
4.1. Experiment Settings
4.2. Comparison Experiments
4.2.1. Face Inpainting
4.2.2. Face Recognition
4.3. Analysis of the Framework
4.3.1. Effects of Different Occluded Areas
4.3.2. AIFBs
4.3.3. Identity Space
4.3.4. More test datasets
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, H.; Wang, Y.; Zhou, Z.; Ji, X.; Gong, D.; Zhou, J.; Li, Z.; Liu, W. Cosface: Large margin cosine loss for deep face recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 5265–5274. [Google Scholar]
- Deng, J.; Guo, J.; Xue, N.; Zafeiriou, S. Arcface: Additive angular margin loss for deep face recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 4690–4699. [Google Scholar]
- Deng, J.; Guo, J.; Yang, J.; Lattas, A.; Zafeiriou, S. Variational prototype learning for deep face recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021; pp. 11906–11915. [Google Scholar]
- Huang, Y.; Wang, Y.; Tai, Y.; Liu, X.; Shen, P.; Li, S.; Li, J.; Huang, F. Curricularface: Adaptive curriculum learning loss for deep face recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 5901–5910. [Google Scholar]
- Qiu, H.; Gong, D.; Li, Z.; Liu, W.; Tao, D. End2End occluded face recognition by masking corrupted features. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 6939–6952. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, S.; Chen, J.C.; Castillo, C.; Patel, V.M.; Chellappa, R.; Jacobs, D.W. Frontal to profile face verification in the wild. In Proceedings of the 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Placid, NY, USA, 7–10 March 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–9. [Google Scholar]
- Moschoglou, S.; Papaioannou, A.; Sagonas, C.; Deng, J.; Kotsia, I.; Zafeiriou, S. Agedb: The first manually collected, in-the-wild age database. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 51–59. [Google Scholar]
- Yu, J.; Lin, Z.; Yang, J.; Shen, X.; Lu, X.; Huang, T.S. Free-form image inpainting with gated convolution. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 4471–4480. [Google Scholar]
- Zheng, C.; Cham, T.J.; Cai, J. Pluralistic image completion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 5–20 June 2019; pp. 1438–1447. [Google Scholar]
- Dolhansky, B.; Ferrer, C.C. Eye in-painting with exemplar generative adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7902–7911. [Google Scholar]
- Li, C.; Ge, S.; Hua, Y.; Liu, H.; Jin, X. Occluded face recognition by identity-preserving inpainting. In Cognitive Internet of Things: Frameworks, Tools and Applications; Springer: Cham, Switzerland, 2020; pp. 427–437. [Google Scholar]
- Duan, Q.; Zhang, L. Look more into occlusion: Realistic face frontalization and recognition with boostgan. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 214–228. [Google Scholar] [CrossRef] [PubMed]
- Duan, Q.; Zhang, L.; Gao, X. Simultaneous face completion and frontalization via mask guided two-stage GAN. IEEE Trans. Circuits Syst. Video Technol. 2021, 32, 3761–3773. [Google Scholar] [CrossRef]
- Din, N.U.; Javed, K.; Bae, S.; Yi, J. A novel GAN-based network for unmasking of masked face. IEEE Access 2020, 8, 44276–44287. [Google Scholar] [CrossRef]
- Ge, S.; Li, C.; Zhao, S.; Zeng, D. Occluded face recognition in the wild by identity-diversity inpainting. IEEE Trans. Circuits Syst. Video Technol. 2020, 30, 3387–3397. [Google Scholar] [CrossRef]
- Johnson, J.; Alahi, A.; Fei-Fei, L. Perceptual losses for real-time style transfer and super-resolution. In Computer Vision—ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016, Proceedings, Part II 14; Springer: Cham, Switzerland, 2016; pp. 694–711. [Google Scholar]
- Ullah, A.; Jami, A.; Aziz, M.W.; Naeem, F.; Ahmad, S.; Anwar, M.S.; Jing, W. Deep Facial Expression Recognition of facial variations using fusion of feature extraction with classification in end to end model. In Proceedings of the 2019 4th International Conference on Emerging Trends in Engineering, Sciences and Technology (ICEEST), Karachi, Pakistan, 10–11 December 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Ahmad, T.; Ahmad, S.; Rahim, A.; Shah, N. Development of a Novel Deep Convolutional Neural Network Model for Early Detection of Brain Stroke Using CT Scan Images. In Recent Advancements in Multimedia Data Processing and Security: Issues, Challenges, and Techniques; IGI Global: Hershey, PA, USA, 2023; pp. 197–229. [Google Scholar]
- Zhang, T.; Wiliem, A.; Yang, S.; Lovell, B. Tv-gan: Generative adversarial network based thermal to visible face recognition. In Proceedings of the 2018 International Conference on Biometrics (ICB), Gold Coast, QLD, Australia, 20–23 February 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 174–181. [Google Scholar]
- Afzal, S.; Ghani, S.; Hittawe, M.M.; Rashid, S.F.; Knio, O.M.; Hadwiger, M.; Hoteit, I. Visualization and Visual Analytics Approaches for Image and Video Datasets: A Survey. ACM Trans. Interact. Intell. Syst. 2023, 13, 1–41. [Google Scholar] [CrossRef]
- Qian, J.; Yang, J.; Zhang, F.; Lin, Z. Robust low-rank regularized regression for face recognition with occlusion. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Columbus, OH, USA, 23–28 June 2014; pp. 21–26. [Google Scholar]
- Wei, X.; Li, C.T.; Lei, Z.; Yi, D.; Li, S.Z. Dynamic image-to-class warping for occluded face recognition. IEEE Trans. Inf. Forensics Secur. 2014, 9, 2035–2050. [Google Scholar] [CrossRef]
- Xiong, C.; Zhao, X.; Tang, D.; Jayashree, K.; Yan, S.; Kim, T.K. Conditional convolutional neural network for modality-aware face recognition. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 3667–3675. [Google Scholar]
- Yu, J.; Lin, Z.; Yang, J.; Shen, X.; Lu, X.; Huang, T.S. Generative image inpainting with contextual attention. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 5505–5514. [Google Scholar]
- Mathai, J.; Masi, I.; AbdAlmageed, W. Does generative face completion help face recognition? In Proceedings of the 2019 International Conference on Biometrics (ICB), Crete, Greece, 4–7 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–8. [Google Scholar]
- Li, H.; Wang, W.; Yu, C.; Zhang, S. SwapInpaint: Identity-specific face inpainting with identity swapping. IEEE Trans. Circuits Syst. Video Technol. 2021, 32, 4271–4281. [Google Scholar] [CrossRef]
- Li, L.; Bao, J.; Yang, H.; Chen, D.; Wen, F. Faceshifter: Towards high fidelity and occlusion aware face swapping. arXiv 2019, arXiv:1912.13457. [Google Scholar]
- Park, T.; Liu, M.Y.; Wang, T.C.; Zhu, J.Y. Semantic image synthesis with spatially-adaptive normalization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 2337–2346. [Google Scholar]
- Liu, H.; Wan, Z.; Huang, W.; Song, Y.; Han, X.; Liao, J. Pd-gan: Probabilistic diverse gan for image inpainting. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021; pp. 9371–9381. [Google Scholar]
- Li, J.; Li, Z.; Cao, J.; Song, X.; He, R. FaceInpainter: High Fidelity Face Adaptation to Heterogeneous Domains. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021; pp. 5089–5098. [Google Scholar]
- Yeh, R.A.; Chen, C.; Yian Lim, T.; Schwing, A.G.; Hasegawa-Johnson, M.; Do, M.N. Semantic image inpainting with deep generative models. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 5485–5493. [Google Scholar]
- Yi, D.; Lei, Z.; Liao, S.; Li, S.Z. Learning face representation from scratch. arXiv 2014, arXiv:1411.7923. [Google Scholar]
- Huang, G.B.; Mattar, M.; Berg, T.; Learned-Miller, E. Labeled faces in the wild: A database forstudying face recognition in unconstrained environments. In Proceedings of the Workshop on Faces in ‘Real-Life’ Images: Detection, Alignment, and Recognition, Marseille, France, 17–20 October 2008. [Google Scholar]
- Liu, Z.; Luo, P.; Wang, X.; Tang, X. Deep learning face attributes in the wild. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 3730–3738. [Google Scholar]
- Ng, H.W.; Winkler, S. A data-driven approach to cleaning large face datasets. In Proceedings of the 2014 IEEE International Conference on Image Processing (ICIP), Paris, France, 27–30 October 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 343–347. [Google Scholar]
- Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Wang, Z.; Huang, B.; Wang, G.; Yi, P.; Jiang, K. Masked face recognition dataset and application. IEEE Trans. Biom. Behav. Identity Sci. 2023, 5, 298–304. [Google Scholar] [CrossRef]
- Ciampi, L.; Foszner, P.; Messina, N.; Staniszewski, M.; Gennaro, C.; Falchi, F.; Serao, G.; Cogiel, M.; Golba, D.; Szczęsna, A.; et al. Bus violence: An open benchmark for video violence detection on public transport. Sensors 2022, 22, 8345. [Google Scholar] [CrossRef] [PubMed]
- Foszner, P.; Szczęsna, A.; Ciampi, L.; Messina, N.; Cygan, A.; Bizoń, B.; Cogiel, M.; Golba, D.; Macioszek, E.; Staniszewski, M. Crowdsim2: An open synthetic benchmark for object detectors. arXiv 2023, arXiv:2304.05090. [Google Scholar]
Model | SSIM ↑ | PSNR ↑ | FID ↓ | Identity ↑ |
---|---|---|---|---|
PIC | 0.8764 | 26.2543 | 3.6883 | 78.38 |
CA | 0.8902 | 27.0059 | 3.5340 | 81.10 |
CA-cos | 0.8898 | 27.2068 | 3.3807 | 81.76 |
CA-div | 0.8876 | 27.0058 | 3.0075 | 81.46 |
PIC-F (Ours) | 0.8844 | 27.0531 | 2.9969 | 82.76 |
CA-F (Ours) | 0.9091 | 28.8303 | 2.7254 | 85.55 |
Mask | Occ. | PIC | PIC-F (Ours) | CA | CA-cos | CA-div | CA-F (Ours) |
---|---|---|---|---|---|---|---|
R-block (48) | 95.03 | 96.30 | 96.85 | 96.31 | 97.39 | 97.24 | 97.58 |
R-block (64) | 85.28 | 89.97 | 93.08 | 91.92 | 92.19 | 92.53 | 94.13 |
R-part | 91.46 | 92.96 | 95.03 | 95.00 | 93.80 | 95.20 | 96.65 |
Data | Mouth | Left Eye | Right Eye | Nose | Left Face | Right Face | Upper Face | Two Eyes | Lower Face |
---|---|---|---|---|---|---|---|---|---|
ArcFace (GT: 99.30) | |||||||||
Occluded. | 98.58 | 97.40 | 98.16 | 95.03 | 93.34 | 95.86 | 83.76 | 89.20 | 92.03 |
Inpainted | 99.36 | 98.92 | 98.85 | 98.93 | 98.13 | 98.05 | 91.75 | 94.22 | 93.50 |
Improvement | +0.8 | +1.5 | +0.7 | +3.9 | +4.8 | +2.2 | +8.0 | +5.0 | +1.5 |
Dataset | Occlusion | FROM | ArcFace | ID-Inpainter |
---|---|---|---|---|
LFW | R-block(48) | 98.43 | 95.03 | 97.58 |
R-block(64) | 97.15 | 85.28 | 94.13 | |
R-part | 97.53 | 91.46 | 96.65 | |
CFP-FP | R-block(48) | 55.58 | 83.43 | 89.78 |
R-block(64) | 54.12 | 69.45 | 77.56 | |
R-part | 54.06 | 79.26 | 84.40 | |
AgeDB-30 | R-block(48) | 51.85 | 79.90 | 87.87 |
R-block(64) | 51.62 | 67.71 | 77.73 | |
R-part | 51.26 | 74.51 | 84.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Zhang, Y.; Wang, W.; Zhang, S.; Zhang, S. Recovery-Based Occluded Face Recognition by Identity-Guided Inpainting. Sensors 2024, 24, 394. https://doi.org/10.3390/s24020394
Li H, Zhang Y, Wang W, Zhang S, Zhang S. Recovery-Based Occluded Face Recognition by Identity-Guided Inpainting. Sensors. 2024; 24(2):394. https://doi.org/10.3390/s24020394
Chicago/Turabian StyleLi, Honglei, Yifan Zhang, Wenmin Wang, Shenyong Zhang, and Shixiong Zhang. 2024. "Recovery-Based Occluded Face Recognition by Identity-Guided Inpainting" Sensors 24, no. 2: 394. https://doi.org/10.3390/s24020394
APA StyleLi, H., Zhang, Y., Wang, W., Zhang, S., & Zhang, S. (2024). Recovery-Based Occluded Face Recognition by Identity-Guided Inpainting. Sensors, 24(2), 394. https://doi.org/10.3390/s24020394