Temperature Hotspot Detection on Printed Circuit Boards (PCBs) Using Ultrasonic Guided Waves—A Machine Learning Approach
Abstract
:1. Introduction
1.1. Traditional PCB Temperature Monitoring
1.2. PCB Construction
2. Proposed Method
2.1. Ultrasonic Guided Wave Monitoring
2.2. Material Properties
2.3. Dispersion Curves
2.4. Piezoelectric Wafer Active Sensors (PWAS)
2.5. Finite Element Modelling
2.6. Machine Learning
3. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, H.; Xia, M.; Williams, D.; Sun, J.; Yan, H. Digital Twin-Driven Machine Condition Monitoring: A Literature Review. J. Sens. 2022, 2022, 6129995. [Google Scholar] [CrossRef]
- Global Market Insights. Printed Circuit Board (PCB) Market Size By PCB Type, COVID-19 Impact Analysis, Regional Outlook, Growth Potential, Price Trends, Competitive Market Share & Forecast, 2022–2030. Available online: https://www.gminsights.com/industry-analysis/printed-circuit-board-pcb-market (accessed on 4 November 2023).
- Marques, A.C.; Cabrera, J.M.; de Fraga Malfatti, C. Printed circuit boards: A review on the perspective of sustainability. J. Environ. Manag. 2013, 131, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Institute for Interconnecting and Packaging Electronic Circuits. IPC-6012E: Qualification and Performance Specification for Rigid Printed Boards. Available online: https://shop.ipc.org/ipc-6012/ipc-6012-standard-only/Revision-e/english (accessed on 1 November 2023).
- Council, A.E. Automotive Electronics Council. AEC-Q200: Stress Test Qualification for Passive Components. Available online: http://www.aecouncil.com/Documents/AEC_Q200_Rev_D_Base_Document.pdf (accessed on 23 October 2023).
- Kasemsadeh, B.; Heng, A.; Ashara, A. Texas INSTRUMENTS. Temperature Sensors: PCB Guidelines for Surface Mount Devices. Available online: https://www.ti.com/lit/an/snoa967a/snoa967a.pdf (accessed on 27 October 2023).
- Vaseliou, D.; Denton, E. Texas Instruments. Optimizing Remote Temperature Sensor Design. Available online: https://www.ti.com/lit/an/sboa173a/sboa173a.pdf?ts=1663496868261 (accessed on 27 October 2023).
- Neiser, A.; Seehase, D.; Fink, A.; Nowottnick, M. Placement of embedded temperature sensors in a printed circuit board for a manufacturing process. In Proceedings of the 2015 38th International Spring Seminar on Electronics Technology (ISSE), Eger, Hungary, 6–10 May 2015. [Google Scholar] [CrossRef]
- Janeczek, K.; Araźna, A.; Stęplewski, W.; Kościelski, M.; Lipiec, K.; Rafalik, I.; Karolewski, S.; Liszewska, D.; Sitek, A. Investigations of temperature sensor embedded into PCB. Microelectron. Int. 2020, 37, 199–204. [Google Scholar] [CrossRef]
- Bagavathiappan, S.; Lahiri, B.; Saravanan, T.; Philip, J.; Jayakumar, T. Infrared thermography for condition monitoring—A review. Infrared Phys. Technol. 2013, 60, 35–55. [Google Scholar] [CrossRef]
- Sarawade, A.; Charniya, N. Detection of Faulty Integrated Circuits in PCB With Thermal Image Processing. In Proceedings of the 2019 International Conference on Nascent Technologies in Engineering (ICNTE 2019), Navi Mumbai, India, 4–5 January 2019. [Google Scholar]
- Dong, Z.; Chen, L. Image registration in PCB Fault Detection Based on Infrared Thermal Imaging. In Proceedings of the 2019 Chinese Control Conference (CCC), Technical Committee on Control Theory, Chinese Association of Automation, Guangzhou, China, 27–30 July 2019. [Google Scholar] [CrossRef]
- Sousa, F.; Oka, M. PCB temperature measurement for SMT by thermocouple. In Proceedings of the IV Workshop do SIBRATI (Sistema Brasileiro de Tecnologia de Informação), University of São Paulo, São Paulo, Brazil, 14 March 2001. [Google Scholar]
- Lam, T.L. Low-Cost Non-Contact PCBs Temperature Monitoring and Control in a Hot Air Reflow Process Based on Multiple Thermocouples Data Fusion. IEEE Access 2020, 9, 123566–123574. [Google Scholar] [CrossRef]
- Leite, T.M.; Freitas, C.; Magalhães, R.; Silva, A.F.; Alves, J.R.; Viana, J.C.; Delgado, I. Temperature Calibration for Distributed Temperature Sensing of Printed Circuit Boards using Optical Fiber Sensors. IEEE Trans. Components Packag. Manuf. Technol. 2023, 13, 1380–1387. [Google Scholar] [CrossRef]
- Yan, D.; Yang, Y.; Hong, Y.; Liang, T.; Yao, Z.; Chen, X.; Xiong, J. Low-Cost Wireless Temperature Measurement: Design, Manufacture, and Testing of a PCB-Based Wireless Passive Temperature Sensor. Sensors 2018, 18, 532. [Google Scholar] [CrossRef] [PubMed]
- Arun Ramakrishnan, M.G.P. A life consumption monitoring methodology for electronic systems. IEEE Trans. Components Packag. Technol. 2003, 26, 625–634. [Google Scholar] [CrossRef]
- Shaukatullah, H.; Claassen, A. Effect of thermocouple wire size and attachment method on measurement of thermal characteristics of electronic packages. In Proceedings of the Ninteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium, San Jose, CA, USA, 11–13 March 2003. [Google Scholar] [CrossRef]
- He, Q.; Smith, S.; Xiong, G. Thermocouple attachment using epoxy in electronic system thermal measurements—A numerical experiment. In Proceedings of the 2011 27th Annual IEEE Semiconductor Thermal Measurement and Management Symposium, San Jose, CA, USA, 20–24 March 2011. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, H.; Blaabjerg, F.; Zhao, H.; Long, T. Thermal Modeling and Design Optimization of PCB Vias and Pads. IEEE Trans. Power Electron. 2019, 35, 882–900. [Google Scholar] [CrossRef]
- Kalyani, U.H.; Wylie, M. Modal finite element analysis of PCBs and the role of material anisotropy. Vibroeng. Procedia 2020, 32, 75–80. [Google Scholar] [CrossRef]
- Mitra, M.; Gopalakrishnan, S. Guided wave based structural health monitoring: A review. Smart Mater. Struct. 2016, 25, 053001. [Google Scholar] [CrossRef]
- Kang, S.H.; Kang, M.; Kang, L.H. Defect detection on the curved surface of a wind turbine blade using piezoelectric flexible line sensors. Struct. Health Monit. 2022, 21, 1207–1217. [Google Scholar] [CrossRef]
- Shang, L.; Zhang, Z.; Tang, F.; Cao, Q.; Pan, H.; Lin, Z. CNN-LSTM Hybrid Model to Promote Signal Processing of Ultrasonic Guided Lamb Waves for Damage Detection in Metallic Pipelines. Sensors 2023, 23, 7059. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Qiu, L.; Luo, Y.; Ding, R. A stretchable and large-scale guided wave sensor network for aircraft smart skin of structural health monitoring. Struct. Health Monit. 2021, 20, 861–876. [Google Scholar] [CrossRef]
- Ge, H.; Huat, D.C.K.; Koh, C.G.; Dai, G.; Yu, Y. Guided wave–based rail flaw detection technologies: State-of-the-art review. Struct. Health Monit. 2022, 21, 1287–1308. [Google Scholar] [CrossRef]
- Croxford, A.J.; Moll, J.; Wilcox, P.D.; Michaels, J.E. Efficient temperature compensation strategies for guided wave structural health monitoring. Ultrasonics 2010, 50, 517–528. [Google Scholar] [CrossRef] [PubMed]
- Salmanpour, M.; Sharif Khodaei, Z.; Aliabadi, M. Guided wave temperature correction methods in structural health monitoring. J. Intell. Mater. Syst. Struct. 2017, 28, 604–618. [Google Scholar] [CrossRef]
- Jia, Y.; Skliar, M. Ultrasonic Measurements of Temperature Distribution and Heat Fluxes Across Containments of Extreme Environments. In Proceedings of the 2019 IEEE International Ultrasonics Symposium (IUS), Glasgow, UK, 6–9 October 2019. [Google Scholar] [CrossRef]
- Zhang, Y.; Cegla, F. Co-located dual-wave ultrasonics for component thickness and temperature distribution monitoring. Struct. Health Monit. 2023, 22, 1090–1104. [Google Scholar] [CrossRef]
- Lee, Y.J.; Khuri-Yakub, B.; Saraswat, K. Temperature measurement in rapid thermal processing using the acoustic temperature sensor. IEEE Trans. Semicond. Manuf. 1996, 9, 115–121. [Google Scholar] [CrossRef]
- Klimek, D.; Anthonyt, B.; Abbate, A.; Kotidis, P. Laser Ultrasonic Instrumentation for Accurate Temperature Measurement of Silicon Wafers in Rapid Thermal Processing Systems. MRS Online Proc. Libr. 1998, 525, 135. [Google Scholar] [CrossRef]
- Fuchs, P.; Pinter, G.; Tonjec, M. Determination of the orthotropic material properties of individual layers of printed circuit boards. Microelectron. Reliab. 2012, 52, 2723–2730. [Google Scholar] [CrossRef]
- Iliopoulos, A.P.; Steuben, J.C.; Michopoulos, J.G. Determination of anisotropic mechanical properties of G-10 composite via Direct Strain Imaging. Polym. Test. 2016, 50, 64–72. [Google Scholar] [CrossRef]
- Zhang, T.; Choi, K.K.; Rahman, S.; Cho, K.; Baker, P.; Shakil, M.; Heitkamp, D. A hybrid surrogate and pattern search optimization method and application to microelectronics. Struct. Multidiscip. Optim. 2006, 32, 327–345. [Google Scholar] [CrossRef]
- Yang, B.; Xuan, F.Z.; Chen, S.; Zhou, S.; Gao, Y.; Xiao, B. Damage localization and identification in WGF/epoxy composite laminates by using Lamb waves: Experiment and simulation. Compos. Struct. 2017, 165, 138–147. [Google Scholar] [CrossRef]
- Lall, P.; Islam, M.; Singh, N.; Suhling, J.; Darveaux, R. Model for BGA and CSP Reliability in Automotive Underhood Applications. IEEE Trans. Components Packag. Technol. 2004, 27, 585–593. [Google Scholar] [CrossRef]
- Santos, M.; Santos, J.; Amaro, A.; Neto, M. Low velocity impact damage evaluation in fiber glass composite plates using PZT sensors. Compos. Part Eng. 2013, 55, 269–276. [Google Scholar] [CrossRef]
- Fu, C.Y.; Ume, C. Characterizing the temperature dependence of electronic packaging-material properties. JOM 1995, 47, 31–35. [Google Scholar] [CrossRef]
- Hutapea, P.; Grenestedt, J.L. Effect of temperature on elastic properties of woven-glass epoxy composites for printed circuit board applications. J. Electron. Mater. 2003, 32, 221–227. [Google Scholar] [CrossRef]
- Huber, A. The Dispersion Calculator: An Open Source Software for Calculating Dispersion Curves and Mode Shapes of Guided Waves. Available online: https://github.com/ArminHuber/Dispersion-Calculator (accessed on 27 October 2023).
- Sun, Z.; Rocha, B.; Wu, K.T.; Mrad, N. A Methodological Review of Piezoelectric Based Acoustic Wave Generation and Detection Techniques for Structural Health Monitoring. Int. J. Aerosp. Eng. 2013, 2013, 928627. [Google Scholar] [CrossRef]
- Yu, L.; Santoni-Bottai, G.; Xu, B.; Liu, W.; Giurgiutiu, V. Piezoelectric wafer active sensors for in situ ultrasonic-guided wave SHM. Fatigue Fract. Eng. Mater. Struct. 2008, 31, 611–628. [Google Scholar] [CrossRef]
- Kamal, A.; Giurgiutiu, V. Shear horizontal wave excitation and reception with shear horizontal piezoelectric wafer active sensor (SH-PWAS). Smart Mater. Struct. 2014, 23, 085019. [Google Scholar] [CrossRef]
- Raghavan, A.; Cesnik, C.E.S. Modeling of piezoelectric-based Lamb wave generation and sensing for structural health monitoring. In Smart Structures and Materials 2004: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems; Liu, S.C., Ed.; SPIE: Bellingham, WA, USA, 2004. [Google Scholar] [CrossRef]
- Nienwenhuis, J.; Neumann, J.; Greve, D.; Oppenheim, I. Generation and detection of guided waves using PZT wafer transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2005, 52, 2103–2111. [Google Scholar] [CrossRef] [PubMed]
- Giurgiutiu, V. Structural Health Monitoring with Piezoelectric Wafer Active Sensors; Elsevier: Amsterdam, The Netherlands, 2007; pp. 297–362. [Google Scholar] [CrossRef]
- Santoni, G.B.; Yu, L.; Xu, B.; Giurgiutiu, V. Lamb Wave-Mode Tuning of Piezoelectric Wafer Active Sensors for Structural Health Monitoring. J. Vib. Acoust. 2007, 129, 752–762. [Google Scholar] [CrossRef]
- Giurgiutiu, V. Stress, Vibration, and Wave Analysis in Aerospace Composites; Elsevier: Amsterdam, The Netherlands, 2022; Chapter 8; p. 714. [Google Scholar] [CrossRef]
- Mohan, S. Thermal Comparison of FR-4 and Insulated Metal Substrate PCB for GaN Inverter; Technical Report; Texas Instruments: Dallas, TX, USA, 2019. [Google Scholar]
- Navaneeth, I.M.; Poojary, S.; Chandrashekar, A.; Razak, A.; Hasan, N.; Almohana, A.I. Damped Free Vibration Analysis of Woven Glass Fiber-Reinforced Epoxy Composite Laminates. Adv. Mater. Sci. Eng. 2022, 2022, 6980996. [Google Scholar] [CrossRef]
Author | Description | (GPa) | (GPa) | (GPa) | (GPa) | (GPa) | (GPa) | |||
---|---|---|---|---|---|---|---|---|---|---|
Iliopoulos [34] | G-10 | 24.63 | 27.38 | 11.49 | 5.52 | 12.18 | 12.18 | 0.19 | 0.45 | 0.52 |
Fuchs [33] | 106 | 7.71 | 7.71 | 3.18 | 1.11 | 1.08 | 1.08 | 0.11 | 0.36 | 0.36 |
Fuchs [33] | 1080 | 12.17 | 10.28 | 3.77 | 1.33 | 1.28 | 1.27 | 0.09 | 0.36 | 0.37 |
Fuchs [33] | 1501 | 16.66 | 16.39 | 4.85 | 1.76 | 1.66 | 1.66 | 0.07 | 0.36 | 0.36 |
Fuchs [33] | 106 | 13.12 | 13.12 | 9.02 | 3.38 | 3.3 | 3.85 | 0.19 | 0.33 | 0.33 |
Fuchs [33] | 1080 | 18.02 | 16.35 | 10.63 | 4.02 | 3.9 | 4.52 | 0.17 | 0.32 | 0.33 |
Fuchs [33] | 1501 | 25.24 | 21.32 | 13.48 | 5.21 | 5.02 | 5.87 | 0.15 | 0.31 | 0.33 |
Zhang [35] | FR4 (30 °C) | 22.4 | 22.4 | 1.6 | 0.63 | 0.19 | 0.19 | 0.02 | 0.14 | 0.14 |
Yang [36] | WGF/Epoxy | 11.8 | 11.8 | 0.58 | 4.82 | 4.82 | 4.82 | 0.05 | 0.24 | 0.24 |
Lall [37] | PCB | 16.9 | 16.9 | 7.4 | 7.6 | 3.3 | 3.3 | 0.11 | 0.39 | 0.39 |
Santos [38] | Unidirectional | 35.22 | 6.04 | 6.04 | 2.31 | 2.31 | 2.79 | 0.26 | – | – |
Temperature (°C) | (GPa) | (GPa) | (GPa) | (GPa) | (GPa) | (GPa) | % | |||
---|---|---|---|---|---|---|---|---|---|---|
25 | 25.24 | 21.32 | 13.48 | 5.21 | 5.02 | 5.87 | 0.15 | 0.31 | 0.33 | |
40 | 24.67 | 20.84 | 13.18 | 5.09 | 4.91 | 5.74 | 0.15 | 0.31 | 0.33 | 2.24 |
60 | 24.12 | 20.37 | 12.88 | 4.98 | 4.80 | 5.61 | 0.15 | 0.31 | 0.33 | 2.25 |
80 | 23.03 | 19.46 | 12.30 | 4.75 | 4.58 | 5.36 | 0.15 | 0.31 | 0.33 | 4.51 |
100 | 22.23 | 18.77 | 11.87 | 4.59 | 4.42 | 5.17 | 0.15 | 0.31 | 0.33 | 3.50 |
110 | 20.02 | 16.91 | 10.69 | 4.13 | 3.98 | 4.66 | 0.15 | 0.31 | 0.33 | 9.93 |
120 | 16.95 | 14.32 | 9.05 | 3.50 | 3.37 | 3.94 | 0.15 | 0.31 | 0.33 | 15.32 |
130 | 15.87 | 13.41 | 8.48 | 3.28 | 3.16 | 3.69 | 0.15 | 0.31 | 0.33 | 6.38 |
140 | 15.61 | 13.18 | 8.34 | 3.22 | 3.10 | 3.63 | 0.15 | 0.31 | 0.33 | 1.66 |
Material | Density (kg m−3) | Young’s Modulus (GPa) | Poisson’s Ratio | Thermal Conductivity (W m−1 K) | Heat Capacity at Constant Pressure (J m−1 K) |
---|---|---|---|---|---|
PCB | 1900 | Table 2 | Table 2 | 0.25 | 1369 |
Copper | 8960 | 110 | 0.35 | 400 | 385 |
Kovar | 8340 | 139 | 0.34 | 13.8 | 440 |
Thermoset Epoxy | 2000 | 3.1 | 0.25 | 0.3 | 1100 |
PZT-5H | 7500 | – | – | 1.3 | 440 |
Channel | Algorithm | Validation (%) | Test (%) |
---|---|---|---|
Input | KNN (k = 1, Euclidean distance) | 88.1 | 90.0 |
A | Neural network (1 layer, 25 neurons) | 91.7 | 90.0 |
B | Neural network (1 layer, 25 neurons) | 94.0 | 95.0 |
C | Neural network (1 layer, 100 neurons) | 91.7 | 80.0 |
All | Neural network (1 layer, 25 neurons) | 97.6 | 95.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yule, L.; Harris, N.; Hill, M.; Zaghari, B.; Grundy, J. Temperature Hotspot Detection on Printed Circuit Boards (PCBs) Using Ultrasonic Guided Waves—A Machine Learning Approach. Sensors 2024, 24, 1081. https://doi.org/10.3390/s24041081
Yule L, Harris N, Hill M, Zaghari B, Grundy J. Temperature Hotspot Detection on Printed Circuit Boards (PCBs) Using Ultrasonic Guided Waves—A Machine Learning Approach. Sensors. 2024; 24(4):1081. https://doi.org/10.3390/s24041081
Chicago/Turabian StyleYule, Lawrence, Nicholas Harris, Martyn Hill, Bahareh Zaghari, and Joanna Grundy. 2024. "Temperature Hotspot Detection on Printed Circuit Boards (PCBs) Using Ultrasonic Guided Waves—A Machine Learning Approach" Sensors 24, no. 4: 1081. https://doi.org/10.3390/s24041081
APA StyleYule, L., Harris, N., Hill, M., Zaghari, B., & Grundy, J. (2024). Temperature Hotspot Detection on Printed Circuit Boards (PCBs) Using Ultrasonic Guided Waves—A Machine Learning Approach. Sensors, 24(4), 1081. https://doi.org/10.3390/s24041081