Distributed MIMO Measurements for Integrated Communication and Sensing in an Industrial Environment
Abstract
:1. Introduction
1.1. Contributions
1.2. Structure of the Paper
1.3. Notation
2. Signal Model
3. Measurement System
Automatic Gain Control
4. System Calibration
4.1. DC Component
4.2. Carrier Frequency Offset
4.3. Delay Calibration
5. Measurement Campaign
5.1. Environment
5.2. Ground Truth
5.3. Measured Scenarios
6. Analysis and Discussion
6.1. Maximum Ratio Transmission
6.2. Local Scattering Function
6.3. Collinearity
6.4. RMS Delay Spread
6.5. Doppler Spectral Density
6.6. Doppler-Delay Positioning and Tracking
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
1PPS | one pulse per second |
AGC | automatic gain control |
CP | cyclic prefix |
D-MIMO | distributed MIMO |
DAC | digital-to-analog converter |
FPGA | field-programmable gate array |
ICAS | integrated communication and sensing |
IMU | inertial measurement unit |
IoT | internet of things |
JCAS | joint communication and sensing |
lidar | light detection and ranging |
LIS | large intelligent surface |
LO | local oscillator |
LoS | line of sight |
LSF | large-scale fading |
M2M | machine-type communication |
mmWave | millimeter wave |
MIMO | multiple-input multiple-output |
MPC | multipath component |
MRC | maximum ratio combining |
MRT | maximum ratio transmission |
NLoS | non-line of sight |
OFDM | orthogonal frequency-division multiplexing |
OTA | over the air |
probability density function | |
PL | path loss |
Rb | Rubidium |
RF | radio frequency |
RMS | root mean square |
SLAM | simultaneous localization and mapping |
SNR | signal-to-noise ratio |
SSF | small-scale fading |
TDMA | time-division multiple access |
TOA | time of arrival |
UE | user equipment |
USRP | universal software radio peripheral |
Appendix A. Doppler-Delay Bartlett Spectrum
References
- TSGR. TR 138 913-V15.0.0-5G; Study on Scenarios and Requirements for Next Generation Access Technologies; Technical Report; 3GPP, 2018. [Google Scholar]
- Uusitalo, M.A.; Rugeland, P.; Boldi, M.R.; Strinati, E.C.; Demestichas, P.; Ericson, M.; Fettweis, G.P.; Filippou, M.C.; Gati, A.; Hamon, M.H.; et al. 6G Vision, Value, Use Cases and Technologies From European 6G Flagship Project Hexa-X. IEEE Access 2021, 9, 160004–160020. [Google Scholar] [CrossRef]
- der Perre, L.V.; Larsson, E.G.; Tufvesson, F.; Strycker, L.D.; Bjornson, E.; Edfors, O. RadioWeaves for efficient connectivity: Analysis and impact of constraints in actual deployments. In Proceedings of the 2019 53rd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 3–6 November 2019; pp. 15–22. [Google Scholar] [CrossRef]
- Behravan, A.; Baldemair, R.; Parkvall, S.; Dahlman, E.; Yajnanarayana, V.; Bjorkegren, H.; Shrestha, D. Introducing sensing into future wireless communication systems. In Proceedings of the 2022 2nd IEEE International Symposium on Joint Communications & Sensing (JC&S), Seefeld, Austria, 9–10 March 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Willhammar, S.; Flordelis, J.; Van der Perre, L.; Tufvesson, F. Channel Hardening in Massive MIMO-A Measurement Based Analysis. In Proceedings of the 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Kalamata, Greece, 25–28 June 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Willhammar, S.; Van der Perre, L.; Tufvesson, F. Fading in reflective and heavily shadowed industrial environments with large arrays. arXiv 2022, arXiv:2211.09599. [Google Scholar]
- Ngo, H.Q.; Ashikhmin, A.; Yang, H.; Larsson, E.G.; Marzetta, T.L. Cell-Free Massive MIMO Versus Small Cells. IEEE Trans. Wirel. Commun. 2017, 16, 1834–1850. [Google Scholar] [CrossRef]
- Björnson, E.; Sanguinetti, L. Scalable Cell-Free Massive MIMO Systems. IEEE Trans. Commun. 2020, 68, 4247–4261. [Google Scholar] [CrossRef]
- Huang, C.; Hu, S.; Alexandropoulos, G.C.; Zappone, A.; Yuen, C.; Zhang, R.; Renzo, M.D.; Debbah, M. Holographic MIMO Surfaces for 6G Wireless Networks: Opportunities, Challenges, and Trends. IEEE Wirel. Commun. 2020, 27, 118–125. [Google Scholar] [CrossRef]
- Hu, S.; Rusek, F.; Edfors, O. Beyond Massive MIMO: The Potential of Data Transmission with Large Intelligent Surfaces. IEEE Trans. Signal Process. 2018, 66, 2746–2758. [Google Scholar] [CrossRef]
- Oestges, C. Multi-link propagation modeling for beyond next generation wireless. In Proceedings of the 2011 Loughborough Antennas & Propagation Conference, Loughborough, UK, 14–15 November 2011; pp. 1–8. [Google Scholar]
- Wilding, T.; Deutschmann, B.J.B.; Nelson, C.; Li, X.; Tufvesson, F.; Witrisal, K. Propagation Modeling for Physically Large Arrays: Measurements and Multipath Component Visibility. In Proceedings of the 2023 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit), Gothenburg, Sweden, 6–9 June 2023; pp. 1–6. [Google Scholar]
- Fedorov, A.; Zhang, H.; Chen, Y. User Localization Using Random Access Channel Signals in LTE Networks with Massive MIMO. In Proceedings of the 2018 27th International Conference on Computer Communication and Networks (ICCCN), Hangzhou, China, 30 July–2 August 2018; pp. 1–9. [Google Scholar] [CrossRef]
- Matz, G. Doubly underspread non-WSSUS channels: Analysis and estimation of channel statistics. In Proceedings of the 2003 4th IEEE Workshop on Signal Processing Advances in Wireless Communications-SPAWC 2003 (IEEE Cat. No.03EX689), Rome, Italy, 15–18 June 2003. [Google Scholar] [CrossRef]
- Wassie, D.A.; Rodriguez, I.; Berardinelli, G.; Tavares, F.M.; Sørensen, T.B.; Hansen, T.L.; Mogensen, P. An agile multi-node multi-antenna wireless channel sounding system. IEEE Access 2019, 7, 17503–17516. [Google Scholar] [CrossRef]
- Zelenbaba, S.; Löschenbrand, D.; Hofer, M.; Dakić, A.; Rainer, B.; Humer, G.; Zemen, T. A scalable mobile multi-node channel sounder. In Proceedings of the IEEE Wireless Commun. and Networking Conference (WCNC) (WCNC), Seoul, Republic of Korea, 25–28 May 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Stanko, D.; Sommerkorn, G.; Ihlow, A.; Del Galdo, G. Enable Software-Defined Radios for Real-Time MIMO Channel Sounding. In Proceedings of the 2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Glasgow, UK, 17–20 May 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Löschenbrand, D.; Hofer, M.; Bernadó, L.; Humer, G.; Schrenk, B.; Zelenbaba, S.; Zemen, T. Distributed Massive MIMO Channel Measurements in Urban Vehicular Scenario. In Proceedings of the 2019 13th European Conference on Antennas and Propagation (EuCAP), Krakow, Poland, 31 March–5 April 2019; pp. 1–5. [Google Scholar]
- Zelenbaba, S.; Rainer, B.; Hofer, M.; Löschenbrand, D.; Dakić, A.; Bernadó, L.; Zemen, T. Multi-Node Vehicular Wireless Channels: Measurements, Large Vehicle Modeling, and Hardware-in-the-Loop Evaluation. IEEE Access 2021, 9, 112439–112453. [Google Scholar] [CrossRef]
- Guevara, A.P.; Bast, S.D.; Pollin, S. Weave and Conquer: A Measurement-based Analysis of Dense Antenna Deployments. In Proceedings of the ICC 2021—IEEE International Conference on Communications, Montreal, QC, Canada, 14–23 June 2021. [Google Scholar] [CrossRef]
- Löschenbrand, D.; Hofer, M.; Bernadó, L.; Zelenbaba, S.; Zemen, T. Towards Cell-Free Massive MIMO: A Measurement-Based Analysis. IEEE Access 2022, 10, 89232–89247. [Google Scholar] [CrossRef]
- Nelson, C.; Li, X.; Wilding, T.; Deutschmann, B.; Witrisal, K.; Tufvesson, F. Large Intelligent Surface Measurements for Joint Communication and Sensing. In Proceedings of the 2023 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit), Gothenburg, Sweden, 6–9 June 2023; pp. 228–233. [Google Scholar] [CrossRef]
- Sankar, R.S.P.; Deepak, B.; Chepuri, S.P. Joint Communication and Radar Sensing with Reconfigurable Intelligent Surfaces. In Proceedings of the IEEE 22nd Int. Workshop on Sig. Proc. Adv. in Wireless Comm. (SPAWC), Lucca, Italy, 27–30 September 2021; pp. 471–475. [Google Scholar] [CrossRef]
- Zhang, J.A.; Rahman, M.L.; Wu, K.; Huang, X.; Guo, Y.J.; Chen, S.; Yuan, J. Enabling Joint Communication and Radar Sensing in Mobile Networks—A Survey. IEEE Commun. Surv. Tutor. 2022, 24, 306–345. [Google Scholar] [CrossRef]
- Fascista, A.; Deutschmann, B.J.; Keskin, M.F.; Wilding, T.; Coluccia, A.; Witrisal, K.; Leitinger, E.; Seco-Granados, G.; Wymeersch, H. Uplink Joint Positioning and Synchronization in Cell-Free Deployments with Radio Stripes. arXiv 2023, arXiv:2302.03387. [Google Scholar]
- Fouda, A.; Keating, R.; Cha, H.S. Toward cm-Level Accuracy: Carrier Phase Positioning for IIoT in 5G-Advanced NR Networks. In Proceedings of the 2022 IEEE 33rd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Kyoto, Japan, 12–15 September 2022; pp. 782–787. [Google Scholar] [CrossRef]
- Wymeersch, H.; Amiri, R.; Seco-Granados, G. Fundamental Performance Bounds for Carrier Phase Positioning in Cellular Networks. arXiv 2023, arXiv:2306.12133. [Google Scholar]
- Chu, D. Polyphase codes with good periodic correlation properties (Corresp.). IEEE Trans. Inf. Theory 1972, 18, 531–532. [Google Scholar] [CrossRef]
- Sobaihi, K.; Hammoudeh, A.; Scammell, D. Automatic gain control on FPGA for software-defined radios. In Proceedings of the Wireless Telecommunications Symposium 2012, London, UK, 18–20 April 2012; pp. 1–4. [Google Scholar] [CrossRef]
- Tufvesson, F.; Edfors, O.; Faulkner, M. Time and frequency synchronization for OFDM using PN-sequence preambles. In Proceedings of the Gateway to 21st Century Communications Village. VTC 1999-Fall. IEEE VTS 50th Vehicular Technology Conference (Cat. No.99CH36324), Amsterdam, The Netherlands, 19–22 September 1999; Volume 4, pp. 2203–2207. [Google Scholar] [CrossRef]
- Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.; Leibs, J.; Wheeler, R.; Ng, A.Y. ROS: An open-source Robot Operating System. In Proceedings of the ICRA Workshop on Open Source Software, Kobe, Japan, 12–17 May 2009; Volume 3, p. 5. [Google Scholar]
- Xu, W.; Cai, Y.; He, D.; Lin, J.; Zhang, F. FAST-LIO2: Fast Direct LiDAR-Inertial Odometry. IEEE Trans. Robot. 2022, 38, 2053–2073. [Google Scholar] [CrossRef]
- Lo, T. Maximum ratio transmission. IEEE Trans. Commun. 1999, 47, 1458–1461. [Google Scholar] [CrossRef]
- Matz, G. On non-WSSUS wireless fading channels. IEEE Trans. Wirel. Commun. 2005, 4, 2465–2478. [Google Scholar] [CrossRef]
- Bernadó, L. Non-Stationarity in Vehicular Wireless Channels. Ph.D. Thesis, Technische Universität Wien, Vienna, Austria, 2012. [Google Scholar]
- Matz, G. Characterization of non-WSSUS fading dispersive channels. In Proceedings of the IEEE International Conference on Communications, 2003 ICC’03, Anchorage, AK, USA, 11–15 May 2003. [Google Scholar] [CrossRef]
- Slepian, D. Prolate spheroidal wave functions, fourier analysis, and uncertainty—V: The discrete case. Bell Syst. Tech. J. 1978, 57, 1371–1430. [Google Scholar] [CrossRef]
- Czink, N. The Random-Cluster Model: A Stochastic MIMO Channel Model for Broadband Wireless Communication Systems of the 3rd Generation and Beyond. Ph.D. Thesis, Technische Universität Wien, Vienna, Austria, 2007. [Google Scholar]
- Rappaport, T.S.; Seidel, S.Y.; Takamizawa, K. Statistical channel impulse response models for factory and open plan building radio communicate system design. IEEE Trans. Commun. 1991, 39, 794–807. [Google Scholar] [CrossRef]
- Karedal, J.; Wyne, S.; Almers, P.; Tufvesson, F.; Molisch, A.F. UWB channel measurements in an industrial environment. In Proceedings of the IEEE Global Telecommunications Conference, 2004 GLOBECOM’04, Dallas, TX, USA, 29 November–3 December 2004; Volume 6, pp. 3511–3516. [Google Scholar]
- Holfeld, B.; Wieruch, D.; Raschkowski, L.; Wirth, T.; Pallasch, C.; Herfs, W.; Brecher, C. Radio channel characterization at 5.85 GHz for wireless M2M communication of industrial robots. In Proceedings of the 2016 IEEE Wireless Communications and Networking Conference, Doha, Qatar, 3–6 April 2016; pp. 1–7. [Google Scholar] [CrossRef]
- Zhang, Q.; Loh, T.H.; Zhou, D.; Shen, F.; Huang, Z.; Qin, F. A Measurement Campaign of Industrial Environment for Ultra Reliable IIoT Systems. In Proceedings of the 2022 14th International Conference on Wireless Communications and Signal Processing (WCSP), Nanjing, China, 1–3 November 2022; pp. 644–648. [Google Scholar] [CrossRef]
- Schmidt, R. Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 1986, 34, 276–280. [Google Scholar] [CrossRef]
- Paulraj, A.; Roy, R.; Kailath, T. Estimation Of Signal Parameters Via Rotational Invariance Techniques- Esprit. In Proceedings of the Nineteeth Asilomar Conference on Circuits, Systems and Computers, Pacific Grove, CA, USA, 6–8 November 1985; pp. 83–89. [Google Scholar] [CrossRef]
- Bar-Shalom, Y.; Li, X.-R.; Kirubarajan, T. Estimation with Applications to Tracking and Navigation; Wiley: Hoboken, NJ, USA, 2002. [Google Scholar] [CrossRef]
- Krim, H.; Viberg, M. Two decades of array signal processing research: The parametric approach. IEEE Signal Process. Mag. 1996, 13, 67–94. [Google Scholar] [CrossRef]
Hardware | Amount | Description |
---|---|---|
NI-USRP 2953r 40 (National Instruments Corporation, Austin, TX, USA) | 7 | USRP |
SRS FS725 (Stanford Research Systems Inc., Sunnyvale, CA, USA) | 3 | 10 and 1 pulse per second (1PPS) Rb standard |
SRS FS740 (Stanford Research Systems Inc., Sunnyvale, CA, USA) | 1 | 10 and 1PPS with GNSS |
Host computers | 7 | Radio control and logging data |
Hoverboard | 1 | Acting as mobile agent/mobile user (UE) |
Joymax SAF-6571RS3X antennas (Joymax Electronics Co., Ltd., Tao-yuan City, Taiwan) | 13 | 12 as infrastructure and 1 on the UE |
Ouster OSDome (128 lines) (Ouster Inc., San Francisco, CA, USA) | 1 | The light detection and ranging (lidar) used for simultaneous localization and mapping (SLAM) |
Microstrain 3DM-GX5-25 (AHRS) (Microstrain by HBK, Williston, VT, USA) | 1 | 9-DoF IMU for SLAM |
System Errors | Source |
---|---|
Carrier Frequency Offset (CFO) | The oscillators do not provide the same frequency. |
Clock Phase Offset | The PLLs lock on random—and different—phases. |
Sampling Clock frequency Offset | The clock frequency of the ADCs are not the same. |
Sampling Time Offset | The ADCs samples at different times. |
Time Offset | The system does not share the same notion of time. |
Parameter Description | Value | Parameter Description | Value |
---|---|---|---|
Number of antennas, | 13 | Carrier frequency, | |
Frequency spacing, | Bandwidth, | 40 | |
Active subcarriers, | 449 | Number of subcarriers, | 512 |
Signal length, | Signal repetitions, R | 4 | |
Snapshot length, | Repetition rate, | 200 (5 ) | |
Max. resolvable velocity, | 8 / | Transmit power, | 19 |
Measurement length, T | Signal spacing, quite | ||
Digital-to-analog back-off, | 0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nelson, C.; Li, X.; Fedorov, A.; Deutschmann, B.; Tufvesson, F. Distributed MIMO Measurements for Integrated Communication and Sensing in an Industrial Environment. Sensors 2024, 24, 1385. https://doi.org/10.3390/s24051385
Nelson C, Li X, Fedorov A, Deutschmann B, Tufvesson F. Distributed MIMO Measurements for Integrated Communication and Sensing in an Industrial Environment. Sensors. 2024; 24(5):1385. https://doi.org/10.3390/s24051385
Chicago/Turabian StyleNelson, Christian, Xuhong Li, Aleksei Fedorov, Benjamin Deutschmann, and Fredrik Tufvesson. 2024. "Distributed MIMO Measurements for Integrated Communication and Sensing in an Industrial Environment" Sensors 24, no. 5: 1385. https://doi.org/10.3390/s24051385
APA StyleNelson, C., Li, X., Fedorov, A., Deutschmann, B., & Tufvesson, F. (2024). Distributed MIMO Measurements for Integrated Communication and Sensing in an Industrial Environment. Sensors, 24(5), 1385. https://doi.org/10.3390/s24051385