Comparative Analysis of the Diagonal Stride Technique during Roller Skiing and On-Snow Skiing in Youth Cross-Country Skiers †
Abstract
:1. Introduction
2. Methods
2.1. Subjects
2.2. Overall Design
2.3. Data Collection
2.4. Data Reduction
2.5. Statistical Analyses
3. Results
3.1. Cycle Characteristics
3.2. Joint Kinematics of Leg Cycle
3.3. Joint Kinematics of Pole Cycle
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dahl, C.; Sandbakk, O.; Danielsen, J.; Ettema, G. The role of power fluctuations in the preference of diagonal vs. double poling sub-technique at different incline-speed combinations in elite cross-country skiers. Front. Physiol. 2017, 8, 94. [Google Scholar] [CrossRef] [PubMed]
- Sandbakk, O.; Holmberg, H.C. Physiological Capacity and Training Routines of Elite Cross-Country Skiers: Approaching the Upper Limits of Human Endurance. Int. J. Sports Physiol. Perform. 2017, 12, 1003–1011. [Google Scholar] [CrossRef]
- Talsnes, R.K.; Solli, G.S.; Kocbach, J.; Torvik, P.-Ø.; Sandbakk, Ø. Laboratory- and field-based performance-predictions in cross-country skiing and roller-skiing. PLoS ONE 2021, 16, e0256662. [Google Scholar] [CrossRef] [PubMed]
- Street, G.M.; Frederick, E.C. Measurement of skier-generated forces during roller-ski skating. J. Appl. Biomech. 1995, 11, 245–256. [Google Scholar] [CrossRef]
- Watts, P.B.; Hoffman, M.D.; Sulentic, J.E.; Drobish, K.M.; Gibbons, T.P.; Newbury, V.S.; Mittelstadt, S.W.; O’Hagan, K.P.; Clifford, P.S. Physiological responses to specific maximal exercise tests for cross-country skiing. Can. J. Appl. Physiol. 1993, 18, 359–365. [Google Scholar] [CrossRef]
- Bellizzi, M.J.; King, K.A.; Cushman, S.K.; Weyand, P.G. Does the application of ground force set the energetic cost of cross-country skiing? J. Appl. Physiol. 1998, 85, 1736–1743. [Google Scholar] [CrossRef]
- Holmberg, H.C.; Lindinger, S.; Stöggl, T.; Björklund, G.; Müller, E. Contribution of the legs to double-poling performance in elite cross-country skiers. Med. Sci. Sports Exerc. 2006, 38, 1853–1860. [Google Scholar] [CrossRef]
- Holmberg, H.C.; Lindinger, S.; Stöggl, T.; Eitzlmair, E.; Müller, E. Biomechanical analysis of double poling in elite cross-country skiers. Med. Sci. Sports Exerc. 2005, 37, 807. [Google Scholar] [CrossRef]
- Pellegrini, B.; Zoppirolli, C.; Boccia, G.; Bortolan, L.; Schena, F. Cross-country skiing movement factorization to explore relationships between skiing economy and athletes’ skills. Scand. J. Med. Sci. Sports 2018, 28, 565–574. [Google Scholar] [CrossRef]
- Stoggl, T.; Lindinger, S.; Muller, E. Analysis of a simulated sprint competition in classical cross country skiing. Scand. J. Med. Sci. Sports 2007, 17, 362–372. [Google Scholar] [CrossRef]
- Zoppirolli, C.; Hébert-Losier, K.; Holmberg, H.-C.; Pellegrini, B. Biomechanical determinants of cross-country skiing performance: A systematic review. J. Sports Sci. 2020, 38, 2127–2148. [Google Scholar] [CrossRef]
- Sandbakk, O.; Ettema, G.; Leirdal, S.; Jakobsen, V.; Holmberg, H.C. Analysis of a sprint ski race and associated laboratory determinants of world-class performance. Eur. J. Appl. Physiol. 2011, 111, 947–957. [Google Scholar] [CrossRef]
- Bolger, C.M.; Bessone, V.; Federolf, P.; Ettema, G.; Sandbakk, Ø. The influence of increased distal loading on metabolic cost, efficiency, and kinematics of roller ski skating. PLoS ONE 2018, 13, e0197592. [Google Scholar] [CrossRef] [PubMed]
- Buhl, D.; Fauve, M.; Rhyner, H. The kinetic friction of polyethylen on snow: The influence of the snow temperature and the load. Cold Reg. Sci. Technol. 2001, 33, 133–140. [Google Scholar] [CrossRef]
- Colbeck, S.C. A Review of the Processes That Control Snow Friction. 1992. Available online: https://docplayer.net/85184253-A-review-of-the-processes-that-control-snow-friction-samuel-c-colbeck-april-pi-ln-1t1-2-l-d-j-l-f-j-1-j.html (accessed on 23 September 2023).
- Saibene, F.; Cortili, G.; Roi, G.S.; Colombini, A. The energy cost of level cross-country skiing and the effect of the friction of the ski. Eur. J. Appl. Physiol. Occup. Physiol. 2004, 58, 791–795. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, M.D.; Clifford, P.S.; Snyder, A.C.; O’Hagan, K.P.; Mittelstadt, S.W.; Roberts, M.M.; Drummond, H.A.; Gaskill, S.E. Physiological effects of technique and rolling resistance in uphill roller skiing. Med. Sci. Sports Exerc. 1998, 30, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Millet, G.Y.; Hoffman, M.D.; Candau, R.B.; Buckwalter, J.B.; Clifford, P.S. Effect of rolling resistance on poling forces and metabolic demands of roller skiing. Med. Sci. Sports Exerc. 1998, 30, 755–762. [Google Scholar] [CrossRef]
- Ainegren, M.; Carlsson, P.; Tinnsten, M. Classical style constructed roller skis and grip functionality. Procedia Eng. 2011, 13, 4–9. [Google Scholar] [CrossRef]
- Ainegren, M.; Carlsson, P.; Tinnsten, M. An experimental study to compare the grip of classical style roller skis with on-snow skiing. Sports Eng. 2013, 16, 115–122. [Google Scholar] [CrossRef]
- Levy, M.; Erickson, L.; Ethen, N.; Ranta, E. Peak force and propulsive impulse comparisons with the diagonal stride during on-snow and roller-skiing. In Proceedings of the ISB 2011, Brussels, Belgium, 3–7 July 2011. [Google Scholar]
- Myklebust, H.; Losnegard, T.; Hallén, J. Kinematic differences between uphill roller skiing and on-snow skiing using the V2 skating technique. Eur. J. Appl. Physiol. 2022, 122, 2355–2365. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.A. Biomechanics of cross country skiing. In Cross Country Skiing. Handbook of Sports Medicine; Rusko, H., Ed.; Wiley: New York, NY, USA, 2003; pp. 32–61. [Google Scholar]
- Løkkeborg, J.; Ettema, G. The role of incline, speed and work rate on the choice of technique in classical roller skiing. PLoS ONE 2020, 15, e0236102. [Google Scholar] [CrossRef]
- Kehler, A.L.; Hajkova, E.; Holmberg, H.C.; Kram, R. Forces and mechanical energy fluctuations during diagonal stride roller skiing; running on wheels? J. Exp. Biol. 2014, 217, 3779–3785. [Google Scholar] [CrossRef]
- Lindinger, S.J.; Göpfert, C.; Stöggl, T.; Müller, E.; Holmberg, H.-C. Biomechanical pole and leg characteristics during uphill diagonal roller skiing. Sports Biomech. 2009, 8, 318–333. [Google Scholar] [CrossRef] [PubMed]
- Sandbakk, O.; Losnegard, T.; Skattebo, O.; Hegge, A.M.; Tonnessen, E.; Kocbach, J. Analysis of Classical Time-Trial Performance and Technique-Specific Physiological Determinants in Elite Female Cross-Country Skiers. Front. Physiol. 2016, 7, 326. [Google Scholar] [CrossRef] [PubMed]
- Bolger, C.M.; Kocbach, J.; Hegge, A.M.; Sandbakk, O. Speed and heart-rate profiles in skating and classical cross-country skiing competitions. Int. J. Sports Physiol. Perform. 2015, 10, 873–880. [Google Scholar] [CrossRef] [PubMed]
- Bilodeau, B.; Rundell, K.W.; Roy, B.; Boulay, M.R. Kinematics of cross-country ski racing. Med. Sci. Sports Exerc. 1996, 28, 128–138. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, M.D.; Clifford, P.S.; Watts, P.B.; Drobish, K.M.; Gibbons, T.P.; Newbury, V.S.; Sulentic, J.E.; Mittelstadt, S.W.; O’Hagan, K.P. Physiological comparison of uphill roller skiing: Diagonal stride versus double pole. Med. Sci. Sports Exerc. 1994, 26, 1284. [Google Scholar] [CrossRef]
- Liu, H.; Li, H.; Qu, Y.; He, X.; Zhou, Z.; Yu, B. Validity of an artificial intelligence system for markerless human movement automatic capture. J. Beijing Sport Univ. 2021, 44, 125–133. [Google Scholar]
- Zhang, M.; Qu, Y.; Cui, J.; Liu, H. Application of artificial intelligence system for motion capture in speed skating. Sci. Technol. Eng. 2022, 22, 5674–5680. [Google Scholar]
- Hay, J.G. Biomechanics of Sports Techniques; Prentice-Hall: Englewood Cliffs, NJ, USA, 1993. [Google Scholar]
- Abdel-Aziz, Y.I.; Karara, H.M.; Hauck, M. Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry. Photogramm. Eng. Remote Sens. 2015, 81, 103–107. [Google Scholar] [CrossRef]
- Kadaba, M.; Ramakrishnan, H.; Wootten, M.; Gainey, J.; Gorton, G.; Cochran, G. Repeatability of kinematic, kinetic, and electromyographic data in normal adult gait. J. Orthop. Res. 1989, 7, 849–860. [Google Scholar] [CrossRef]
- Yu, B.; Kienbacher, T.; Growney, E.S.; Johnson, M.E.; An, K.N. Reproducibility of the kinematics and kinetics of the lower extremity during normal stair-climbing. J. Orthop. Res. 1997, 15, 348–352. [Google Scholar] [CrossRef]
- Zhao, S.; Linnamo, V.; Ruotsalainen, K.; Lindinger, S.; Kananen, T.; Koponen, P.; Ohtonen, O. Validation of 2D Force Measurement Roller Ski and Practical Application. Sensors 2022, 22, 9856. [Google Scholar] [CrossRef]
- Zhao, S.; Ohtonen, O.; Ruotsalainen, K.; Kettunen, L.; Lindinger, S.; Göpfert, C.; Linnamo, V. Propulsion Calculated by Force and Displacement of Center of Mass in Treadmill Cross-Country Skiing. Sensors 2022, 22, 2777. [Google Scholar] [CrossRef]
- Li, H.; Tong, L.; Zhou, X.; Qu, F. Comparison of Kinematic Data of Lower Extremity between Image Analysis and Real Time Motion Capture System. J. Beijing Sport Univ. 2011, 34, 126–128. [Google Scholar]
- Pellegrini, B.; Bortolan, L.; Schena, F. Poling force analysis in diagonal stride at different grades in cross country skiers. Scand. J. Med. Sci. Sports 2011, 21, 589–597. [Google Scholar] [CrossRef] [PubMed]
- Millet, G.Y.; Hoffman, M.D.; Candau, R.B.; Clifford, P.S. Poling forces during roller skiing: Effects of grade. Med. Sci. Sports Exerc. 1998, 30, 1637–1644. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Lindinger, S.; Ohtonen, O.; Linnamo, V. Contribution and effectiveness of ski and pole forces in selected roller skiing techniques on treadmill at moderate inclines. Front. Sports Act. Living 2023, 5, 948919. [Google Scholar] [CrossRef]
- Vähäsöyrinki, P.; Komi, P.V.; Seppälä, S.; Ishikawa, M.; Kolehmainen, V.; Salmi, J.A.; Linnamo, V. Effect of skiing speed on ski and pole forces in cross-country skiing. Med. Sci. Sports Exerc. 2008, 40, 1111–1116. [Google Scholar] [CrossRef] [PubMed]
ROM | Stance Phase | Swing Phase | ||||
---|---|---|---|---|---|---|
Roller Skiing | On-Snow Skiing | p-Value | Roller Skiing | On-Snow Skiing | p-Value | |
Hip flexion–extension angle (°) | 56.9 ± 10.6 | 67.7 ± 5.2 | 0.180 | 51.7 ± 12.0 | 64.3 ± 8.6 | 0.240 |
Hip adduction–abduction angle (°) | 16.9 ± 2.4 | 15.6 ± 3.4 | 0.589 | 11.7 ± 3.0 | 78.3 ± 16.4 | 0.699 |
Knee flexion–extension angle (°) | 27.8 ± 6.0 | 36.2 ± 10.3 | 0.132 | 43.5 ± 19.5 | 57.7 ± 16.4 | 0.589 |
Body anteversion angle (°) | 4.8 ± 1.6 | 5.1 ± 1.1 | 0.310 | 3.6 ± 1.1 | 4.6 ± 0.9 | 0.394 |
Trunk anteversion angle (°) | 8.8 ± 5.8 | 7.3 ± 2.3 | 0.937 | 8.9 ± 4.7 | 7.4 ± 1.1 | 0.485 |
Calf anteversion angle (°) | 55.8 ± 9.0 | 64.6 ± 9.9 | 0.093 | 47.2 ± 24.5 | 48.2 ± 32.0 | 0.818 |
Angle | Ski/Roller Ski Touchdown | Ski/Roller Ski Take-Off | ||||
---|---|---|---|---|---|---|
Roller Skiing | On-Snow Skiing | p-Value | Roller Skiing | On-Snow Skiing | p-Value | |
Hip flexion–extension angle (°) | 42.4 ± 8.6 | 35.4 ± 16.0 | 0.485 | −4.4 ± 9.9 | −10.0 ± 5.4 | 0.589 |
Hip adduction–abduction angle (°) | −8.8 ± 4.0 | −4.5 ± 5.1 | 0.132 | −3.1 ± 3.0 | −6.1 ± 3.4 | 0.180 |
Knee flexion–extension angle (°) | 134.4 ± 10.0 | 119.8 ± 8.7 | 0.041 * | 149.4 ± 6.2 | 148.4 ± 3.3 | 0.699 |
Body anteversion angle (°) | 6.4 ± 2.3 | 15.1 ± 2.5 | 0.002 * | 7.3 ± 2.4 | 13.4 ± 3.2 | 0.009 * |
Trunk anteversion angle (°) | 10.6 ± 5.8 | 12.8 ± 4.9 | 0.310 | 8.1 ± 1.4 | 12.7 ± 2.6 | 0.009 * |
Calf anteversion angle (°) | 11.8 ± 16.6 | 37.5 ± 14.6 | 0.041 * | 42.1 ± 5.8 | 51.3 ± 2.4 | 0.009 * |
ROM | Poling Phase | Recovery Phase | ||||
---|---|---|---|---|---|---|
Roller Skiing | On-Snow Skiing | p-Value | Roller Skiing | On-Snow Skiing | p-Value | |
Shoulder flexion–extension angle (°) | 43.9 ± 5.8 | 53.9 ± 12.6 | 0.240 | 53.2 ± 7.3 | 64.3 ± 8.6 | 0.093 |
Shoulder adduction–abduction angle (°) | 57.0 ± 11.3 | 67.4 ± 20.8 | 0.699 | 65.6 ± 22.4 | 78.3 ± 16.4 | 0.394 |
Elbow flexion–extension angle (°) | 55.9 ± 12.3 | 58.7 ± 15.8 | 0.937 | 57.3 ± 17.1 | 57.7 ± 16.4 | 0.937 |
Body anteversion angle (°) | 4.3 ± 1.0 | 5.5 ± 2.0 | 0.485 | 4.7 ± 1.6 | 4.6 ± 0.9 | 0.699 |
Trunk anteversion angle (°) | 8.4 ± 4.0 | 7.2 ± 1.5 | >0.999 | 8.2 ± 4.6 | 7.4 ± 1.1 | 0.589 |
Pole inclination (°) | 29.4 ± 5.0 | 32.8 ± 6.5 | 0.394 | — | — | — |
Angle | Pole Touchdown | Pole Take-Off | ||||
---|---|---|---|---|---|---|
Roller Skiing | On-Snow Skiing | p-Value | Roller Skiing | On-Snow Skiing | p-Value | |
Shoulder flexion–extension angle (°) | 30.7 ± 10.6 | 30.4 ± 20.1 | 0.937 | −11.0 ± 7.7 | −20.5 ± 6.1 | 0.065 |
Shoulder adduction–abduction angle (°) | 35.8 ± 17.4 | 31.3 ± 19.7 | 0.818 | −15.9 ± 12.2 | −32.4 ± 8.5 | 0.041 * |
Elbow flexion–extension angle (°) | 77.2 ± 5.8 | 78.7 ± 12.1 | 0.818 | 127.9 ± 13.2 | 134.7 ± 16.2 | 0.485 |
Body anteversion angle (°) | 6.9 ± 2.0 | 13.0 ± 3.2 | 0.015 * | 7.1 ± 2.2 | 12.9 ± 2.5 | 0.009 * |
Trunk anteversion angle (°) | 7.8 ± 2.6 | 12.6 ± 3.7 | 0.026 * | 7 ± 2.3 | 11.4 ± 4.7 | 0.065 |
Pole inclination (°) | 12.9 ± 6.3 | 34.1 ± 17.5 | 0.015 * | 40.4 ± 4.3 | 43.9 ± 8.4 | 0.699 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, M.; Zhao, S.; Long, T.; Song, Q.; Holmberg, H.-C.; Liu, H. Comparative Analysis of the Diagonal Stride Technique during Roller Skiing and On-Snow Skiing in Youth Cross-Country Skiers. Sensors 2024, 24, 1412. https://doi.org/10.3390/s24051412
Ma M, Zhao S, Long T, Song Q, Holmberg H-C, Liu H. Comparative Analysis of the Diagonal Stride Technique during Roller Skiing and On-Snow Skiing in Youth Cross-Country Skiers. Sensors. 2024; 24(5):1412. https://doi.org/10.3390/s24051412
Chicago/Turabian StyleMa, Mujia, Shuang Zhao, Ting Long, Qingquan Song, Hans-Christer Holmberg, and Hui Liu. 2024. "Comparative Analysis of the Diagonal Stride Technique during Roller Skiing and On-Snow Skiing in Youth Cross-Country Skiers" Sensors 24, no. 5: 1412. https://doi.org/10.3390/s24051412
APA StyleMa, M., Zhao, S., Long, T., Song, Q., Holmberg, H.-C., & Liu, H. (2024). Comparative Analysis of the Diagonal Stride Technique during Roller Skiing and On-Snow Skiing in Youth Cross-Country Skiers. Sensors, 24(5), 1412. https://doi.org/10.3390/s24051412