Multipoint Energy-Balanced Laser-Ultrasonic Transducer Based on a Thin-Cladding Fiber
Abstract
:1. Introduction
2. Simulation and Fabrication
2.1. SMTC Structure
2.2. Transmission Mechanism within the SMTC Structure
2.3. Fabrication of SMTC Structure
2.4. The Multipoint Ultrasonic Excitation System
3. Experiment and Discussion
3.1. Experiment Setup
3.2. Characterization of the Pulse Laser Light Source
3.3. Fabrication of Photoacoustic Material
3.4. Results
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aranguren, G.; Monje, P.M.; Cokonaj, V.; Barrera, E.; Ruiz, M. Ultrasonic wave-based structural health monitoring embedded instrument. Rev. Sci. Instrum. 2013, 84, 125106. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Yu, Z.; Wang, A. Simultaneous measurement of temperature and relative humidity based on FBG and FP interferometer. IEEE Photonics Technol. Lett. 2018, 30, 833–836. [Google Scholar]
- Chen, S.-L. Review of laser-generated ultrasound transmitters and their applications to all-optical ultrasound transducers and imaging. Appl. Sci. 2016, 7, 25. [Google Scholar] [CrossRef]
- Tian, Y.; Wu, N.; Sun, K.; Zou, X.; Wang, X. Numerical simulation of fiber-optic photoacoustic generator using nanocomposite material. J. Comput. Acoust. 2013, 21, 1350002. [Google Scholar] [CrossRef]
- Belsito, L.; Vannacci, E.; Mancarella, F.; Ferri, M.; Veronese, G.P.; Biagi, E.; Roncaglia, A. Fabrication of fiber-optic broadband ultrasound emitters by micro-opto-mechanical technology. J. Micromechanics Microengineering 2014, 24, 085003. [Google Scholar] [CrossRef]
- Colchester, R.J.; Zhang, E.Z.; Mosse, C.A.; Breard, P.C. Broadband miniature optical ultrasound probe for high resolution vascular tissue imaging. Biomed. Opt. Express 2015, 6, 1502–1511. [Google Scholar] [CrossRef] [PubMed]
- Biagi, E.; Brenci, M.; Fontani, S.; Masotti, L.; Pieraccini, M. Photoacoustic generation: Optical fiber ultrasonic sources for nondestructive evaluation and clinical diagnosis. Opt. Rev. 1997, 4, 481–483. [Google Scholar] [CrossRef]
- Biagi, E.; Margheri, F.; Menichelli, D. Efficient laser-ultrasound generation by using heavily absorbing films as targets. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2001, 48, 1669–1680. [Google Scholar] [CrossRef]
- Buma, T.; Spisar, M.; O’Donnell, M. High-frequency ultrasound array element using thermoelastic expansion in an elastomeric film. Appl. Phys. Lett. 2001, 79, 548–550. [Google Scholar] [CrossRef]
- Zou, X.; Wu, N.; Tian, Y.; Wang, X. Broadband miniature fiber optic ultrasound generator. Opt. Express 2014, 22, 18119–18127. [Google Scholar] [CrossRef]
- Wu, N.; Tian, Y.; Zou, X.; Silva, V.; Chery, A.; Wang, X. High efficiency optical ultrasound generation using one-pot synthesized polydimethylsiloxane-gold nanoparticle nanocomposite. J. Opt. Soc. Am. B-Opt. Phys. 2012, 29, 2016–2020. [Google Scholar] [CrossRef]
- Hou, Y.; Kim, J.-S.; Ashkenazi, S.; O’Donnell, M.; Guo, L.J. Optical generation of high frequency ultrasound using two-dimensional gold nanostructure. Appl. Phys. Lett. 2006, 89, 093901. [Google Scholar] [CrossRef]
- Thompson, D.; Nagel, J.R.; Gasteau, D.B.; Manohar, S. Laser-induced ultrasound transmitters for large-volume ultrasound tomography. Photoacoustics 2022, 25, 100312. [Google Scholar] [CrossRef]
- Hou, Y.; Ashkenazi, S.; Huang, S.-W.; O’Donnell, M. Improvements in optical generation of high-frequency ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2007, 54, 682–686. [Google Scholar] [CrossRef] [PubMed]
- Moon, C.; Fan, X.; Ha, K.; Kim, D. Generation of planar blast waves using carbon nanotubes-poly-dimethylsiloxane optoacoustic transducer. AIP Adv. 2017, 7, 015107. [Google Scholar] [CrossRef]
- Colchester, R.J.; Mosse, C.A.; Bhachu, D.S.; Bear, J.C.; Carmalt, C.J.; Parkin, I.P.; Treeby, B.E.; Papakonstantinou, I.; Desjardins, A.E. Laser-generated ultrasound with optical fibers using functionalised carbon nanotube composite coatings. Appl. Phys. Lett. 2014, 7, 173502. [Google Scholar] [CrossRef]
- Shi, L.L.; Jiang, Y.; Zhang, Y.; Lan, L.; Huang, Y.M.; Cheng, J.X.; Yang, C. A fiber optoacoustic emitter with controlled ultrasound frequency for cell membrane sonoporation at submillimeter spatial resolution. Photoacoustics 2020, 20, 100208. [Google Scholar] [CrossRef] [PubMed]
- Poduval, R.K.; Noimark, S.; Colchester, R.J.; Macdonald, T.J.; Parkin, I.P.; Desjardins, A.E.; Papakonstantinou, I. Optical fiber ultrasound transmitter with electrospun carbon nanotube-polymer composite. Appl. Phys. Lett. 2017, 110, 223701. [Google Scholar] [CrossRef]
- Won Baac, H.; Ok, J.G.; Park, H.J.; Ling, T.; Chen, S.L.; Hart, A.J.; Guo, L.J. Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation. Appl. Phys. Lett. 2010, 97, 234104. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Chang, W.-Y.; Kim, J.; Li, S.; Huang, S.; Jiang, X. A Novel Laser Ultrasound Transducer Using Candle Soot Carbon Nanoparticles. IEEE Trans. Nanotechnol. 2016, 15, 395–450. [Google Scholar] [CrossRef]
- Chang, W.Y.; Zhang, X.A.; Kim, J.; Huang, W.B.; Bagal, A.; Chang, C.H.; Fang, T.G.; Wu, H.F.; Jiang, X.N. Evaluation of Photoacoustic Transduction Efficiency of Candle Soot Nanocomposite Transmitters. IEEE Trans. Nanotechnol. 2018, 17, 985–993. [Google Scholar] [CrossRef]
- Ding, X.X.; Li, W.; Xiong, J.T.; Shen, Y.F.; Huang, W.B. A flexible laser ultrasound transducer for Lamb wave based structural health monitoring. Smart Mater. Struct. 2020, 29, 075006. [Google Scholar] [CrossRef]
- Chang, W.Y.; Huang, W.B.; Kim, J.; Li, S.B.; Jiang, X.N. Candle soot nanoparticles-polydimethylsiloxane composites for laser ultrasound transducers. Appl. Phys. Lett. 2015, 107, 161903. [Google Scholar] [CrossRef]
- Bodian, S.; Colchester, R.J.; Macdonald, T.J.; Ambroz, F.; Briceno de Gutierrez, M.; Mathews, S.J.; Fong, Y.M.M.; Maneas, E.; Welsby, K.A.; Gordon, R.J.; et al. CuInS2 quantum dot and polydimethylsiloxane nanocomposites for all-optical ultrasound and photoacoustic imaging. Adv. Mater. Interfaces 2021, 8, 2100518. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.; Guo, L.J. Highly Efficient Photoacoustic Conversion by Facilitated Heat Transfer in Ultrathin Metal Film Sandwiched by Polymer Layers. Adv. Opt. Mater. 2017, 5, 1600421. [Google Scholar] [CrossRef]
- Kochergin, V.; Flanagan, K.; Shi, Z.; Pedrick, M.; Baldwin, B.; Plaisted, T.; Yellampalle, B.; Kochergin, E.; Vicari, L. All-fiber optic ultrasonic structural health monitoring system. In Proceedings of the Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2009, San Diego, CA, USA, 8–12 March 2009; p. 72923D. [Google Scholar]
- Zhou, J.; Wu, N.; Bi, S.; Wang, X. Ultrasound generation from an optical fiber sidewall. In Proceedings of the Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2016, Las Vegas, NV, USA, 21–24 May 2016; p. 98031U. [Google Scholar]
- Tian, J.; Zhang, Q.; Han, M. Distributed fiber-optic laser-ultrasound generation based on ghost-mode of tilted fiber Bragg gratings. Opt. Express 2013, 21, 6109–6114. [Google Scholar] [CrossRef] [PubMed]
- Ji, S.; Tian, J.; Dong, X.; Sun, Y.; Yao, Y. Multipoint All-Fiber Laser-Ultrasound Transducer Using Cascaded Fiber Waist-Enlarged Fusion Tapers. J. Light. Technol. 2018, 36, 3284–3292. [Google Scholar] [CrossRef]
- Dong, X.; Gao, S.; Tian, J.; Yao, Y. Multipoint fiber-optic laser-ultrasound generation along a fiber based on the core-offset splicing of fibers. Photonics Res. 2017, 5, 287–292. [Google Scholar] [CrossRef]
- Li, Y.; Yin, S.; Tian, J.; Ji, S.; Yao, Y. Multipoint and energy-equal fiber optic laser ultrasonic transducer based on peanut-shaped structures. IEEE Sens. J. 2020, 20, 5976–5983. [Google Scholar] [CrossRef]
- Li, Y.; Tian, J.; Ji, S.; Zhou, C.; Sun, Y.; Yao, Y. Fiber-optic multipoint laser-ultrasonic excitation transducer using coreless fibers. Opt. Express 2019, 27, 6116–6128. [Google Scholar] [CrossRef]
- Tian, J.; Dong, X.; Gao, S.; Yao, Y. Multipoint fiber-optic laser-ultrasonic transducer based on fiber core opened tapers. Opt. Exp. 2017, 25, 29737–29745. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Dai, X.; Fan, T.; Song, Y.; Tao, T.; Wang, K.; Xu, Z.; Zhang, J.; Bai, X.; Lu, P. Self-Cleaning Flexible Infrared Nanosensor Based on Carbon Nanoparticles. ACS Nano 2011, 5, 4007–4013. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, B.-Y.; Kim, J.; Zhu, J.; Li, S.; Zhang, X.; Jiang, X. A laser ultrasound transducer using carbon nanofibers–polydimethylsiloxane composite thin film. Appl. Phys. Lett. 2015, 106, 021902. [Google Scholar] [CrossRef]
- Lu, S.; Li, C.; Liu, R.; Liang, T.; Song, X. High-consistent optical fiber photoacoustic generator with carbon nanoparticles-PDMS composite. Opt. Lasers Eng. 2023, 169, 107731. [Google Scholar] [CrossRef]
- Mulay, M.R.; Chauhan, A.; Patel, S.; Balakrishnan, V.; Halder, A.; Vaish, R. Candle soot: Journey from a pollutant to a functional material. Carbon Appl. Phys. Lett. 2019, 144, 684–712. [Google Scholar] [CrossRef]
- Wu, Y.; Fu, X.; Li, J.; Zhang, P.; Wang, H.; Li, Z. All-fiber photoacoustic system for large-area nondestructive testing. Struct. Health Monit. 2023; in press. [Google Scholar] [CrossRef]
- Zhang, K.; Chen, D.; Wang, S.; Yao, Z.; Feng, W.; Guo, S. Flexible and high-intensity photoacoustic transducer with PDMS/CSNPs nanocomposite for inspecting thick structure using laser ultrasonics. Compos. Sci. Technol. 2022, 228, 109667. [Google Scholar] [CrossRef]
Transducer Units | Theoretical Value (%) | Measured Value (%) | Relative Error (%) |
---|---|---|---|
Graphite–epoxy resin 1 | 33.333 | 33.229 | −0.096 |
Graphite–epoxy resin 2 | 33.333 | 33.639 | −0.005 |
Graphite–epoxy resin 3 | 33.333 | 29.768 | 3.474 |
CSNP–PDMS 1 | 33.333 | 33.192 | −0.159 |
CSNP–PDMS 2 | 33.333 | 33.699 | −0.016 |
CSNP–PDMS 3 | 33.333 | 29.753 | 3.535 |
Transducer Units | Coupling Efficiency (%) | Peak-to-Peak Amplitude (V) | Pulse Width (μs) | Peak-to-Peak Power (dB) | −3 dB Bandwidth (MHz) |
---|---|---|---|---|---|
Graphite–epoxy resin 1 | 33.229 | 0.92864 | 1.8544 | 26.6610 | 8.5139 |
Graphite–epoxy resin 2 | 50.379 | 0.90951 | 1.9776 | 25.9005 | 7.9731 |
Graphite–epoxy resin 3 | 89.847 | 0.86834 | 1.9800 | 28.4425 | 8.6682 |
CSNP–PDMS 1 | 33.192 | 1.67650 | 5.3418 | −16.2182 | 12.3013 |
CSNP–PDMS 2 | 50.443 | 1.65467 | 5.7364 | −12.7076 | 11.6217 |
CSNP–PDMS 3 | 89.864 | 1.63344 | 5.1710 | −15.4547 | 11.2105 |
Transducer Units | WET [29] | COS [30] | PNS [31] | SCS [32] | COT [33] | SMTC (Graphite–Epoxy Resin) | SMTC (CSNP–PDMS) |
---|---|---|---|---|---|---|---|
Laser pulse energy at each unit (mJ) | 0.010 | 0.008 | 0.333 | 0.008 | 0.010 | 0.004 | 0.004 |
Average peak-to-peak amplitude (V) | 0.54575 | 0.4995 | 0.5480 | 0.51260 | 0.49025 | 0.9022 | 1.6549 |
Energy conversion efficiency (mV/J) | 54.575 | 62.4375 | 1.6455 | 64.075 | 49.025 | 225.55 | 413.725 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, S.; Zhou, C.; Tian, J.; Yao, Y. Multipoint Energy-Balanced Laser-Ultrasonic Transducer Based on a Thin-Cladding Fiber. Sensors 2024, 24, 1491. https://doi.org/10.3390/s24051491
Zhou S, Zhou C, Tian J, Yao Y. Multipoint Energy-Balanced Laser-Ultrasonic Transducer Based on a Thin-Cladding Fiber. Sensors. 2024; 24(5):1491. https://doi.org/10.3390/s24051491
Chicago/Turabian StyleZhou, Shengnan, Cheng Zhou, Jiajun Tian, and Yong Yao. 2024. "Multipoint Energy-Balanced Laser-Ultrasonic Transducer Based on a Thin-Cladding Fiber" Sensors 24, no. 5: 1491. https://doi.org/10.3390/s24051491