A Review of Machine Learning Approaches for the Personalization of Amplification in Hearing Aids
Abstract
:1. Introduction
2. Overview of Hearing Aids and Their Amplification Function
3. Methods: Personalization of Amplification in Hearing Aids
3.1. Paired Comparison Method
3.2. Categorization According to Training Procedure
3.2.1. Offline Training
3.2.2. Online Training
3.3. Overview Comparison of Personalization Studies
3.4. Studies Related to Environmental Context
4. Research Challenges and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dell’Antônia, S.F.; Ikino, C.M.Y.; Filho, W.C. Degree of satisfaction of patients fitted with hearing aids at a high complexity service. Braz. J. Otorhinolaryngol. 2013, 79, 555–563. [Google Scholar] [CrossRef] [PubMed]
- Hearing and Quality of Life in Older Adults. Available online: https://ahassavannah.com/hearing-and-quality-of-life-in-older-adults/ (accessed on 9 December 2023).
- Dalton, D.S.; Cruickshanks, K.J.; Klein, B.E.K.; Klein, R.; Wiley, T.L.; Nondahl, D.M. The impact of hearing loss on quality of life in older adults. Gerontologist 2003, 43, 661–668. [Google Scholar] [CrossRef] [PubMed]
- Thomson, R.S.; Auduong, P.; Miller, A.T.; Gurgel, R.K. Hearing loss as a risk factor for dementia: A systematic review. Laryngoscope Investig. Otolaryngol. 2017, 2, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S. The Compression Handbook, 4th ed.; Starkey Hearing Research and Technology: Eden Prairie, MN, USA, 2011; Available online: https://order.starkeypro.com/pdfs/The_Compression_Handbook.pdf (accessed on 8 October 2023).
- What Is an Audiogram?—Understanding Hearing Test Results. Available online: https://www.babyhearing.org/what-is-an-audiogram (accessed on 9 December 2023).
- Vogel, A.D.; McCarthy, P.A.; Bratt, G.W.; Brewer, C. The clinical audiogram. Commun. Disord. Rev. 2007, 1, 81–94. [Google Scholar]
- Hearing Aids: Uses & How They Work. Available online: https://my.clevelandclinic.org/health/treatments/24756-hearing-aids (accessed on 9 December 2023).
- What Is a Hearing Aid Prescription? Available online: https://hearingup.com/videos/what-is-a-hearing-aid-prescription (accessed on 9 December 2023).
- Venema, T. The NAL-NL1 Fitting Method. Available online: https://www.audiologyonline.com/articles/the-nal-nl1-fitting-method-1260 (accessed on 9 December 2023).
- Keidser, G.; Dillon, H.; Carter, L.; O’Brien, A. NAL-NL2 empirical adjustments. Trends Amplif. 2012, 16, 211–223. [Google Scholar] [CrossRef]
- Keidser, G.; Dillon, H.; Flax, M.; Ching, T.; Brewer, S. The NAL-NL2 prescription procedure. Audiol. Res. 2011, 1, e24. [Google Scholar] [CrossRef]
- Polonenko, M.J.; Scollie, S.D.; Moodie, S.; Seewald, R.C.; Laurnagaray, D.; Shantz, J.; Richards, A. Fit to targets, preferred listening levels, and self-reported outcomes for the DSL v5 hearing aid prescription for adults. Int. J. Audiol. 2010, 49, 550–560. [Google Scholar] [CrossRef] [PubMed]
- DSL® v5 by Hand. 2023. Available online: https://www.dslio.com/wp-content/uploads/2014/06/DSL-5-by-Hand.pdf (accessed on 11 December 2023).
- Bagatto, M.; Moodie, S.; Scollie, S.; Seewald, R.; Moodie, S.; Pumford, J.; Liu, K.P.R. Clinical protocols for hearing instrument fitting in the desired sensation level method. Trends Amplif. 2005, 9, 199–226. [Google Scholar] [CrossRef]
- Blamey, P.J. Adaptive dynamic range optimization (ADRO): A digital amplification strategy for hearing aids and cochlear implants. Trends Amplif. 2005, 9, 77–98. [Google Scholar] [CrossRef]
- Blamey, P.; James, C.; Wildi, K.; McDermott, H.; Martin, L. Adaptive Dynamic Range of Optimization Sound Processor. U.S. Patent 6,731,767 B1, 4 May 2004. [Google Scholar]
- Blamey, P.; James, C.; McDermott, H.; Martin, L.; Wildi, K. Adaptive Dynamic Range Optimization Sound Processor. U.S. Patent 7,366,315 B2, 29 April 2008. [Google Scholar]
- Blamey, P.; James, C.; McDermott, H.; Martin, L.; Wildi, K. Adaptive Dynamic Range Optimization Sound Processor. U.S. Patent 7,978,868 B2, 12 July 2011. [Google Scholar]
- Plomp, R. Noise, Amplification, and Compression: Considerations of Three Main Issues in Hearing Aid Design. Ear Hear. 1994, 15, 2–12. [Google Scholar] [CrossRef]
- Hickson, L.M.H. Compression Amplification in Hearing Aids. Am. J. Audiol. 1994, 3, 51–65. [Google Scholar] [CrossRef]
- Lybarger, S.F. Selective Amplification—A Review and Evaluation. Ear Hear. 1978, 3, 258–266. [Google Scholar]
- Johansen, B.; Petersen, M.K.; Korzepa, M.J.; Larsen, J.; Pontoppidan, N.H.; Larsen, J.E. Personalizing the Fitting of Hearing Aids by Learning Contextual Preferences from Internet of Things Data. Computers 2017, 7, 1. [Google Scholar] [CrossRef]
- Ward, L.; Shirley, B.G. Personalization in object-based audio for accessibility: A review of advancements for hearing impaired listeners. J. Audio Eng. Soc. 2019, 67, 584–597. [Google Scholar] [CrossRef]
- Amlani, A.M.; Schafer, E.C. Application of paired-comparison methods to hearing aids. Trends Amplif. 2009, 13, 241–259. [Google Scholar] [CrossRef] [PubMed]
- Kuk, F.K. Paired comparisons as a fine-tuning tool in hearing aid fittings, strategies for selecting and verifying hearing aid fittings. Strateg. Sel. Verif. Hear. Aid Fitt. 2002, 125–150. [Google Scholar]
- Dahlquist, M.; Larsson, J.; Hertzman, S.; Wolters, F.; Smeds, K. Predicting individual hearing-aid preference in the field using laboratory paired comparisons. In Proceedings of the International Symposium on Auditory and Audiological Research, Nyborg, Denmark, 26–28 August 2015; pp. 261–268. [Google Scholar]
- Birlutiu, A.; Groot, P.; Heskes, T. Multi-task preference learning with an application to hearing aid personalization. Neurocomputing 2010, 73, 1177–1185. [Google Scholar] [CrossRef]
- Ypma, A.; Ozer, S.; van der Werf, E.; de Vries, B. Bayesian Feature Selection for Hearing Aid Personalization. In Proceedings of the IEEE Workshop on Machine Learning for Signal Processing, Thessaloniki, Greece, 27–29 August 2007; pp. 425–430. [Google Scholar]
- Mondol, S.R.; Lee, S. A Machine Learning Approach to Fitting Prescription for Hearing Aids. Electronics 2019, 8, 736. [Google Scholar] [CrossRef]
- Mondol, S.; Kim, H.J.; Kim, K.S.; Lee, S. Machine learning-based hearing aid fitting personalization using clinical fitting data. J. Healthc. Eng. 2022, 2022, 1667672. [Google Scholar] [CrossRef]
- Alamdari, N.; Lobarinas, E.; Kehtarnavaz, N. Personalization of Hearing Aid Compression by Human-in-the-Loop Deep Reinforcement Learning. IEEE Access 2020, 8, 203503–203515. [Google Scholar] [CrossRef]
- Akbarzadeh, S.; Lobarinas, E.; Kehtarnavaz, N. Online Personalization of Compression in Hearing Aids via Maximum Likelihood Inverse Reinforcement Learning. IEEE Access 2022, 10, 58537–58546. [Google Scholar] [CrossRef]
- Ni, A.; Akbarzadeh, S.; Lobarinas, E.; Kehtarnavaz, N. Personalization of hearing aid fitting based on adaptive dynamic range optimization. Sensors 2022, 22, 6033. [Google Scholar] [CrossRef]
- Nielsen, J.B.B.; Nielsen, J.; Larsen, J. Perception-based personalization of hearing aids using Gaussian processes and active learning. IEEE/ACM Trans. Audio Speech Lang. Process. 2014, 23, 162–173. [Google Scholar] [CrossRef]
- Nielsen, J.B.B.; Ougaard, A.; Molgaard, L.L.; Aleksander, C.; Jespersen, B. Method of Optimizing Parameters in a Hearing Aid System. U.S. Patent 11,778,393, 3 October 2023. [Google Scholar]
- Jensen, N.S.; Balling, L.W.; Nielsen, J.B.B. Effects of Personalizing Hearing-Aid Parameter Settings Using a Real-Time Machine-Learning Approach. In Proceedings of the 23rd International Congress on Acoustics, Aachen, Germany, 9–13 September 2019. [Google Scholar]
- Jensen, N.S.; Hau, O.; Nielsen, J.B.B.; Nielsen, T.B.; Legarth, S.V. Perceptual Effects of Adjusting Hearing-Aid Gain by Means of a Machine Learning Approach Based on Individual User Preference. Trends Hear. 2019, 23, 1–23. [Google Scholar] [CrossRef]
- Balling, L.W.; Mølgaard, L.L.; Townend, O.; Nielsen, J.B.B. The Collaboration between Hearing Aid Users and Artificial Intelligence to Optimize Sound. In Proceedings of the Seminars in Hearing, New York, NY, USA, 2021; Volume 42, pp. 282–294. [Google Scholar]
- Vyas, D.; Brummet, R.; Anwar, Y.; Jensen, J.; Jorgensen, E.; Wu, Y.-H.; Chipara, O. Personalizing over-the-counter hearing aids using pairwise comparisons. Smart Health 2022, 23, 100231. [Google Scholar] [CrossRef] [PubMed]
- Sabin, A.T.; Van Tasell, D.J.; Rabinowitz, B.; Dhar, S. Validation of a Self-Fitting Method for Over-the-Counter Hearing Aids. Trends Hear. 2020, 24, 2331216519900589. [Google Scholar] [CrossRef]
- Saki, F.; Kehtarnavaz, N. Real-time unsupervised classification of environmental noise signals. IEEE/ACM Trans. Audio Speech Lang. Process. 2017, 25, 1657–1667. [Google Scholar] [CrossRef]
- Ypma, A.; Geurts, J.; Özer, S.; Van der Werf, E.; De Vries, B. Online personalization of hearing instruments. EURASIP J. Audio Speech Music Process. 2008, 2008, 183456. [Google Scholar] [CrossRef]
- Pasta, A.; Petersen, M.K.; Jensen, K.J.; Larsen, J.E. Rethinking Hearing Aids as Recommender Systems. In Proceedings of the CEUR Workshop, HealthRecSys, Copenhagen, Denmark, 20 September 2019; pp. 11–17. [Google Scholar]
- Kuebert, T.; Puder, H.; Koeppl, H. Daily Routine Recognition for Hearing Aid Personalization. SN Comput. Sci. 2021, 2, 133. [Google Scholar] [CrossRef]
- Kuebert, T.; Puder, H.; Koeppl, H. Improving Daily Routine Recognition in Hearing Aids Using Sequence Learning. IEEE Access 2021, 9, 93237–93247. [Google Scholar] [CrossRef]
- Goodman, S.M.; Liu, P.; Jain, D.; McDonnell, E.J.; Froehlich, J.E.; Findlater, L. Toward User-Driven Sound Recognizer Personalization with People Who Are d/deaf or hard of hearing. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2021, 5, 1–23. [Google Scholar] [CrossRef]
- Korzepa, M.J.; Johansen, B.; Petersen, M.K.; Larsen, J.; Larsen, J.E.; Pontoppidan, N.H. Modeling User Intents as Context in Smartphone-Connected Hearing Aids. In Proceedings of the Adjunct Publication of the 26th Conference on User Modeling, Adaptation and Personalization, Singapore, 8–11 July 2018; pp. 151–155. [Google Scholar]
- Korzepa, M.; Petersen, M.K.; Larsen, J.E.; Mørup, M. Simulation Environment for Guiding the Design of Contextual Personalization Systems in the Context of Hearing Aids. In Proceedings of the 28th ACM Conference on User Modeling, Adaptation and Personalization, Genoa, Italy, 14–17 July 2020; pp. 293–298. [Google Scholar]
- Pasta, A.; Szatmari, T.-I.; Christensen, J.H.; Jensen, K.J.; Pontoppidan, N.H.; Sun, K.; Larsen, J.E. Clustering users based on hearing aid use: An exploratory analysis of real-world data. Front. Digit. Health 2021, 3, 725130. [Google Scholar] [CrossRef] [PubMed]
Author, Paper No. (Year) | Training | Real-Time Implementation | Data Source | Audio Environment | Personalized Variable | Machine Learning Methodology | Approach |
---|---|---|---|---|---|---|---|
Birlutiu et al. [28] (2010) | Offline | no | Pairwise comparison feedback | dataset | Hearing aid parameter settings | Hierarchical Preference Learning and Expectation Maximization | Learning from similar tasks with multiple participants |
Ypma et al. [29] (2007) | Offline | yes | Synthesized data and human test results | dataset and lab | Hearing aid parameter settings | Linear Regression and Bayesian Learning | Formulating hearing aid personalization as a linear regression problem |
Mondol et al. [30] (2019) | Offline | no | Prescription fitting results from 1100 participants | dataset | Insertion gain | Neural Network (NN) with Transfer Learning | Predicting insertion gain based on hearing loss characteristics and input levels |
Mondol et al. [31] (2022) | Offline | no | Clinical fitting data | dataset | Insertion gain | NN with Transfer Learning | Taking age, sex, and ear type into consideration |
Alamdari et al. [32] (2020) | Offline | yes | Pairwise comparison feedback | lab | Compression ratio | Deep Reinforcement Learning | Providing human-in-loop deep reinforcement learning |
Akbarzadeh et al. [33] (2022) | Online | yes | Pairwise comparison feedback | lab | Compression ratio | Maximum Likelihood Inverse Reinforcement Learning | Online machine learning personalization |
Ni et al. [34] (2022) | Online | yes | Pairwise comparison feedback | lab | Comfort target | Maximum Likelihood Inverse Reinforcement Learning | Personalization of an adaptive prescription |
Nielsen et al. [35] (2014) | Possibility for online exists | yes | Pairwise comparison feedback | lab | Gain set | Gaussian Processes (GPs) and Active Learning | Obtaining an individualized setting from direct perceptual user feedback |
Jensen et al. [37] (2019) | Possibility for online exists | yes | Pairwise comparison feedback | lab | Hearing aid parameter settings | Study of a commercialized learning algorithm in [35] | Performing personalization in 12 sound scenarios |
Søgaard et al. [38] (2019) | Possibility for online exists | yes | Pairwise comparison feedback | lab | Gain set | Study of a commercialized learning algorithm in [35] | Adjusting gains based on user preference in an iterative paired-comparison manner |
Balling et al. [39] (2021) | Possibility for online exists | yes | Pairwise comparison feedback | lab and real-world | Sound settings | Study of a commercialized learning algorithm in [35] | Describing a mechanism that operates continuously on user inputs |
Vyas et al. [40] (2022) | Possibility for online exists | yes | Pairwise comparison feedback | dataset and lab | Gain set | Dueling Multi-Armed Bandit (MAB) Learning | Reducing the number of comparisons to identify a user’s preferred preset |
Sabin et al. [41] (2020) | Possibility for online exists | yes | Pairwise comparison feedback | lab and real-world | Gain set | Not mentioned explicitly, a self-fitting interface | Allowing users to have simultaneous control of gain and compression in each frequency band |
Author, Paper No. (Year) | Environmental Context Studied |
---|---|
Saki et al. [42] (2017) | Classification of environmental noise signals |
Ypma et al. [43] (2008) | Personalization of tuning parameters with a focus on noise reduction |
Pasta et al. [44] (2019) | Modeling the surrounding environment and recommending optimal settings in different contexts |
Kuebert et al. [45] (2021) | Daily routine recognition for personalizing hearing aid configurations |
Kuebert et al. [46] (2021) | Enhancing daily routine recognition using sequence learning techniques |
Korzepa et al. [48] (2018) | Representation of user intentions related to hearing preferences with context gathered through mobile devices |
Korzepa et al. [49] (2020) | Creating a simulation-based framework for online contextual personalization of hearing aids |
Pasta et al. [50] (2021) | Ascertaining daily patterns and variability in hearing aid usage to gain insights into user behavior |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tasnim, N.Z.; Ni, A.; Lobarinas, E.; Kehtarnavaz, N. A Review of Machine Learning Approaches for the Personalization of Amplification in Hearing Aids. Sensors 2024, 24, 1546. https://doi.org/10.3390/s24051546
Tasnim NZ, Ni A, Lobarinas E, Kehtarnavaz N. A Review of Machine Learning Approaches for the Personalization of Amplification in Hearing Aids. Sensors. 2024; 24(5):1546. https://doi.org/10.3390/s24051546
Chicago/Turabian StyleTasnim, Nafisa Zarrin, Aoxin Ni, Edward Lobarinas, and Nasser Kehtarnavaz. 2024. "A Review of Machine Learning Approaches for the Personalization of Amplification in Hearing Aids" Sensors 24, no. 5: 1546. https://doi.org/10.3390/s24051546
APA StyleTasnim, N. Z., Ni, A., Lobarinas, E., & Kehtarnavaz, N. (2024). A Review of Machine Learning Approaches for the Personalization of Amplification in Hearing Aids. Sensors, 24(5), 1546. https://doi.org/10.3390/s24051546