Surface Electromyography Data Analysis for Evaluation of Physical Exercise Habits between Athletes and Non-Athletes during Indoor Rowing
Abstract
:1. Introduction
1.1. Contribution
1.2. Paper Structure
2. Materials and Methods
2.1. sEMG Signal
2.2. Training Time
2.3. Training Cycles
2.4. Physical Exercise
- Catch—The initial position with the body ready to start.
- Drive—The phase of straightening legs and keeping the arms straight. In this phase, the quadricep muscles of the thigh are contracting.
- Finish—The phase of pulling the bar to the body, contracting the bicep muscles, and leaning back.
- Recovery—Relaxing muscles and heading back to the catch position.
3. Testing
4. Evaluation
4.1. Cycles and Their Duration
4.2. Endurance, Fatigue and Muscle Power
4.3. Individual Performance
4.4. Case Study Verification
- n = 0–33% —warm-up—Early phase, where an individual is at full strength.
- n = 33–66% —exercise—Middle phase, with highest performance.
- n = 66–100% —fatigue—Last phase, where the muscle fatigue is becoming visible.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pustišek, M.; Wei, Y.; Sun, Y.; Umek, A.; Kos, A. The role of technology for accelerated motor learning in sport. Pers. Ubiquitous Comput. 2021, 25, 969–978. [Google Scholar] [CrossRef]
- Tahri Sqalli, M.; Al-Thani, D. Evolution of wearable devices in health coaching: Challenges and opportunities. Front. Digit. Health 2020, 2, 545646. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.F.d.; de Almeida-Neto, P.F.; de Matos, D.G.; Riechman, S.E.; de Queiros, V.; de Jesus, J.B.; Reis, V.M.; Clemente, F.M.; Miarka, B.; Aidar, F.J.; et al. Performance prediction equation for 2000 m youth indoor rowing using a 100 m maximal test. Biology 2021, 10, 1082. [Google Scholar] [CrossRef] [PubMed]
- Bergsma, S. Multimodal Virtual Rowing Coach. Bachelor’s Thesis, University of Twente, Enschede, The Netherlands, 2020. [Google Scholar]
- Buneo, C.A.; Soechting, J.F.; Flanders, M. Muscle activation patterns for reaching: The representation of distance and time. J. Neurophysiol. 1994, 71, 1546–1558. [Google Scholar] [CrossRef] [PubMed]
- Maluf, K.S.; Shinohara, M.; Stephenson, J.L.; Enoka, R.M. Muscle activation and time to task failure differ with load type and contraction intensity for a human hand muscle. Exp. Brain Res. 2005, 167, 165–177. [Google Scholar] [CrossRef] [PubMed]
- Cheng, P.T.; Chen, C.L.; Wang, C.M.; Hong, W.H. Leg muscle activation patterns of sit-to-stand movement in stroke patients. Am. J. Phys. Med. Rehabil. 2004, 83, 10–16. [Google Scholar] [CrossRef]
- Behm, D.G.; Alizadeh, S.; Hadjizedah Anvar, S.; Hanlon, C.; Ramsay, E.; Mahmoud, M.M.I.; Whitten, J.; Fisher, J.P.; Prieske, O.; Chaabene, H.; et al. Non-local muscle fatigue effects on muscle strength, power, and endurance in healthy individuals: A systematic review with meta-analysis. Sport. Med. 2021, 51, 1893–1907. [Google Scholar] [CrossRef]
- Liu, J.Z.; Brown, R.W.; Yue, G.H. A dynamical model of muscle activation, fatigue, and recovery. Biophys. J. 2002, 82, 2344–2359. [Google Scholar] [CrossRef]
- Huygaerts, S.; Cos, F.; Cohen, D.D.; Calleja-González, J.; Guitart, M.; Blazevich, A.J.; Alcaraz, P.E. Mechanisms of hamstring strain injury: Interactions between fatigue, muscle activation and function. Sports 2020, 8, 65. [Google Scholar] [CrossRef]
- Kim, H.; Palmieri-Smith, R.; Kipp, K. Time-frequency analysis of muscle activation patterns in people with chronic ankle instability during Landing and cutting tasks. Gait Posture 2020, 82, 203–208. [Google Scholar] [CrossRef]
- Balasukumaran, T.; Gottlieb, U.; Springer, S. Muscle activation patterns during backward walking in people with chronic ankle instability. BMC Musculoskelet. Disord. 2020, 21, 489. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Guan, X.; Li, Z.; He, L.; Wang, Z.; Cai, K. sEMG-based lower limb motion prediction using CNN-LSTM with improved PCA optimization algorithm. J. Bionic Eng. 2023, 20, 612–627. [Google Scholar] [CrossRef]
- Stanev, D.; Filip, K.; Bitzas, D.; Zouras, S.; Giarmatzis, G.; Tsaopoulos, D.; Moustakas, K. Real-time musculoskeletal kinematics and dynamics analysis using marker-and IMU-based solutions in rehabilitation. Sensors 2021, 21, 1804. [Google Scholar] [CrossRef] [PubMed]
- Weizman, Y.; Tirosh, O.; Fuss, F.K.; Tan, A.M.; Rutz, E. Recent state of wearable IMU sensors use in people living with spasticity: A systematic review. Sensors 2022, 22, 1791. [Google Scholar] [CrossRef] [PubMed]
- Bangaru, S.S.; Wang, C.; Aghazadeh, F. Data quality and reliability assessment of wearable EMG and IMU sensor for construction activity recognition. Sensors 2020, 20, 5264. [Google Scholar] [CrossRef] [PubMed]
- Nurettin, A.; Kuluöztürk, M.F. Accuracy Detection in Some Sports Training Using Computer Vision and Deep Learning Techniques. Bitlis Eren Univ. J. Sci. Technol. 2023, 13, 133–158. [Google Scholar]
- Mitrović, K.; Milošević, D. Pose Estimation and Joint Angle Detection Using Mediapipe Machine Learning Solution. In Proceedings of the Serbian International Conference on Applied Artificial Intelligence, Kragujevac, Serbia, 19–20 May 2022; pp. 109–120. [Google Scholar]
- Kanase, R.R.; Kumavat, A.N.; Sinalkar, R.D.; Somani, S. Pose estimation and correcting exercise posture. In Proceedings of the International Conference on Automation, Computing and Communication 2021 (ICACC-2021), Navi Mumbai, India, 14–15 July 2021; EDP Sciences: Les Ulis, France, 2021; Volume 40, p. 03031. [Google Scholar]
- Roksela, A.; Poświata, A.; Śmieja, J.; Kozak, D.; Bienias, K.; Ślaga, J.; Mikulski, M. Evaluation of Neurological Disorders in Isokinetic Dynamometry and Surface Electromyography Activity of Biceps and Triceps Muscles. In Proceedings of the Polish Conference on Biocybernetics and Biomedical Engineering, Łódz, Poland, 27–29 September 2023; pp. 325–338. [Google Scholar]
- Disselhorst-Klug, C.; Williams, S. Surface electromyography meets biomechanics: Correct interpretation of sEMG-signals in neuro-rehabilitation needs biomechanical input. Front. Neurol. 2020, 11, 603550. [Google Scholar] [CrossRef]
- De Silva, A.; Perera, M.V.; Wickramasinghe, K.; Naim, A.M.; Lalitharatne, T.D.; Kappel, S.L. Real-time hand gesture recognition Using temporal muscle activation maps of multi-channel sEMG signals. In Proceedings of the ICASSP 2020—2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 1299–1303. [Google Scholar]
- Josephs, D.; Drake, C.; Heroy, A.; Santerre, J. sEMG gesture recognition with a simple model of attention. In Proceedings of the Machine Learning for Health, Virtual, 11 December 2020; pp. 126–138. [Google Scholar]
- Shen, C.; Pei, Z.; Chen, W.; Wang, J.; Zhang, J.; Chen, Z. Toward generalization of sEMG-based pattern recognition: A novel feature extraction for gesture recognition. IEEE Trans. Instrum. Meas. 2022, 71, 1–12. [Google Scholar] [CrossRef]
- Godoy, R.V.; Dwivedi, A.; Guan, B.; Turner, A.; Shieff, D.; Liarokapis, M. On emg based dexterous robotic telemanipulation: Assessing machine learning techniques, feature extraction methods, and shared control schemes. IEEE Access 2022, 10, 99661–99674. [Google Scholar] [CrossRef]
- Artemiadis, P.K.; Kyriakopoulos, K.J. EMG-based control of a robot arm using low-dimensional embeddings. IEEE Trans. Robot. 2010, 26, 393–398. [Google Scholar] [CrossRef]
- Oleksy, Ł.; Wojciechowska, M.; Mika, A.; Antos, E.; Bylina, D.; Kielnar, R.; Pruszczyński, B.; Stolarczyk, A. Normative values for Glazer Protocol in the evaluation of pelvic floor muscle bioelectrical activity. Medicine 2020, 99, e19060. [Google Scholar] [CrossRef]
- Oleksy, Ł.; Mika, A.; Sulowska-Daszyk, I.; Rosłoniec, E.; Kielnar, R.; Stolarczyk, A. The reliability of pelvic floor muscle bioelectrical activity (sEMG) assessment using a multi-activity measurement protocol in young women. Int. J. Environ. Res. Public Health 2021, 18, 765. [Google Scholar] [CrossRef] [PubMed]
- Peschers, U.; Gingelmaier, A.; Jundt, K.; Leib, B.; Dimpfl, T. Evaluation of pelvic floor muscle strength using four different techniques. Int. Urogynecology J. 2001, 12, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Opara, J.; Socha, T.; Poświata, A. Factors influencing stress urinary incontinence in elite female athletes. Physiother. Q. 2022, 30, 85–89. [Google Scholar] [CrossRef]
- Lewandowska-Sroka, P.; Stabrawa, R.; Kozak, D.; Poświata, A.; Łysoń-Uklańska, B.; Bienias, K.; Roksela, A.; Kliś, M.; Mikulski, M. The influence of EMG-triggered robotic movement on walking, muscle force and spasticity after an ischemic stroke. Medicina 2021, 57, 227. [Google Scholar] [CrossRef] [PubMed]
- Trzmiel, T.; Marchewka, R.; Pieczyńska, A.; Zasadzka, E.; Zubrycki, I.; Kozak, D.; Mikulski, M.; Poświata, A.; Tobis, S.; Hojan, K. The Effect of Using a Rehabilitation Robot for Patients with Post-Coronavirus Disease (COVID-19) Fatigue Syndrome. Sensors 2023, 23, 8120. [Google Scholar] [CrossRef] [PubMed]
- Oleksy, Ł.; Królikowska, A.; Mika, A.; Reichert, P.; Kentel, M.; Kentel, M.; Poświata, A.; Roksela, A.; Kozak, D.; Bienias, K.; et al. A Reliability of Active and Passive Knee Joint Position Sense Assessment Using the Luna EMG Rehabilitation Robot. Int. J. Environ. Res. Public Health 2022, 19, 15885. [Google Scholar] [CrossRef] [PubMed]
- Stańczyk, K.; Poświata, A.; Roksela, A.; Mikulski, M. Assessment of muscle fatigue, strength and muscle activation during exercises with the usage of robot luna EMG, among patients with multiple sclerosis. In Information Technology in Biomedicine; Springer: Cham, Switzerland, 2019; pp. 117–128. [Google Scholar]
- Smolinski, M.; Mikulski, M.; Śmieja, J. EMG Mapping Technique for Pinch Meter Robot Extension. In Proceedings of the Polish Conference on Biocybernetics and Biomedical Engineering, Lodz, Poland, 27–29 September 2023; pp. 339–349. [Google Scholar]
- Zecca, M.; Micera, S.; Carrozza, M.C.; Dario, P. Control of multifunctional prosthetic hands by processing the electromyographic signal. Crit. Rev.™ Biomed. Eng. 2002, 30, 459–485. [Google Scholar] [CrossRef]
- Konrad, P. ABC EMG–Praktycznie Wprowadzenie dla Elektromiografii Kinezjologicznej, Noraxon INC; Technomex Sp. z oo: Gliwice, Poland, 2007. [Google Scholar]
- De Luca, C. Electromyography. In Encyclopedia of Medical Devices and Instrumentation; John Wiley Publisher: Boston, MA, USA, 2006. [Google Scholar]
- Bø, K.; Sherburn, M.; Vodušek, D. Measurement of pelvic floor muscle function and strength and pelvic organ prolapse. In Evidence-Based Physical Therapy for the Pelvic Floor; Churchill Livingstone: Edinburgh, UK, 2007; pp. 45–112. [Google Scholar]
- Oskoei, M.A.; Hu, H. Myoelectric control systems—A survey. Biomed. Signal Process. Control 2007, 2, 275–294. [Google Scholar] [CrossRef]
Individual | Fatigue | ||||||
---|---|---|---|---|---|---|---|
Non-athletes | (1) | ||||||
(2) | |||||||
(3) | |||||||
(4) | |||||||
(5) | |||||||
(6) | |||||||
(7) | |||||||
(8) | |||||||
Athletes | (1) | ||||||
(2) | |||||||
(3) | |||||||
(4) | |||||||
(5) |
Variable | Athletes | Non-Athletes | t Value | p Value | ||
---|---|---|---|---|---|---|
Mean | SD | Mean | SD | |||
119.5863 | 18.5784 | 82.9020 | 19.5450 | 3.3983 | 0.0059 | |
63.25 | 12.80 | 62.20 | 15.43 | 0.1333 | 0.8964 | |
0.13013 | 0.02988 | 0.07240 | 0.00961 | 4.1275 | 0.0017 | |
1.8388 | 0.2928 | 1.3380 | 0.1008 | 3.6388 | 0.0039 | |
4.21137 | 1.67834 | 1.79680 | 1.48083 | 2.6318 | 0.0233 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grzejszczak, T.; Roksela, A.; Poświata, A.; Siemianowicz, A.; Kiełboń, A.; Mikulski, M. Surface Electromyography Data Analysis for Evaluation of Physical Exercise Habits between Athletes and Non-Athletes during Indoor Rowing. Sensors 2024, 24, 1964. https://doi.org/10.3390/s24061964
Grzejszczak T, Roksela A, Poświata A, Siemianowicz A, Kiełboń A, Mikulski M. Surface Electromyography Data Analysis for Evaluation of Physical Exercise Habits between Athletes and Non-Athletes during Indoor Rowing. Sensors. 2024; 24(6):1964. https://doi.org/10.3390/s24061964
Chicago/Turabian StyleGrzejszczak, Tomasz, Anna Roksela, Anna Poświata, Anna Siemianowicz, Agnieszka Kiełboń, and Michał Mikulski. 2024. "Surface Electromyography Data Analysis for Evaluation of Physical Exercise Habits between Athletes and Non-Athletes during Indoor Rowing" Sensors 24, no. 6: 1964. https://doi.org/10.3390/s24061964
APA StyleGrzejszczak, T., Roksela, A., Poświata, A., Siemianowicz, A., Kiełboń, A., & Mikulski, M. (2024). Surface Electromyography Data Analysis for Evaluation of Physical Exercise Habits between Athletes and Non-Athletes during Indoor Rowing. Sensors, 24(6), 1964. https://doi.org/10.3390/s24061964