Towards Automating Personal Exercise Assessment and Guidance with Affordable Mobile Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Real-Time TE System: Utilising Pose Estimation Technology
2.2. Experimental Protocol
2.2.1. Study Population
2.2.2. Recording Equipment
2.2.3. Exercise Repertoire
2.3. Kinematics
2.4. Data Processing
2.4.1. Body-Centering Frame Processing
2.4.2. Motion Time Series Processing
2.5. Exercise Recognition as a Classification Problem
2.5.1. Feature Extraction
2.5.2. Model Training and Evaluation
3. Results
3.1. Kinematic Analysis Results
3.1.1. Range of Motion Testing Results
3.1.2. BlazePose Model’s Reliability
3.1.3. Performance Evaluation
3.2. ML Algorithm Performance
3.3. TE System’s Facilities
3.4. Real-Time Testing Scenario
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Anthropometric Factors | Females (Mean ± SD) | Males (Mean ± SD) | ||
---|---|---|---|---|
FT | FP | MT | MP | |
Age [years] | 21.5 ± 6.1 | 77.8 ± 9.1 | 24.4 ± 10.6 | 67 ± 14.9 |
Height [cm] | 166.5 ± 3.9 | 161.3 ± 6.2 | 176.5 ± 4.9 | 173.8 ± 5.6 |
Weight [kg] | 55.3 ± 4 | 65.8 ± 10.5 | 69.5 ± 6.3 | 80.6 ± 10.7 |
Appendix B
FP_1 | FP_2 | MP_3 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SS | SA | TR | FB | SQT | SS | SA | TR | FB | SQT | SS | SA | TR | FB | SQT | |
ROM | 3.10 | 4.09 | −6.36 | −9.06 | 30.47 | 0 | −3.35 | 27.16 | −9.74 | 22.18 | 1.86 | 6.37 | 31.05 | 1.41 | 7.64 |
EE | −1.99 | 2.15 | −24.78 | 8.54 | −3.71 | −0.83 | −9.36 | −7.05 | 0 | 7.58 | −8.39 | 1.42 | −1.83 | 4.12 | 0 |
References
- Ghosh, A.; Jagtap, T.; Issac, T.G. Cognitive Benefits of Physical Activity in the Elderly: A Narrative Review. J. Psychiatry Spectr. 2024, 3, 4–11. [Google Scholar] [CrossRef]
- Kumar, M.; Srivastava, S.; Muhammad, T. Relationship between Physical Activity and Cognitive Functioning among Older Indian Adults. Sci. Rep. 2022, 12, 2725. [Google Scholar] [CrossRef]
- De Carvalho, W.V.; Katakura, E.A.L.B.; de Carvalho, T.L.R.B.; Koga, P.M.; Kawamoto, A.B.S.S.; Cardoso, R.B.C.M.; Tashima, C.M.; Alarcon, M.F.S. Benefit of Pleasurable Physical Activity for the Elderly: An Integrative Review. In A Look at Development; Seven Editora: São José dos Pinhais, Brazil, 2023. [Google Scholar]
- Daskalopoulou, C.; Stubbs, B.; Kralj, C.; Koukounari, A.; Prince, M.; Prina, A.M. Physical Activity and Healthy Ageing: A Systematic Review and Meta-Analysis of Longitudinal Cohort Studies. Ageing Res. Rev. 2017, 38, 6–17. [Google Scholar] [CrossRef]
- Hornyak, V.; Brach, J.S.; Wert, D.M.; Hile, E.; Studenski, S.; VanSwearingen, J.M. What Is the Relation Between Fear of Falling and Physical Activity in Older Adults? Arch. Phys. Med. Rehabil. 2013, 94, 2529–2534. [Google Scholar] [CrossRef] [PubMed]
- Scholten, P.; Chekka, K.; Benzon, H.T. Physical Examination of the Patient with Pain. In Essentials of Pain Medicine; Elsevier: Amsterdam, The Netherlands, 2018; pp. 27–38.e1. [Google Scholar]
- Alt Murphy, M.; Murphy, S.; Persson, H.C.; Bergström, U.B.; Sunnerhagen, K.S. Kinematic Analysis Using 3D Motion Capture of Drinking Task in People with and without Upper-Extremity Impairments. J. Vis. Exp. 2018, 2018, e57228. [Google Scholar] [CrossRef]
- Wang, J.; Tan, S.; Zhen, X.; Xu, S.; Zheng, F.; He, Z.; Shao, L. Deep 3D Human Pose Estimation: A Review. Comput. Vis. Image Underst. 2021, 210, 103225. [Google Scholar] [CrossRef]
- Toshev, A.; Szegedy, C. DeepPose: Human Pose Estimation via Deep Neural Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Portland, OR, USA, 23–28 June 2013. [Google Scholar] [CrossRef]
- Bazarevsky, V.; Grishchenko, I.; Raveendran, K.; Zhu, T.; Zhang, F.; Grundmann, M. BlazePose: On-Device Real-Time Body Pose Tracking. arXiv 2020, arXiv:2006.10204. [Google Scholar]
- Cao, Z.; Hidalgo, G.; Simon, T.; Wei, S.-E.; Sheikh, Y. OpenPose: Realtime Multi-Person 2D Pose Estimation Using Part Affinity Fields. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Poulose, A.; Kim, J.H.; Han, D.S. HIT HAR: Human Image Threshing Machine for Human Activity Recognition Using Deep Learning Models. Comput. Intell. Neurosci. 2022, 2022, 1808990. [Google Scholar] [CrossRef] [PubMed]
- Raj, R.; Kos, A. An Improved Human Activity Recognition Technique Based on Convolutional Neural Network. Sci. Rep. 2023, 13, 22581. [Google Scholar] [CrossRef]
- Hartmann, Y.; Liu, H.; Schultz, T. High-Level Features for Human Activity Recognition and Modeling. In Communications in Computer and Information Science; Springer: Cham, Switzerland, 2023; pp. 141–163. [Google Scholar]
- Liu, H.; Hartmann, Y.; Schultz, T. Motion Units: Generalized Sequence Modeling of Human Activities for Sensor-Based Activity Recognition. In Proceedings of the 2021 29th European Signal Processing Conference (EUSIPCO), Dublin, Ireland, 23–27 August 2021; pp. 1506–1510. [Google Scholar]
- Fabbrizio, A.; Fucarino, A.; Cantoia, M.; De Giorgio, A.; Garrido, N.D.; Iuliano, E.; Reis, V.M.; Sausa, M.; Vilaça-Alves, J.; Zimatore, G.; et al. Smart Devices for Health and Wellness Applied to Tele-Exercise: An Overview of New Trends and Technologies Such as IoT and AI. Healthcare 2023, 11, 1805. [Google Scholar] [CrossRef] [PubMed]
- American Academy of Orthopaedic Surgeons. Joint Motion: Methods of Measuring and Recording, 6th ed.; Churchill Livingstone: Edinburgh, UK, 1972. [Google Scholar]
- Park, S.; Lee, S.; Park, J. Data Augmentation Method for Improving the Accuracy of Human Pose Estimation with Cropped Images. Pattern Recognit. Lett. 2020, 136, 244–250. [Google Scholar] [CrossRef]
- Hassani, H. Singular Spectrum Analysis: Methodology and Comparison. J. Data Sci. 2021, 5, 239–257. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Ventura, D. SVM Example. 2009. [Google Scholar]
- Quinlan, J.R. Induction of Decision Trees. Mach. Learn. 1986, 1, 81–106. [Google Scholar] [CrossRef]
- Stone, M. Cross-Validatory Choice and Assessment of Statistical Predictions. J. R. Stat. Soc. Ser. B 1974, 36, 111–133. [Google Scholar] [CrossRef]
- Hemmerich, A.; Brown, H.; Smith, S.; Marthandam, S.S.K.; Wyss, U.P. Hip, Knee, and Ankle Kinematics of High Range of Motion Activities of Daily Living. J. Orthop. Res. 2006, 24, 770–781. [Google Scholar] [CrossRef]
- Pan, F.; Arshad, R.; Zander, T.; Reitmaier, S.; Schroll, A.; Schmidt, H. The Effect of Age and Sex on the Cervical Range of Motion—A Systematic Review and Meta-Analysis. J. Biomech. 2018, 75, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Gilleard, W. Functional Task Limitations in Obese Adults. Curr. Obes. Rep. 2012, 1, 174–180. [Google Scholar] [CrossRef]
- Sung, P.S.; Lee, K.-J.; Park, W.-H. Coordination of Trunk and Pelvis in Young and Elderly Individuals during Axial Trunk Rotation. Gait Posture 2012, 36, 330–331. [Google Scholar] [CrossRef] [PubMed]
- García-de-Villa, S.; Casillas-Pérez, D.; Jiménez-Martín, A.; García-Domínguez, J.J. Simultaneous Exercise Recognition and Evaluation in Prescribed Routines: Approach to Virtual Coaches. Expert Syst. Appl. 2022, 199, 116990. [Google Scholar] [CrossRef]
- Liu, W.; Liu, X.; Hu, Y.; Shi, J.; Chen, X.; Zhao, J.; Wang, S.; Hu, Q. Fall Detection for Shipboard Seafarers Based on Optimized BlazePose and LSTM. Sensors 2022, 22, 5449. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Gan, J.; Zhao, Z.; Chen, J.; Chen, X.; Diao, Y.; Tu, S. A Real-Time Fall Detection Model Based on BlazePose and Improved ST-GCN. J. Real Time Image Process 2023, 20, 121. [Google Scholar] [CrossRef]
- Arrowsmith, C.; Burns, D.; Mak, T.; Hardisty, M.; Whyne, C. Physiotherapy Exercise Classification with Single-Camera Pose Detection and Machine Learning. Sensors 2023, 23, 363. [Google Scholar] [CrossRef] [PubMed]
- Marin, J.A.G.; Navarro, K.F.; Lawrence, E. Serious Games to Improve the Physical Health of the Elderly: A Categorization Scheme. In Proceedings of the International Conference on Advances in Human-oriented and Personalized Mechanisms Technologies, and Services, Barcelona, Spain, 5–10 July 2011; ISBN 9781612081670. [Google Scholar]
- Barandas, M.; Folgado, D.; Fernandes, L.; Santos, S.; Abreu, M.; Bota, P.; Liu, H.; Schultz, T.; Gamboa, H. TSFEL: Time Series Feature Extraction Library. SoftwareX 2020, 11, 100456. [Google Scholar] [CrossRef]
- Doherty, R.; Madigan, S.M.; Nevill, A.; Warrington, G.; Ellis, J.G. The Sleep and Recovery Practices of Athletes. Nutrients 2021, 13, 1330. [Google Scholar] [CrossRef]
- Fradkin, A.J.; Zazryn, T.R.; Smoliga, J.M. Effects of Warming-up on Physical Performance: A Systematic Review With Meta-Analysis. J. Strength Cond. Res. 2010, 24, 140–148. [Google Scholar] [CrossRef]
Name | Instructions | ROM Evaluation |
---|---|---|
SS | Take short, comfortable steps while ensuring an upright spinal posture. | Lateral ROM for both the right and left hips and comparison |
SA | Maintain extended arms while ensuring an upright spinal posture. | ROM for both the right and left shoulders and comparison |
TR | Maintain a shoulder-width stance, ensuring the arms are vertical to the body axis and keeping an upright spinal posture. | Lumbar rotation ROM for both sides and movement coordination analysis |
FB | Maintain an upright spinal posture and leg extension when bending. | ROM involved in lumbar forward flexion |
SQT | Maintain a shoulder-width stance, an upright spinal posture, and position the knees behind the toes. | Hip and knee flexion ROM |
285D Feature Vector | 22D PCA Feature Vector | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
acc | F1 | prec | sens | spec | TT | IT | acc | F1 | prec | sens | spec | TT | IT | |
[%] | [sec] | [%] | [sec] | |||||||||||
RF | 100 | 100 | 100 | 100 | 100 | 1.649 | 0.063 | 99.63 | 100 | 100 | 100 | 100 | 1.205 | 0.054 |
98.91 | 99 | 99 | 98.82 | 100 | 0.175 | 0.038 | 100 | 100 | 100 | 100 | 100 | 0.105 | 0.029 | |
95.12 | 95 | 95 | 95.69 | 100 | 0.842 | 0.108 | 94.76 | 94 | 96 | 92.60 | 100 | 0.108 | 0.023 | |
94.40 | 94 | 95 | 94.53 | 100 | 0.232 | 0.172 | 99.63 | 100 | 99 | 99.70 | 100 | 0.085 | 0.048 | |
DT | 92.05 | 91 | 90 | 91.64 | 100 | 0.208 | 0.010 | 97.29 | 98 | 98 | 97.69 | 100 | 0.250 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sideridou, M.; Kouidi, E.; Hatzitaki, V.; Chouvarda, I. Towards Automating Personal Exercise Assessment and Guidance with Affordable Mobile Technology. Sensors 2024, 24, 2037. https://doi.org/10.3390/s24072037
Sideridou M, Kouidi E, Hatzitaki V, Chouvarda I. Towards Automating Personal Exercise Assessment and Guidance with Affordable Mobile Technology. Sensors. 2024; 24(7):2037. https://doi.org/10.3390/s24072037
Chicago/Turabian StyleSideridou, Maria, Evangelia Kouidi, Vassilia Hatzitaki, and Ioanna Chouvarda. 2024. "Towards Automating Personal Exercise Assessment and Guidance with Affordable Mobile Technology" Sensors 24, no. 7: 2037. https://doi.org/10.3390/s24072037
APA StyleSideridou, M., Kouidi, E., Hatzitaki, V., & Chouvarda, I. (2024). Towards Automating Personal Exercise Assessment and Guidance with Affordable Mobile Technology. Sensors, 24(7), 2037. https://doi.org/10.3390/s24072037