AI-Driven Sensing Technology: Review
Abstract
:1. Introduction
2. Sensor Design Assisted by ML/DL
2.1. Inverse Design
2.2. Performance Enhancement
3. Calibration and Compensation
3.1. Pre-Use Calibration
3.2. In-Use Calibration
- Divide the normalized sample data (voltage, temperature, applied pressure) randomly into training and testing datasets at a 2:1 ratio.
- Sequentially choose the number of hidden nodes, starting from one up to the number of training samples.
- Initialize input weights and hidden layer biases, then compute the Single-Layer Feedforward Neural Network’s (SLFN) output weights using the training data.
- Utilize the weights and biases obtained in Step 4 to compute the output for the testing data.
- Repeat Steps 2 to 4 until achieving satisfactory compensation accuracy [Figure 2c].
- Program the SLFN weights and biases into a micro-control unit (MCU) equipped with a digital thermometer and chip [Figure 2d] and validate the algorithm within the defined temperature and pressure ranges.
4. Recognition and Classification
4.1. Classification and Recognition Based on Unidimensional Data
4.1.1. Robotic Perception
4.1.2. Object Identification
4.1.3. Human Behavior Recognition
4.1.4. Health Monitoring
4.1.5. Identity Verification
4.1.6. Mechanical Fault Detection
4.2. Classification and Recognition Based on Multi-Dimensional Data
4.2.1. Human Behavior Recognition
4.2.2. Object Identification
4.2.3. Mechanical Fault Identification
5. Behavior Prediction
6. Summary and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Spinelle, L.; Gerboles, M.; Kok, G.; Persijn, S.; Sauerwald, T. Review of portable and low-cost sensors for the ambient air monitoring of benzene and other volatile organic compounds. Sensors 2017, 17, 1520. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, Y.; Chang, X.; Pan, D.; Song, G.; Guo, Z.; Naik, N. Recent Progress in Essential Functions of Soft Electronic Skin. Adv. Funct. Mater. 2021, 31, 2104686. [Google Scholar] [CrossRef]
- Gu, Y.; Zhang, T.; Chen, H.; Wang, F.; Pu, Y.; Gao, C.; Li, S. Mini Review on Flexible and Wearable Electronics for Monitoring Human Health Information. Nanoscale Res. Lett. 2019, 14, 263–315. [Google Scholar] [CrossRef]
- Luo, D.; Sun, H.; Li, Q.; Niu, X.; He, Y.; Liu, H. Flexible Sweat Sensors: From Films to Textiles. ACS Sens. 2023, 8, 465–481. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Shen, Y.; Tian, S.; Xue, Z.; Meng, X. Recent Advances in Nanowire-Based Wearable Physical Sensors. Biosensors 2023, 13, 1025. [Google Scholar] [CrossRef]
- Xue, Z.; Zhao, J. Bioelectric Interface Technologies in Cells and Organoids. Adv. Mater. Interfaces 2023, 10, 2300550. [Google Scholar] [CrossRef]
- Bao, Y.; Chen, Z.; Wei, S.; Xu, Y.; Tang, Z.; Li, H. The State of the Art of Data Science and Engineering in Structural Health Monitoring. Engineering 2019, 5, 234–242. [Google Scholar] [CrossRef]
- Tang, Z.; Chen, Z.; Bao, Y.; Li, H. Convolutional Neural Network-based Data Anomaly Detection Method Using Multiple Information for Structural Health Monitoring. Struct. Control Health Monit. 2019, 26, e2296.1–e2296.22. [Google Scholar] [CrossRef]
- Bao, Z.; Mannsfeld, S.C.B.; Tee, B.C.-K.; Stoltenberg, R.M.; Chen, C.V.H.-H.; Barman, S.; Muir, B.V.O.; Sokolov, A.N.; Reese, C. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 2010, 9, 859–864. [Google Scholar]
- Bai, N.; Wang, L.; Wang, Q.; Deng, J.; Wang, Y.; Lu, P.; Huang, J.; Li, G.; Zhang, Y.; Yang, J.; et al. Graded intrafillable architecture-based iontronic pressure sensor with ultra-broad-range high sensitivity. Nat. Commun. 2020, 11, 209. [Google Scholar] [CrossRef]
- Xue, Z.; Jin, T.; Xu, S.; Bai, K.; He, Q.; Zhang, F.; Cheng, X.; Ji, Z.; Pang, W.; Shen, Z.; et al. Assembly of complex 3D structures and electronics on curved surfaces. Sci. Adv. 2022, 8, 6922. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Li, J.; Wang, Z.; Xue, Z.; Meng, X. Design of Porous Partition Elastomer Substrates for the Island–Bridge Structures in Stretchable Inorganic Electronics. ASME J. Appl. Mech. 2024, 91, 051005. [Google Scholar] [CrossRef]
- Eka, N.; Cynthia, P.M.; Kaylee, M.C.; Ilhoon, J.; Charles, S.H. Electrochemical paper-based devices: Sensing approaches and progress toward practical applications. Lab Chip 2020, 2, 9–34. [Google Scholar]
- Nurlely, M.; Ahmad, L.; Ling, L. Potentiometric enzyme biosensor for rapid determination of formaldehyde based on succinimide-functionalized polyacrylate ion-selective membrane. Meas. J. Int. Meas. Confed. 2021, 175, 109112. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, X.; Neri, G.; Pinna, N. Nanostructured Materials for Room-Temperature Gas Sensors. Adv. Mater. 2016, 28, 795–831. [Google Scholar] [CrossRef] [PubMed]
- Ho, D.H.; Choi, Y.Y.; Jo, S.B.; Myoung, J.M.; Cho, J.H. Sensing with MXenes: Progress and Prospects. Adv. Mater. 2021, 33, e2005846. [Google Scholar] [CrossRef] [PubMed]
- Ejeian, F.; Azadi, S.; Razmjou, A.; Orooji, Y.; Kottapalli, A.; Ebrahimi, W.M.; Asadnia, M. Design and Applications of MEMS Flow Sensors: A Review. Sens. Actuators Phys. 2019, 295, 483–502. [Google Scholar] [CrossRef]
- Xu, H.; Gao, L.; Zhao, H.; Huang, H.; Wang, Y.; Chen, G.; Qin, Y.; Zhao, N.; Xu, D.; Duan, L.; et al. Stretchable and Anti-Impact Iontronic Pressure Sensor with an Ultrabroad Linear Range for Biophysical Monitoring and Deep Learning-Aided Knee Rehabilitation. Microsyst. Nanoeng. 2021, 7, 92. [Google Scholar] [CrossRef]
- Sarang, T.; Zheng, Z.; Henrik, R.; Jose, M.; Tuomo, M.; Sergey, N.; Toni, H.; Hiski, N.M.; Zahidul, H.B.; Ville, V.L.; et al. Sensors and AI Techniques for Situational Awareness in Autonomous Ships: A Review. IEEE Trans. Intell. Transp. Syst. 2022, 23, 64–83. [Google Scholar]
- Shakhatreh, H.; Sawalmeh, A.H.; Al-Fuqaha, A.; Dou, Z.; Almaita, E.; Khalil, I.; Othman, N.S.; Khreishah, A.; Guizani, M. Unmanned Aerial Vehicles (UAVs): A Survey on Civil Applications and Key Research Challenges. IEEE Access 2019, 7, 48572–48634. [Google Scholar] [CrossRef]
- Guorui, L.; Xiangping, C.; Fanghao, Z.; Yiming, L.; Youhua, X.; Xunuo, C.; Zhen, Z.; Mingqi, Z.; Baosheng, W.; Shunyu, Y.; et al. Self-powered soft robot in the Mariana Trench. Nature 2021, 591, 66–71. [Google Scholar]
- Yuan, W.; Dong, S.; Adelson, E.H. GelSight: High-resolution robot tactile sensors for estimating geometry and force. Sensors 2017, 17, 2762. [Google Scholar] [CrossRef]
- Yasser, K.; Aminy, E.; Claire, M.; Adrien, P.; Ana, C. Monitoring of Vital Signs with Flexible and Wearable Medical Devices. Adv. Mater. 2016, 28, 4373–4395. [Google Scholar]
- Song, H.; Luo, G.; Ji, Z.; Bo, R.; Xue, Z.; Yan, D.; Zhang, F.; Bai, K.; Liu, J.; Cheng, X.; et al. Highly-integrated, miniaturized, stretchable electronic systems based on stacked multilayer network materials. Sci. Adv. 2022, 8, eabm3785. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Cheng, G.; Wu, Q. Construction on permafrost foundations: Lessons learned from the Qinghai–Tibet railroad. Cold Reg. Sci. Technol. 2009, 59, 3–11. [Google Scholar]
- Zhou, F.; Chai, Y. Near-sensor and in-sensor computing. Nat. Electron. 2020, 3, 664–671. [Google Scholar] [CrossRef]
- Wen, F.; Sun, Z.; He, T.; Shi, Q.; Zhu, M.; Zhang, Z.; Li, L.; Zhang, T.; Lee, C. Machine Learning Glove Using Self-Powered Conductive Superhydrophobic Triboelectric Textile for Gesture Recognition in VR/AR Applications. Adv. Sci. 2020, 7, 2000261. [Google Scholar] [CrossRef]
- Young, H.J.; Seong, K.H.; Hee, S.W.; Jae, H.H.; Trung, X.; Hyunsin, P.; Junyeong, K.; Sunghun, K.; Chang, D.Y.; Keon, J.L. Flexible Piezoelectric Acoustic Sensors and Machine Learning for Speech Processing. Adv. Mater. 2020, 35, 1904020. [Google Scholar]
- Muhammad, S.; Stephan, B.; Hans, S.; Paul, J.M.H.; Ozlem, D.I. Towards Detection of Bad Habits by Fusing Smartphone and Smartwatch Sensors. In Proceedings of the 2015 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), St. Louis, MO, USA, 23–27 March 2015; pp. 591–596. [Google Scholar]
- Chen, Z.; Li, W. Multisensor Feature Fusion for Bearing Fault Diagnosis Using Sparse Autoencoder and Deep Belief Network. IEEE Trans. Instrum. Meas. 2017, 7, 1693–1702. [Google Scholar] [CrossRef]
- Wei, L.; Wang, X.; Li, L.; Yu, L.; Liu, Z. A Low-Cost Tire Pressure Loss Detection Framework Using Machine Learning. IEEE Trans. Ind. Electron. 2021, 12, 12730–12738. [Google Scholar] [CrossRef]
- Fang, Y.; Zou, Y.; Xu, J.; Chen, G.; Zhou, Y.; Deng, W.; Zhao, X.; Roustaei, M.; Hsiai, T.K.; Chen, J. Ambulatory Cardiovascular Monitoring Via a Machine-Learning-Assisted Textile Triboelectric Sensor. Adv. Mater. 2021, 41, 2104178. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.H.; Dong, L. Flexible Sensors and Machine Learning for Heart Monitoring. Nano Energy 2022, 102, 107632. [Google Scholar] [CrossRef]
- Yan, K.; Zhang, D. Feature Selection and Analysis on Correlated Gas Sensor Data with Recursive Feature Elimination. Sens. Actuators B Chem. 2015, 212, 353–363. [Google Scholar] [CrossRef]
- Faiz, M.; Ramandeep, S.; Mohd, A.; Anwar, A.S.; Chandani, B.; Nausheen, F. Machine Learning Techniques in Wireless Sensor Networks: Algorithms, Strategies, and Applications. Int. J. Intell. Syst. Appl. Eng. 2023, 11, 685–694. [Google Scholar]
- Chun, S.; Kim, J.S.; Yoo, Y.; Choi, Y.; Jung, S.J.; Jang, D.; Lee, G.; Song, K.I.; Nam, K.S.; Youn, I.; et al. An Artificial Neural Tactile Sensing System. Nat. Electron. 2021, 4, 429–438. [Google Scholar] [CrossRef]
- Lee, G.H.; Park, J.K.; Byun, J.; Yang, J.C.; Kwon, S.Y.; Kim, C.; Jang, C.; Sim, J.Y.; Yook, J.G.; Park, S. Parallel Signal Processing of a Wireless Pressure-Sensing Platform Combined with Machine-Learning-Based Cognition, Inspired by the Human Somatosensory System. Adv. Mater. 2020, 32, e1906269. [Google Scholar] [CrossRef] [PubMed]
- Gandarias, J.M.; Garcia-Cerezo, A.J.; Gomez-de-Gabriel, J.M. CNN-Based Methods for Object Recognition with High-Resolution Tactile Sensors. IEEE Sens. J. 2019, 19, 6872–6882. [Google Scholar] [CrossRef]
- Wang, Y.; Adam, M.L.; Zhao, Y.; Zheng, W.; Gao, L.; Yin, Z.; Zhao, H. Machine Learning-Enhanced Flexible Mechanical Sensing. Nano-Micro Lett. 2023, 15, 190–222. [Google Scholar] [CrossRef] [PubMed]
- Vergara, A.; Vembu, S.; Ayhan, T.; Ryan, M.A.; Homer, M.L.; Huerta, R. Chemical Gas Sensor Drift Compensation Using Classifier Ensembles. Sens. Actuators B Chem. 2012, 166–167, 320–329. [Google Scholar]
- Cheng, X.; Fan, Z.; Yao, S.; Jin, T.; Lv, Z.; Lan, Y.; Bo, R.; Chen, Y.; Zhang, F.; Shen, Z.; et al. Programming 3D Curved Mesosurfaces Using Microlattice Designs. Science 2023, 379, 1225–1232. [Google Scholar] [CrossRef]
- Moin, A.; Zhou, A.; Rahimi, A.; Menon, A.; Benatti, S.; Alexandrov, G.; Tamakloe, S.; Ting, J.; Yamamoto, N.; Khan, Y.; et al. A Wearable Biosensing System with In-Sensor Adaptive Machine Learning for Hand Gesture Recognition. Nat. Electron. 2020, 4, 54–63. [Google Scholar] [CrossRef]
- Yang, J.; Chen, J.; Su, Y.; Jing, Q.; Li, Z.; Yi, F.; Wen, X.; Wang, Z.; Wang, Z.L. Eardrum-Inspired Active Sensors for Self-Powered Cardiovascular System Characterization and Throat-Attached Anti-Interference Voice Recognition. Adv. Mater. 2015, 27, 1316–1326. [Google Scholar] [CrossRef] [PubMed]
- Patra, J.C.; Panda, G.; Baliarsingh, R. Artificial Neural Network-Based Nonlinearity Estimation of Pressure Sensors. IEEE Trans. Instrum. Meas. 1994, 43, 874–881. [Google Scholar] [CrossRef]
- Ma, C.; Li, G.; Qin, L.; Huang, W.; Zhang, H.; Liu, W.; Dong, T.; Li, S.T. Analytical Model of Micropyramidal Capacitive Pressure Sensors and Machine-Learning-Assisted Design. Adv. Mater. Technol. 2021, 6, 2100634. [Google Scholar] [CrossRef]
- Rosset, S.; Belk, S.; Mahmoudinezhad, M.H.; Anderson, I. Leveraging Machine Learning for Arrays of Soft Sensors. Electroact. Polym. Actuators Devices (EAPAD) XXV 2023, 12482, 58–67. [Google Scholar]
- Ghommem, M.; Puzyrev, V.; Najar, F. Deep Learning for Simultaneous Measurements of Pressure and Temperature Using Arch Resonators. Appl. Math. Model. 2021, 93, 728–744. [Google Scholar] [CrossRef]
- Cho, S.Y.; Lee, Y.; Lee, S.; Kang, H.; Kim, J.; Choi, J.; Ryu, J.; Joo, H.; Jung, H.T.; Kim, J. Finding Hidden Signals in Chemical Sensors Using Deep Learning. Anal. Chem. 2020, 9, 6529–6537. [Google Scholar] [CrossRef]
- Mei, Y.; Zhang, S.; Cao, Z.; Xia, T.; Yi, X.; Liu, Z. Deep Learning Assisted Pressure Sensing Based on Sagnac Interferometry Realized by Side-Hole Fiber. J. Light. Technol. 2023, 41, 784–793. [Google Scholar] [CrossRef]
- Cao, Z.; Lu, Z.; Zhang, Q.; Luo, D.; Chen, J.; Tian, Q.; Liu, Z.; Dong, Y. Flexible Optical Pressure Sensor with High Spatial Resolution Based on Deep Learning. In Proceedings of the Eighth Symposium on Novel Photoelectronic Detection Technology and Applications, Kunming, China, 7–9 December 2021. [Google Scholar]
- Sarkar, S.; Inupakutika, D.; Banerjee, M.; Tarhani, M.; Eghbal, M.K.; Shadaram, M. Discrimination of Strain and Temperature Effects on FBG-Based Sensor Using Machine Learning. In Proceedings of the 2020 IEEE Photonics Conference (IPC), Vancouver, BC, Canada, 28 September–1 October 2020; pp. 1–2. [Google Scholar]
- Sarkar, S.; Inupakutika, D.; Banerjee, M.; Tarhani, M.; Shadaram, M. Machine Learning Methods for Discriminating Strain and Temperature Effects on FBG-Based Sensors. IEEE Photonics Technol. Lett. 2021, 16, 876–879. [Google Scholar] [CrossRef]
- Xu, X.; Wang, Y.; Zhu, D.; Shi, J. Accurate Strain Extraction via Kernel Extreme Learning Machine for Fiber Bragg Grating Sensor. IEEE Sens. J. 2022, 8, 7792–7797. [Google Scholar] [CrossRef]
- Dong, X.; Li, Y.; Zhong, T.; Wu, N.; Wang, H. Random and Coherent Noise Suppression in DAS-VSP Data by Using a Supervised Deep Learning Method. IEEE Geosci. Remote. Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Ke, Y.; Lu, K.; Zhang, D. Learning Domain-Invariant Subspace Using Domain Features and Independence Maximization. IEEE Trans. Cybern. 2018, 48, 288–299. [Google Scholar]
- Ji, T.; Pang, Q.; Liu, X. An Intelligent Pressure Sensor Using Rough Set Neural Networks. In Proceedings of the 2006 IEEE International Conference on Information Acquisition, Veihai, China, 20–23 August 2006; pp. 717–721. [Google Scholar]
- Patra, J.C.; van den Bos, A. Auto-Calibration and -Compensation of a Capacitive Pressure Sensor Using Multilayer Perceptrons. ISA Trans. 2000, 2, 175–190. [Google Scholar] [CrossRef] [PubMed]
- Rivera, J.; Carrillo, M.; Chacón, M.; Herrera, G.; Bojorquez, G. Self-Calibration and Optimal Response in Intelligent Sensors Design Based on Artificial Neural Networks. Sensors 2007, 7, 1509–1529. [Google Scholar] [CrossRef]
- Chang, Y.; Cui, X.; Hou, G.; Jin, Y. Calibration of the Pressure Sensor Device with the Extreme Learning Machine. In Proceedings of the 2020 21st International Conference on Electronic Packaging Technology (ICEPT), Guangzhou, China, 12–15 August 2020; pp. 1–5. [Google Scholar]
- Depari, A.; Flammini, A.; Marioli, D.; Taroni, A. Application of an ANFIS Algorithm to Sensor Data Processing. IEEE Trans. Instrum. Meas. 2007, 56, 75–79. [Google Scholar] [CrossRef]
- Zhou, G.; Zhao, Y.; Guo, F.; Xu, W. A Smart High Accuracy Silicon Piezoresistive Pressure Sensor Temperature Compensation System. Sensors 2014, 7, 12174–12190. [Google Scholar] [CrossRef] [PubMed]
- Pramanik, C.; Islam, T.; Saha, H. Temperature Compensation of Piezoresistive Micro-Machined Porous Silicon Pressure Sensor by ANN. Microelectron. Reliab. 2006, 46, 343–351. [Google Scholar] [CrossRef]
- Futane, N.P.; Chowdhury, S.R.; Chowdhury, C.R.; Saha, H. ANN Based CMOS ASIC Design for Improved Temperature-Drift Compensation of Piezoresistive Micro-Machined High Resolution Pressure Sensor. Microelectron. Reliab. 2010, 50, 282–291. [Google Scholar] [CrossRef]
- Gao, Y.; Qiu, Y.; Chen, H.; Huang, Y.; Li, G. Four-Channel Fiber Loop Ring-down Pressure Sensor with Temperature Compensation Based on Neural Networks. Microw. Opt. Technol. Lett. 2010, 8, 1796–1799. [Google Scholar] [CrossRef]
- Chen, H.; Aggarwal, P.; Taha, T.M.; Chodavarapu, V.P. Improving Inertial Sensor by Reducing Errors Using Deep Learning Methodology. In Proceedings of the NAECON 2018—IEEE National Aerospace and Electronics Conference, Dayton, OH, USA, 23–26 July 2018; pp. 197–202. [Google Scholar]
- Kim, D.E.; Kim, K.S.; Park, J.H.; Ailing, L.; Lee, J.M. Stable Grasping of Objects using Air Pressure Sensors on a Robot Hand. In Proceedings of the 2018 18th International Conference on Control, Automation and Systems (ICCAS), PyeongChang, Republic of Korea, 17–20 October 2018; pp. 500–502. [Google Scholar]
- Shenghan Gao, S.; Zheng, C.; Zhao, Y.; Wu, Z.; Li, J.; Huang, X. Comparison of Enhancement Techniques Based on Neural Networks for Attenuated Voice Signal Captured by Flexible Vibration Sensors on Throats. Nanotechnol. Precis. Eng. 2022, 1, 013001. [Google Scholar]
- Larson, C.; Spjut, J.; Knepper, R.; Shepherd, R. A Deformable Interface for Human Touch Recognition Using Stretchable Carbon Nanotube Dielectric Elastomer Sensors and Deep Neural Networks. Soft Robot. 2019, 6, 611–620. [Google Scholar] [CrossRef]
- Kim, D.W.; Kwon, J.; Jeon, B.; Park, Y.L. Adaptive Calibration of Soft Sensors Using Optimal Transportation Transfer Learning for Mass Production and Long-Term Usage. Adv. Intell. Syst. 2020, 6, 1900178. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, S.; Li, S.; Wu, Z.; Li, Y.; Li, Z.; Chen, X.; Shi, C.; Chen, P.; Zhang, P.; et al. A Soft Magnetoelectric Finger for Robots’ Multidirectional Tactile Perception in Non-Visual Recognition Environments. NPJ Flex. Electron. 2024, 8, 2. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, S.H.; Heo, J.S.; Kwak, J.Y.; Park, C.W.; Kim, I.; Lee, M.; Park, H.H.; Kim, Y.H.; Lee, S.J.; et al. Heterogeneous Structure Omnidirectional Strain Sensor Arrays With Cognitively Learned Neural Networks. Adv. Mater. 2023, 13, 2208184. [Google Scholar] [CrossRef]
- Kondratenko, Y.; Atamanyuk, I.; Sidenko, I.; Kondratenko, G.; Sichevskyi, S. Machine Learning Techniques for Increasing Efficiency of the Robot’s Sensor and Control Information Processing. Sensors 2022, 3, 1062. [Google Scholar] [CrossRef]
- Levins, M.; Lang, H. A Tactile Sensor for an Anthropomorphic Robotic Fingertip Based on Pressure Sensing and Machine Learning. IEEE Sens. J. 2020, 22, 13284–13290. [Google Scholar] [CrossRef]
- Xu, Z.; Zheng, Y.; Rawashdeh, S.A. A Simple Robotic Fingertip Sensor Using Imaging and Shallow Neural Networks. IEEE Sens. J. 2019, 19, 8878–8886. [Google Scholar] [CrossRef]
- Hellebrekers, T.; Kroemer, O.; Majidi, C. Soft Magnetic Skin for Continuous Deformation Sensing. Adv. Intell. Syst. 2019, 1, 1900025. [Google Scholar] [CrossRef]
- Gandarias, J.M.; Gomez-de-Gabriel, J.M.; Garcia-Cerezo, A. Human and Object Recognition with a High-Resolution Tactile Sensor. In Proceedings of the 2017 IEEE SENSORS, Glasgow, UK, 29 October–1 November 2017; pp. 1–3. [Google Scholar]
- Hongbin, L.; Xiaojing, S.; Thrishantha, N.; Lakmal, D.S.; Kaspar, A. A Computationally Fast Algorithm for Local Contact Shape and Pose Classification Using a Tactile Array Sensor. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, 14–18 May 2012; pp. 1410–1415. [Google Scholar]
- Castaño, F.; Beruvides, G.; Haber, R.E.; Artuñedo, A. Obstacle Recognition Based on Machine Learning for On-Chip LiDAR Sensors in a Cyber-Physical System. Sensors 2017, 9, 2109. [Google Scholar] [CrossRef]
- Jamali, N.; Sammut, C. Majority Voting: Material Classification by Tactile Sensing Using Surface Texture. IEEE Trans. Robot. 2011, 27, 508–521. [Google Scholar] [CrossRef]
- Yao, H.; Li, P.; Cheng, W.; Yang, W.; Yang, Z.; Ali, H.P.A.; Guo, H.; Tee, B.C.K. Environment-Resilient Graphene Vibrotactile Sensitive Sensors for Machine Intelligence. ACS Mater. Lett. 2020, 8, 986–992. [Google Scholar] [CrossRef]
- King, D.; Lyons, W.B.; Flanagan, C.; Lewis, E. An Optical-Fiber Sensor for Use in Water Systems Utilizing Digital Signal Processing Techniques and Artificial Neural Network Pattern Recognition. IEEE Sens. J. 2004, 4, 21–27. [Google Scholar] [CrossRef]
- Hwang, Y.J.; Yu, H.; Lee, G.; Shackery, I.; Seong, J.; Jung, Y.; Sung, S.H.; Choi, J.; Jun, S.C. Multiplexed DNA-Functionalized Graphene Sensor with Artificial Intelligence-Based Discrimination Performance for Analyzing Chemical Vapor Compositions. Microsyst. Nanoeng. 2023, 9, 28. [Google Scholar] [CrossRef]
- Craven, M.A.; Gardner, J.W.; Bartlett, P.N. Electronic Noses—Development and Future Prospects. TrAC Trends Anal. Chem. 1996, 9, 486–493. [Google Scholar] [CrossRef]
- Zhan, C.; He, J.; Pan, M.; Luo, D. Component Analysis of Gas Mixture Based on One-Dimensional Convolutional Neural Network. Sensors 2021, 21, 347. [Google Scholar] [CrossRef]
- Nguyen, X.A.; Gong, S.; Cheng, W.; Chauhan, S. A Stretchable Gold Nanowire Sensor and Its Characterization Using Machine Learning for Motion Tracking. IEEE Sens. J. 2021, 13, 15269–15276. [Google Scholar] [CrossRef]
- Hegde, N.; Bries, M.; Swibas, T.; Melanson, E.; Sazonov, E. Automatic Recognition of Activities of Daily Living Utilizing Insole-Based and Wrist-Worn Wearable Sensors. IEEE J. Biomed. Health Inform. 2018, 4, 979–988. [Google Scholar] [CrossRef]
- Jiang, Y.; Sadeqi, A.; Miller, E.L.; Sonkusale, S. Head Motion Classification Using Thread-Based Sensor and Machine Learning Algorithm. Sci. Rep. 2021, 11, 2646. [Google Scholar] [CrossRef]
- Anderson, W.; Choffin, Z.; Jeong, N.; Callihan, M.; Jeong, S.; Sazonov, E. Empirical Study on Human Movement Classification Using Insole Footwear Sensor System and Machine Learning. Sensors 2022, 22, 2743. [Google Scholar] [CrossRef]
- Kobsar, D.; Ferber, R. Wearable Sensor Data to Track Subject-Specific Movement Patterns Related to Clinical Outcomes Using a Machine Learning Approach. Sensors 2018, 9, 2828. [Google Scholar] [CrossRef]
- Islam, M.; Tabassum, M.; Nishat, M.M.; Faisal, F.; Hasan, M.S. Real-Time Clinical Gait Analysis and Foot Anomalies Detection Using Pressure Sensors and Convolutional Neural Network. In Proceedings of the 2022 7th International Conference on Business and Industrial Research (ICBIR), Bangkok, Thailand, 19–20 May 2022; pp. 717–722. [Google Scholar]
- Luo, J.; Wang, Z.; Xu, L.; Wang, A.C.; Han, K.; Jiang, T.; Lai, Q.; Bai, Y.; Tang, W.; Fan, F.R.; et al. Flexible and Durable Wood-Based Triboelectric Nanogenerators for Self-Powered Sensing in Athletic Big Data Analytics. Nat. Commun. 2019, 10, 5147. [Google Scholar] [CrossRef]
- Hassan, M.M.; Uddin, M.Z.; Mohamed, A.; Almogren, A. A Robust Human Activity Recognition System Using Smartphone Sensors and Deep Learning. Future Gener. Comput. Syst. 2018, 81, 307–313. [Google Scholar] [CrossRef]
- Wen, Z.; Yang, Y.; Sun, N.; Li, G.; Liu, Y.; Chen, C.; Shi, J.; Xie, L.; Jiang, H.; Bao, D.; et al. A Wrinkled PEDOT: PSS Film Based Stretchable and Transparent Triboelectric Nanogenerator for Wearable Energy Harvesters and Active Motion Sensors. Adv. Funct. Mater. 2018, 28, 1803684. [Google Scholar] [CrossRef]
- Mani, N.; Haridoss, P.; George, B. Smart Suspenders with Sensors and Machine Learning for Human Activity Monitoring. IEEE Sens. J. 2023, 23, 10159–10167. [Google Scholar] [CrossRef]
- Xie, Y.; Wu, X.; Huang, X.; Liang, Q.; Deng, S.; Wu, Z.; Yao, Y.; Lu, L. A Deep Learning-Enabled Skin-Inspired Pressure Sensor for Complicated Recognition Tasks with Ultralong Life. Research 2023, 6, 0157. [Google Scholar] [CrossRef]
- Gholami, M.; Ejupi, A.; Rezaei, A.; Ferrone, A.; Menon, C. Estimation of Knee Joint Angle Using a Fabric-Based Strain Sensor and Machine Learning: A Preliminary Investigation. In Proceedings of the 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob), Enschede, The Netherlands, 26–29 August 2018; pp. 589–594. [Google Scholar]
- Zhou, Z.; Chen, K.; Li, X.; Zhang, S.; Wu, Y.; Zhou, Y.; Meng, K.; Sun, C.; He, Q.; Fan, W.; et al. Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat. Electron. 2020, 3, 571–578. [Google Scholar] [CrossRef]
- Krishnan, K.S.; Saha, A.; Ramachandran, S.; Kumar, S. Recognition of Human Arm Gestures Using Myo Armband for the Game of Hand Cricket. In Proceedings of the 2017 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS), Ottawa, ON, Canada, 5–7 October 2017; pp. 389–394. [Google Scholar]
- Gonzalez-Cely, A.X.; Bastos-Filho, T.; Diaz, C.A.R. Wheelchair Posture Classification Based on POF Pressure Sensors and Machine Learning Algorithms. In Proceedings of the 2022 IEEE Latin American Electron Devices Conference (LAEDC), Cancun, Mexico, 4–6 July 2022; pp. 1–4. [Google Scholar]
- Roh, J.; Park, H.J.; Lee, K.J.; Hyeong, J.; Kim, S.; Lee, B. Sitting Posture Monitoring System Based on a Low-Cost Load Cell Using Machine Learning. Sensors 2018, 18, 208. [Google Scholar] [CrossRef]
- Lee, H.J.; Yang, J.C.; Choi, J.; Kim, J.; Lee, G.S.; Sasikala, S.P.; Lee, G.H.; Park, S.H.K.; Lee, H.M.; Sim, J.Y.; et al. Hetero-Dimensional 2D Ti3C2Tx MXene and 1D Graphene Nanoribbon Hybrids for Machine Learning-Assisted Pressure Sensors. ACS Nano 2021, 15, 10347–10356. [Google Scholar] [CrossRef]
- Zemp, R.; Tanadini, M.; Plüss, S.; Schnüriger, K.; Singh, N.B.; Taylor, W.R.; Lorenzetti, S. Application of Machine Learning Approaches for Classifying Sitting Posture Based on Force and Acceleration Sensors. BioMed Res. Int. 2016, 2016, 5978489. [Google Scholar] [CrossRef]
- Rodríguez, A.P.; Gil, D.; Nugent, C.; Quero, J.M. In-Bed Posture Classification from Pressure Mat Sensors for the Prevention of Pressure Ulcers Using Convolutional Neural Networks. Bioinform. Biomed. Eng. 2020, 8, 338–349. [Google Scholar]
- Bourahmoune, K.; Amagasa, T. AI-Powered Posture Training: Application of Machine Learning in Sitting Posture Recognition Using the LifeChair Smart Cushion. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence AI for Improving Human Well-Being, Macao, China, 10–16 August 2019; pp. 5808–5814. [Google Scholar]
- Zhong, H.; Fu, R.; Chen, S.; Zhou, Z.; Zhang, Y.; Yin, X.; He, B. Large-Area Flexible MWCNT/PDMS Pressure Sensor for Ergonomic Design with Aid of Deep Learning. Nanotechnology 2022, 33, 345502. [Google Scholar] [CrossRef]
- Green, C.; Bouchard, M.; Goubran, R.; Robillard, R.; Higginson, C.; Lee, E.; Knoefel, F. Sleep-Wake and Body Position Classification with Deep Learning Using Pressure Sensor Mat Measurements. In Proceedings of the 2023 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Jeju, Republic of Korea, 14–16 June 2023; pp. 1–6. [Google Scholar]
- Huang, K.-H.; Tan, F.; Wang, T.-D.; Yang, Y.-J. A Highly Sensitive Pressure-Sensing Array for Blood Pressure Estimation Assisted by Machine-Learning Techniques. Sensors 2019, 19, 848. [Google Scholar] [CrossRef]
- Gudiño-Ochoa, A.; García-Rodríguez, J.A.; Ochoa-Ornelas, R.; Cuevas-Chávez, J.I.; Sánchez-Arias, D.A. Noninvasive Diabetes Detection through Human Breath Using TinyML-Powered E-Nose. Sensors 2024, 24, 1294. [Google Scholar] [CrossRef]
- Roberts, M.; Driggs, D.; Thorpe, M.; Gilbey, J.; Yeung, M.; Ursprung, S.; Aviles-Rivero, A.I.; Etmann, C.; McCague, C.; Beer, L.; et al. Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans. Nat. Mach. Intell. 2021, 3, 199–217. [Google Scholar] [CrossRef]
- Zhou, Y.; Shen, M.; Cui, X.; Shao, Y.; Li, L.; Zhang, Y. Triboelectric Nanogenerator Based Self-Powered Sensor for Artificial Intelligence. Nano Energy 2021, 84, 105887. [Google Scholar] [CrossRef]
- Wu, C.; Ding, W.; Liu, R.; Wang, J.; Wang, A.; Wang, J.; Li, S.; Zi, Y.; Wang, Z.L. Keystroke Dynamics Enabled Authentication and Identification using Triboelectric Nanogenerator Array. Mater. Today 2018, 21, 216–222. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, G.; Yang, J.; Jing, Q.; Bai, P.; Yang, W.; Qi, X.; Su, Y.; Wang, Z.L. Personalized Keystroke Dynamics for Self-Powered Human–Machine Interfacing. ACS Nano 2015, 9, 105–116. [Google Scholar] [CrossRef]
- Zhang, W.; Deng, L.; Yang, L.; Yang, P.; Diao, D.; Wang, P.; Wang, Z.L. Multilanguage-handwriting self-powered recognition based on triboelectric nanogenerator enabled machine learning. Nano Energy 2020, 77, 105174. [Google Scholar] [CrossRef]
- Shi, Q.; Zhang, Z.; He, T.; Sun, Z.; Wang, B.; Feng, Y.; Shan, X.; Salam, B.; Lee, C. Deep Learning Enabled Smart Mats as a Scalable Floor Monitoring System. Nat. Commun. 2020, 11, 4609. [Google Scholar] [CrossRef]
- Han, J.H.; Min, B.K.; Hong, S.K.; Park, H.; Kwak, J.; Wang, H.S.; Joe, D.J.; Park, J.H.; Jung, Y.H.; Hur, S.; et al. Machine Learning-Based Self-Powered Acoustic Sensor for Speaker Recognition. Nano Energy 2018, 53, 658–665. [Google Scholar] [CrossRef]
- Zhuo, W.; Ziyang, C.; Lin, M.; Qi, W.; Heng, W.; Leal-Junior, A.; Xiaoli, L.; Carlos, M.; Rui, M. Optical Microfiber Intelligent Sensor: Wearable Cardiorespiratory and Behavior Monitoring with a Flexible Wave-Shaped Polymer Optical Microfiber. ACS Appl. Mater. Interfaces 2024, 16, 8333–8345. [Google Scholar]
- Li, C.; Sánchez, R.-V.; Zurita, G.; Cerrada, M.; Cabrera, D. Fault Diagnosis for Rotating Machinery Using Vibration Measurement Deep Statistical Feature Learning. Sensors 2016, 16, 895. [Google Scholar] [CrossRef]
- Tao, J.; Liu, Y.; Yang, D. Bearing Fault Diagnosis Based on Deep Belief Network and Multisensor Information Fusion. Shock Vib. 2016, 2016, 9306205. [Google Scholar] [CrossRef]
- Yun, J.; Lee, S.-S. Human Movement Detection and Identification Using Pyroelectric Infrared Sensors. Sensors 2014, 14, 8057–8081. [Google Scholar] [CrossRef]
- Gao, J.; Li, Z.; Chen, Z. Dual-Mode Pressure Sensor Integrated with Deep Learning Algorithm for Joint State Monitoring in Tennis Motion. J. Sens. 2023, 2023, 5079256. [Google Scholar] [CrossRef]
- Wen, L.; Nie, M.; Chen, P.; Zhao, Y.N.; Shen, J.; Wang, C.; Xiong, Y.; Yin, K.; Sun, L. Wearable Multimode Sensor with a Seamless Integrated Structure for Recognition of Different Joint Motion States with the Assistance of a Deep Learning Algorithm. Microsyst. Nanoeng. 2022, 8, 24. [Google Scholar] [CrossRef]
- Polat, B.; Becerra, L.L.; Hsu, P.; Kaipu, V.; Mercier, P.P.; Cheng, C.; Lipomi, D.J. Epidermal Graphene Sensors and Machine Learning for Estimating Swallowed Volume. ACS Appl. Nano Mater. 2021, 4, 8126–8134. [Google Scholar] [CrossRef]
- Orii, H.; Tsuji, S.; Kouda, T.; Kohama, T. Tactile Texture Recognition Using Convolutional Neural Networks for Time-Series Data of Pressure and 6-Axis Acceleration Sensor. In Proceedings of the 2017 IEEE International Conference on Industrial Technology (ICIT), Toronto, ON, Canada, 22–25 March 2017; pp. 1076–1080. [Google Scholar]
- Tsuji, S.; Kohama, T. Using a Convolutional Neural Network to Construct a Pen-Type Tactile Sensor System for Roughness Recognition. Sens. Actuators A Phys. 2019, 291, 7–12. [Google Scholar] [CrossRef]
- Thuruthel, T.G.; Iida, F. Multimodel Sensor Fusion for Learning Rich Models for Interacting Soft Robots. In Proceedings of the 2023 IEEE International Conference on Soft Robotics (RoboSoft), Singapore, 3–7 April 2023; pp. 1–6. [Google Scholar]
- Luo, Y.; Xiao, X.; Chen, J.; Li, Q.; Fu, H. Machine-Learning-Assisted Recognition on Bioinspired Soft Sensor Arrays. ACS Nano 2022, 4, 6734–6743. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, S.; Zhao, Y.; Zhong, Z.; Zuo, L. Discriminating Soft Actuators’ Thermal Stimuli and Mechanical Deformation by Hydrogel Sensors and Machine Learning. Adv. Intell. Syst. 2022, 9, 2200089. [Google Scholar] [CrossRef]
- Sohn, K.S.; Chung, J.; Cho, M.Y.; Timilsina, S.; Park, W.B.; Pyo, M.; Shin, N.; Sohn, K.; Kim, J.S. An Extremely Simple Macroscale Electronic Skin Realized by Deep Machine Learning. Sci. Rep. 2017, 7, 11061. [Google Scholar] [CrossRef]
- Luo, S.; Mou, W.; Li, M.; Althoefer, K.; Liu, H. Rotation and Translation Invariant Object Recognition with a Tactile Sensor. In Proceedings of the SENSORS, 2014 IEEE, Valencia, Spain; 2014; pp. 1030–1033. [Google Scholar]
- Wang, J.; Xie, J.; Zhao, R.; Zhang, L.; Duan, L. Multisensory Fusion Based Virtual Tool Wear Sensing for Ubiquitous Manufacturing. Robot. Comput. Integr. Manuf. 2017, 45, 47–58. [Google Scholar] [CrossRef]
- Suzuki, S.; Kondoh, J. Cantilever Damage Evaluation Using Impedance-Loaded SAW Sensor with Continuous Wavelet Analysis and Machine Learning. Jpn. J. Appl. Phys. 2021, 60, SDDC09. [Google Scholar] [CrossRef]
- Rente, B.; Fabian, M.; Vidakovic, M.; Liu, X.; Li, X.; Li, K.; Sun, T.; Grattan, K.T.V. Lithium-Ion Battery State-of-Charge Estimator Based on FBG-Based Strain Sensor and Employing Machine Learning. IEEE Sens. J. 2021, 2, 1453–1460. [Google Scholar] [CrossRef]
- Kuwahara, N.; Wada, K. Bed-Leaving Prediction Using a Sheet-Type Pressure-Sensitive Sensor Base with Deep-Learning. J. Fiber Sci. Technol. 2017, 12, 343–347. [Google Scholar] [CrossRef]
- Moore, S.R.; Kranzinger, C.; Fritz, J.; Stöggl, T.; Kröll, J.; Schwameder, H. Foot Strike Angle Prediction and Pattern Classification Using LoadsolTM Wearable Sensors: A Comparison of Machine Learning Techniques. Sensors 2020, 20, 6737. [Google Scholar] [CrossRef]
- Choffin, Z.; Jeong, N.; Callihan, M.; Olmstead, S.; Sazonov, E.; Thakral, S.; Getchell, C.; Lombardi, V. Ankle Angle Prediction Using a Footwear Pressure Sensor and a Machine Learning Technique. Sensors 2021, 21, 3790. [Google Scholar] [CrossRef]
- Agrawal, D.K.; Usaha, W.; Pojprapai, S.; Wattanapan, P. Fall Risk Prediction Using Wireless Sensor Insoles With Machine Learning. IEEE Access 2023, 11, 23119–23126. [Google Scholar] [CrossRef]
- Bilgera, C.; Yamamoto, A.; Sawano, M.; Matsukura, H.; Ishida, H. Application of Convolutional Long Short-Term Memory Neural Networks to Signals Collected from a Sensor Network for Autonomous Gas Source Localization in Outdoor Environments. Sensors 2018, 12, 4484. [Google Scholar] [CrossRef]
- Zhao, R.; Yan, R.; Wang, J.; Mao, K. Learning to Monitor Machine Health with Convolutional Bi-Directional LSTM Networks. Sensors 2017, 17, 273. [Google Scholar] [CrossRef]
- Lepora, N.F.; Church, A.; De Kerckhove, C.; Hadsell, R.; Lloyd, J. From Pixels to Percepts: Highly Robust Edge Perception and Contour Following Using Deep Learning and an Optical Biomimetic Tactile Sensor. IEEE Robot. Autom. Lett. 2019, 4, 2101–2107. [Google Scholar] [CrossRef]
- Guo, W.; Wang, Y.; Chen, X.; Jiang, P. Federated transfer learning for auxiliary classifier generative adversarial networks: Framework and industrial application. J. Intell. Manuf. 2024, 35, 1439–1454. [Google Scholar] [CrossRef]
- Tsuboi, Y.; Sakai, Y.; Shimizu, R.; Goto, M. Multiple treatment effect estimation for business analytics using observational data. Cogent Eng. 2024, 11, 2300557. [Google Scholar] [CrossRef]
- He, Y.; Lin, J.; Liu, Z.; Wang, H.; Li, L.; Han, S. AMC: AutoML for Model Compression and Acceleration on Mobile Devices. In Computer Vision–ECCV 2018, Proceedings of the 15th European Conference, Munich, Germany, September 8–14 2018; Springer: Cham, Switzerland; pp. 815–832.
- Satyanarayanan, M. The Emergence of Edge Computing. Computer 2017, 50, 30–39. [Google Scholar] [CrossRef]
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [Google Scholar] [CrossRef]
- Chai, Y. Silicon photodiodes that multiply. Nat. Electron. 2022, 5, 483–484. [Google Scholar] [CrossRef]
- Wan, T.; Shao, B.; Ma, S.; Zhou, Y.; Li, Q.; Chai, Y. In-Sensor Computing: Materials, Devices, and Integration Technologies. Adv. Mater. 2023, 35, 2203830. [Google Scholar] [CrossRef]
Sensor Category | AI Methods | Accuracy (%) | Advantage | Disadvantage | Reference | ||
---|---|---|---|---|---|---|---|
Sensor design | Pressure sensor | MLP | 99 | 1. Reduce design time and costs; 2. Enhance sensitivity; 3. Improve signal-to-noise ratio and increase precision. | 1. Require substantial training data; 2. Unable to predict performance changes over time. | [44,45,48,51,52,54] | |
KNN, LDA, DT | 99 | ||||||
FLANN, BP | 97 | ||||||
Fiber Bragg grating (FBG) sensor | GBR | 90 | |||||
RFR, GBR, ABR | 90 | ||||||
Calibration and compensation | Capacitive pressure sensor | MLP | 99.5 | 1. Enhance calibration accuracy and speed while reducing calibration costs; 2. Minimize sensor drift during operation. | 1. Require substantial training data; 2. Lacks interpretability for guiding sensor design improvements; 3. Potentially underperform in new environments. | [40,56,57,60,63,66] | |
FLANN | 98 | ||||||
RSNN | 75 | ||||||
Peizoresistive pressure sensor | ANN | 98 | |||||
ANN | 99.9 | ||||||
Fiber ring-down pressure sensor | ANN | 95 | |||||
Inertial sensor | CNN | 80 | |||||
Temperature sensor | MLP, RBF, BP | 99.83 | |||||
Object recognition and classification | Unidimensional data | Pressure sensor | RF | 98.93 | 1. Increase classification accuracy; 2. Reduce recognition errors due to environmental changes. | 1. Insufficient training data can lead to overfitting; 2. Challenging to identify the optimal recognition model structure. | [69,72,80,94,105,112] |
Flexible full-textile pressure sensor | CNN | 93.61 | |||||
Textile triboelectric sensor | SFNN | 98.8 | |||||
Bioelectric sensor | SVM | 92 | |||||
Inertial sensor | MPNN | 95 | |||||
Acoustic sensor | GMM | 97.5 | |||||
Vibration sensor | GDBM | 95.17 | |||||
Vibrotactile sensor | KNN | 97 | |||||
Multi-dimensional data | Pressure sensor + acceleration sensor | CNN | 94.4 | 1. Enhance classification accuracy; 2. Handle multi-source data for complex recognition tasks; 3. Ensure rapid response for real-time processing. | Sensor placement significantly impacts recognition outcomes. | [119,122,123,126,130,132] | |
RF, SVM, LightGBM | 90.9 | ||||||
Pressure sensor + material sensor | MLP | 98.9 | |||||
Pressure sensor + strain sensor | LSTM | 97.13 | |||||
Strain sensor + position sensor | DNN | 99 | |||||
Strain sensor + composite piezoresistive sensor | SVM | 92 | |||||
Temperature sensor + deformation sensor | CNN | 86.3 | |||||
Carbon dioxide sensor + temperature-humidity sensor + metal oxide semiconductor sensor | SVM-RFE, CBR | 95 | |||||
Prediction | Pressure sensor | MR, TREE, FRST | 94.1 | 1. Improve prediction accuracy and real-time capabilities; 2. Address complex nonlinear forecasting issues. | Limited generalizability and robustness, with unknown predictive capability for untrained scenarios. | [18,133,135,137,138,139] | |
KNN | 93 | ||||||
SVM, RF, LR, NB | 81 | ||||||
CNN, AE | 92 | ||||||
Iontronic pressure sensor | FCN | 91.8 | |||||
Gas sensor | CNN-LSTM | 93.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Xia, C.; Zhao, Z.; Fu, H.; Chen, Y. AI-Driven Sensing Technology: Review. Sensors 2024, 24, 2958. https://doi.org/10.3390/s24102958
Chen L, Xia C, Zhao Z, Fu H, Chen Y. AI-Driven Sensing Technology: Review. Sensors. 2024; 24(10):2958. https://doi.org/10.3390/s24102958
Chicago/Turabian StyleChen, Long, Chenbin Xia, Zhehui Zhao, Haoran Fu, and Yunmin Chen. 2024. "AI-Driven Sensing Technology: Review" Sensors 24, no. 10: 2958. https://doi.org/10.3390/s24102958