Scientometric Research and Critical Analysis of Gait and Balance in Older Adults
Abstract
:1. Introduction
2. Research Methodology
3. Visual Scientometric Analysis
3.1. Yearly Quantitative Analysis of Academic Publications
3.2. Timeline
3.3. Leading Journals and Conference Proceedings
3.4. Keywords
3.5. Country
3.6. Author
4. Research Approaches for Gait and Balance
4.1. Experimental Studies
4.2. Observational Studies
4.3. Computational Modelling
5. Research Contents of Gait and Balance
5.1. Participants
5.2. Environments
6. Discussion and Limitations
- (1)
- Gait and balance research usually refers to “older individuals” and “balance”, which suggests that older persons have been the primary research subjects for studies of gait and balance as shown in Figure 3. The experimental sample was primarily composed of elderly residents of the community who were not receiving any care.
- (2)
- The analysis and characterisation of experimental results in the area of gait and balance depend heavily on physical performance evaluation. Significantly, as seen in Figure 4, research on particular populations and disorders, like Alzheimer’s disease, is centred in two main groups, namely Cluster #1 and Cluster #9.
- (3)
- A significant portion of the keyword analysis is devoted to the research of gait speed and walking speed, as illustrated in Figure 3, and speed in balance is a crucial evaluation criterion.
- (4)
- Figure 3 shows that the terms fall prevention, posture control, etc. are commonly used in keyword searches, thus it is important to prioritise posture control research using different tools like virtual reality, artificial intelligence algorithms, wearable sensors, etc.
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salzman, B. Gait and balance disorders in older adults. Am. Fam. Physician 2010, 82, 61–68. [Google Scholar] [PubMed]
- Osoba, M.Y.; Rao, A.K.; Agrawal, S.K.; Lalwani, A.K. Balance and gait in the elderly: A contemporary review. Laryngoscope Investig. Otolaryngol. 2019, 4, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Reelick, M.F.; van Iersel, M.B.; Kessels, R.P.C.; Rikkert, M.G.M.O. The influence of fear of falling on gait and balance in older people. Age Ageing 2009, 38, 435–440. [Google Scholar] [CrossRef]
- Iersel, M.B.V.; Kessels, R.P.C.; Bloem, B.R.; Verbeek, A.L.M.; Rikkert, M.G.M.O. Executive functions are associated with gait and balance in community-living elderly people. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2008, 63, 1344–1349. [Google Scholar] [CrossRef] [PubMed]
- Visser, H. Gait and balance in senile dementia of Alzheimer’s type. Age Ageing 1983, 12, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Peshkin, M.; Brown, D.; Santos-Munne, J.; Makhlin, A.; Lewis, E.; Colgate, J.; Patton, J.; Schwandt, D. KineAssist: A robotic overground gait and balance training device. In Proceedings of the 9th International Conference on Rehabilitation Robotics, 2005, ICORR 2005, Chicago, IL, USA, 28 June–1 July 2005. [Google Scholar]
- Wolfson, L.J.T.N. Gait and balance dysfunction: A model of the interaction of age and disease. Neuroscientist 2001, 7, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Canning, C.G.; Allen, N.E.; Nackaerts, E.; Paul, S.S.; Nieuwboer, A.; Gilat, M. Virtual reality in research and rehabilitation of gait and balance in Parkinson disease. Nat. Rev. Neurol. 2020, 16, 409–425. [Google Scholar] [CrossRef]
- Furnari, A.; Calabrò, R.S.; Gervasi, G.; La Fauci-Belponer, F.; Marzo, A.; Berbiglia, F.; Paladina, G.; De Cola, M.C.; Bramanti, P. Is hydrokinesitherapy effective on gait and balance in patients with stroke? A clinical and baropodometric investigation. Brain Inj. 2014, 28, 1109–1114. [Google Scholar] [CrossRef]
- Baloh, R.W.; Ying, S.H.; Jacobson, K.M. A longitudinal study of gait and balance dysfunction in normal older people. Arch. Neurol. 2003, 60, 835–839. [Google Scholar] [CrossRef]
- Bahureksa, L.; Najafi, B.; Saleh, A.; Sabbagh, M.; Coon, D.; Mohler, M.J.; Schwenk, M. The impact of mild cognitive impairment on gait and balance: A systematic review and meta-analysis of studies using instrumented assessment. Gerontology 2017, 63, 67–83. [Google Scholar] [CrossRef]
- Fukagawa, N.K.; Wolfson, L.; Judge, J.; Whipple, R.; King, M. Strength is a major factor in balance, gait, and the occurrence of falls. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 1995, 50, 64–67. [Google Scholar] [CrossRef]
- Bloem, B.R.; Marinus, J.; Almeida, Q.; Dibble, L.; Nieuwboer, A.; Post, B.; Ruzicka, E.; Goetz, C.; Stebbins, G.; Martinez-Martin, P.; et al. Measurement instruments to assess posture, gait, and balance in Parkinson’s disease: Critique and recommendations. Mov. Disord. 2016, 31, 1342–1355. [Google Scholar] [CrossRef]
- Shanahan, C.J.; Boonstra, F.M.C.; Lizama, L.E.C.; Strik, M.; Moffat, B.A.; Khan, F.; Kilpatrick, T.J.; Van Der Walt, A.; Galea, M.P.; Kolbe, S.C. Technologies for advanced gait and balance assessments in people with multiple sclerosis. Front. Neurol. 2018, 8, 708. [Google Scholar] [CrossRef]
- Allet, L.; Armand, S.; de Bie, R.A.; Golay, A.; Monnin, D.; Aminian, K.; Staal, J.B.; de Bruin, E.D. The gait and balance of patients with diabetes can be improved: A randomised controlled trial. Diabetologia 2010, 53, 458–466. [Google Scholar] [CrossRef]
- Lei, C.; Sunzi, K.; Dai, F.; Liu, X.; Wang, Y.; Zhang, B.; He, L.; Ju, M. Effects of virtual reality rehabilitation training on gait and balance in patients with Parkinson’s disease: A systematic review. PLoS ONE 2019, 14, e0224819. [Google Scholar] [CrossRef]
- Martin, C.L.; Phillips, B.A.; Kilpatrick, T.J.; Butzkueven, H.; Tubridy, N.; McDonald, E.; Galea, M.P. Gait and balance impairment in early multiple sclerosis in the absence of clinical disability. Mult. Scler. J. 2006, 12, 620–628. [Google Scholar] [CrossRef]
- Rasch, A.; Dalén, N.; Berg, H.E. Muscle strength, gait, and balance in 20 patients with hip osteoarthritis followed for 2 years after THA. Acta Orthop. 2010, 81, 183–188. [Google Scholar] [CrossRef]
- Hidler, J.; Brennan, D.; Black, I.; Nichols, D.; Brady, K.; Nef, T. ZeroG: Overground gait and balance training system. J. Rehabil. Res. Dev. 2011, 48, 287–298. [Google Scholar] [CrossRef]
- Welter, M.-L.; Demain, A.; Ewenczyk, C.; Czernecki, V.; Lau, B.; El Helou, A.; Belaid, H.; Yelnik, J.; François, C.; Bardinet, E.; et al. PPNa-DBS for gait and balance disorders in Parkinson’s disease: A double-blind, randomised study. J. Neurol. 2015, 262, 1515–1525. [Google Scholar] [CrossRef]
- Oates, A.R.; Arora, T.; Lanovaz, J.L.; Musselman, K.E. The effects of light touch on gait and dynamic balance during normal and tandem walking in individuals with an incomplete spinal cord injury. Spinal Cord 2021, 59, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.; Jankovic, J.; Suteerawattananon, M.; Wankadia, S.; Caroline, K.S.; Vuong, K.D.; Protas, E. Clinical gait and balance scale (GABS): Validation and utilization. J. Neurol. Sci. 2004, 217, 89–99. [Google Scholar] [CrossRef]
- Robinson, J.; Dixon, J.; Macsween, A.; van Schaik, P.; Martin, D. The effects of exergaming on balance, gait, technology acceptance and flow experience in people with multiple sclerosis: A randomized controlled trial. BMC Sports Sci. Med. Rehabil. 2015, 7, 8. [Google Scholar] [CrossRef]
- Dewey, D.C.; Miocinovic, S.; Bernstein, I.; Khemani, P.; Dewey, R.B.; Querry, R.; Chitnis, S. Automated gait and balance parameters diagnose and correlate with severity in Parkinson disease. J. Neurol. Sci. 2014, 345, 131–138. [Google Scholar] [CrossRef]
- Muňoz, V.M.; van Kan, G.A.; Cantet, C.R.; Cortes, F.; Ousset, P.-J.; Rolland, Y.; Vellas, B. Gait and balance impairments in Alzheimer disease patients. Alzheimer Dis. Assoc. Disord. 2010, 24, 79–84. [Google Scholar] [CrossRef]
- Basford, J.R.; Chou, L.-S.; Kaufman, K.R.; Brey, R.H.; Walker, A.; Malec, J.F.; Moessner, A.M.; Brown, A.W. An assessment of gait and balance deficits after traumatic brain injury. Arch. Phys. Med. Rehabil. 2003, 84, 343–349. [Google Scholar] [CrossRef]
- Newell, D.; Shead, V.; Sloane, L. Changes in gait and balance parameters in elderly subjects attending an 8-week supervised Pilates programme. J. Bodyw. Mov. Ther. 2012, 16, 549–554. [Google Scholar] [CrossRef]
- Herman, T.; Weiss, A.; Brozgol, M.; Giladi, N.; Hausdorff, J.M. Gait and balance in Parkinson’s disease subtypes: Objective measures and classification considerations. J. Neurol. 2014, 261, 2401–2410. [Google Scholar] [CrossRef]
- Chastan, N.; Do, M.C.; Bonneville, F.; Torny, F.; Bloch, F.; Westby, G.W.M.; Dormont, D.; Agid, Y.; Welter, M.-L. Gait and balance disorders in Parkinson’s disease: Impaired active braking of the fall of centre of gravity. Mov. Disord. 2009, 24, 188–195. [Google Scholar] [CrossRef]
- Patton, J.; Brown, D.A.; Peshkin, M.; Santos-Munné, J.J.; Makhlin, A.; Lewis, E.; Colgate, E.J.; Schwandt, D. KineAssist: Design and development of a robotic overground gait and balance therapy device. Top. Stroke Rehabil. 2008, 15, 131–139. [Google Scholar] [CrossRef]
- Wolfson, L.I.; Whipple, R.; Amerman, P.; Kaplan, J.; Kleinberg, A. Gait and balance in the elderly: Two functional capacities that link sensory and motor ability to falls. Clin. Geriatr. Med. 1985, 1, 649–659. [Google Scholar] [CrossRef]
- Al-Momani, M.; Al-Momani, F.; Alghadir, A.H.; Alharethy, S.; Gabr, S. Factors related to gait and balance deficits in older adults. Clin. Interv. Aging 2016, 11, 1043–1049. [Google Scholar]
- Baezner, H.; Blahak, C.; Poggesi, A.; Pantoni, L.; Inzitari, D.; Chabriat, H.; Erkinjuntti, T.; Fazekas, F.; Ferro, J.M.; Langhorne, P.; et al. Association of gait and balance disorders with age-related white matter changes: The LADIS study. Neurology 2008, 70, 935–942. [Google Scholar] [CrossRef]
- Meyerowitz, S.; Engel, G.L.; Mei-Tal, V. The role of psychological process in a somatic disorder: Multiple sclerosis: 1. The emotional setting of illness onset and exacerbation. Psychosom. Med. 1970, 32, 67–86. [Google Scholar] [CrossRef] [PubMed]
- Prensky, A.L.; Davis, D.O. Obstruction of major cerebral vessels in early childhood without neurological signs. Neurology 1970, 20, 945. [Google Scholar] [CrossRef]
- Nayak, U.S.L.; Gabell, A.; Simons, M.A.; Isaacs, B. Measurement of gait and balance in the elderly. J. Am. Geriatr. Soc. 1982, 30, 516–520. [Google Scholar] [CrossRef] [PubMed]
- Sauvage, L.R., Jr.; Myklebust, B.M.; Crow-Pan, J.; Novak, S.; Millington, P.; Hoffman, M.D.; Hartz, A.J.; Rudman, D. A clinical trial of strengthening and aerobic exercise to improve gait and balance in elderly male nursing home residents. Am. J. Phys. Med. Rehabil. 1992, 71, 333–342. [Google Scholar] [CrossRef]
- Buchner, D.M.; Cress, M.E.; Wagner, E.H.; de Lateur, B.J.; Price, R.; Abrass, I.B. The Seattle FICSIT/Movelt study: The effect of exercise on gait and balance in older adults. J. Am. Geriatr. Soc. 1993, 41, 321–325. [Google Scholar] [CrossRef]
- Sullivan, E.V.; Rosenbloom, M.J.; Lim, K.O.; Pfefferbaum, A. Longitudinal changes in cognition, gait, and balance in abstinent and relapsed alcoholic men: Relationships to changes in brain structure. Neuropsychology 2000, 14, 178–188. [Google Scholar] [CrossRef]
- Oddsson, L.I.E.; Boissy, P.; Melzer, I. How to improve gait and balance function in elderly individuals—Compliance with principles of training. Eur. Rev. Aging Phys. Act. 2007, 4, 15–23. [Google Scholar] [CrossRef]
- Hackney, M.E.; Earhart, G.M. Effects of dance on gait and balance in Parkinson’s disease: A comparison of partnered and nonpartnered dance movement. Neurorehabilit. Neural Repair. 2010, 24, 384–392. [Google Scholar] [CrossRef] [PubMed]
- Pau, M.; Leban, B.; Collu, G.; Migliaccio, G.M. Effect of light and vigorous physical activity on balance and gait of older adults. Arch. Gerontol. Geriatr. 2014, 59, 568–573. [Google Scholar] [CrossRef]
- Chen, B.-L.; Guo, J.-B.; Liu, M.-S.; Li, X.; Zou, J.; Chen, X.; Zhang, L.-L.; Yue, Y.-S.; Wang, X.-Q. Effect of traditional Chinese exercise on gait and balance for stroke: A systematic review and meta-analysis. PLoS ONE 2015, 10, e0135932. [Google Scholar]
- Pinter, D.; Ritchie, S.J.; Doubal, F.; Gattringer, T.; Morris, Z.; Bastin, M.E.; Hernández, M.d.C.V.; Royle, N.A.; Corley, J.; Maniega, S.M.; et al. Impact of small vessel disease in the brain on gait and balance. Sci. Rep. 2017, 7, 41637. [Google Scholar] [CrossRef]
- Hamacher, D.; Liebl, D.; Hödl, C.; Heßler, V.; Kniewasser, C.K.; Thönnessen, T.; Zech, A. Gait stability and its influencing factors in older adults. Front. Physiol. 2019, 9, 1955. [Google Scholar] [CrossRef] [PubMed]
- Madhavan, S.; Sivaramakrishnan, A.; Bowden, M.G.; Chumbler, N.R.; Field-Fote, E.C.; Kesar, T.M. Commentary: Remote assessments of gait and balance-Implications for research during and beyond COVID-19. Top. Stroke Rehabil. 2021, 29, 74–81. [Google Scholar] [CrossRef]
- Bland, D.C.; Zampieri, C.; Damiano, D.L. Effectiveness of physical therapy for improving gait and balance in individuals with traumatic brain injury: A systematic review. Brain Inj. 2011, 25, 664–679. [Google Scholar] [CrossRef] [PubMed]
- Mak, M.; Lau, K. Speed-dependent treadmill training is effective to improve gait and balance performance in patients with sub-acute stroke. J. Rehabil. Med. 2011, 43, 709–713. [Google Scholar] [CrossRef]
- Speedtsberg, M.B.; Kastoft, R.; Barfod, K.W.; Penny, J.; Bencke, J. Gait function and postural control 4.5 years after nonoperative dynamic treatment of acute Achilles tendon ruptures. Orthop. J. Sports Med. 2019, 7, 2325967119854324. [Google Scholar] [CrossRef]
- Bryant, M.S.; Rintala, D.H.; Hou, J.-G.; Protas, E.J. Influence of fear of falling on gait and balance in Parkinson’s disease. Disabil. Rehabil. 2014, 36, 744–748. [Google Scholar] [CrossRef]
- Kaufman, K.; Levine, J.; Brey, R.; Iverson, B.; McCrady, S.; Padgett, D.; Joyner, M. Gait and balance of transfemoral amputees using passive mechanical and microprocessor-controlled prosthetic knees. Gait Posture 2007, 26, 489–493. [Google Scholar] [CrossRef]
- Ramsey, V.K.; Blasch, B.B.; Kita, A. Effects of mobility training on gait and balance. J. Vis. Impair. Blind. 2003, 97, 720–726. [Google Scholar] [CrossRef]
- Okubo, Y.; Schoene, D.; Lord, S.R. Step training improves reaction time, gait and balance and reduces falls in older people: A systematic review and meta-analysis. Br. J. Sports Med. 2017, 51, 586–593. [Google Scholar] [CrossRef] [PubMed]
- Paillard, T.; Noé, F.; Bru, N.; Couderc, M.; Debove, L. The impact of time of day on the gait and balance control of Alzheimer’s patients. Chronobiol. Int. 2016, 33, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Petrofsky, J.S.; Cuneo, M.; Lee, S.; Johnson, E.; Lohman, E. Correlation between gait and balance in people with and without Type 2 diabetes in normal and subdued light. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2006, 12, CR273-81. [Google Scholar]
- van Iersel, M.B.; Rikkert, M.G.O.; Borm, G.F. A method to standardize gait and balance variables for gait velocity. Gait Posture 2007, 26, 226–230. [Google Scholar] [CrossRef] [PubMed]
- Choi, W. Effects of robot-assisted gait training with body weight support on gait and balance in stroke patients. Int. J. Environ. Res. Public Health 2022, 19, 5814. [Google Scholar] [CrossRef] [PubMed]
- Kreisel, S.H.; Blahak, C.; Bäzner, H.; Inzitari, D.; Pantoni, L.; Poggesi, A.; Chabriat, H.; Erkinjuntti, T.; Fazekas, F.; Ferro, J.M.; et al. Deterioration of gait and balance over time: The effects of age-related white matter change-the LADIS study. Cerebrovasc. Dis. 2013, 35, 544–553. [Google Scholar] [CrossRef] [PubMed]
- Corrà, M.F.; Vila-Chã, N.; Sardoeira, A.; Hansen, C.; Sousa, A.P.; Reis, I.; Sambayeta, F.; Damásio, J.; Calejo, M.; Schicketmueller, A.; et al. Peripheral neuropathy in Parkinson’s disease: Prevalence and functional impact on gait and balance. Brain 2023, 146, 225–236. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-W.; Gil Kim, S.; Yong, M.S. Effects of hippotherapy on recovery of gait and balance ability in patients with stroke. J. Phys. Ther. Sci. 2014, 26, 309–311. [Google Scholar] [CrossRef]
- Kaski, D.; Dominguez, R.O.; Allum, J.H.; Bronstein, A.M. Improving gait and balance in patients with leukoaraiosis using transcranial direct current stimulation and physical training: An exploratory study. Neurorehabilit. Neural Repair. 2013, 27, 864–871. [Google Scholar] [CrossRef]
- Moraud, E.M.; Capogrosso, M.; Formento, E.; Wenger, N.; DiGiovanna, J.; Courtine, G.; Micera, S. Mechanisms underlying the neuromodulation of spinal circuits for correcting gait and balance deficits after spinal cord injury. Neuron 2016, 89, 814–828. [Google Scholar] [CrossRef] [PubMed]
- Borowicz, A.; Zasadzka, E.; Gaczkowska, A.; Gawłowska, O.; Pawlaczyk, M. Assessing gait and balance impairment in elderly residents of nursing homes. J. Phys. Ther. Sci. 2016, 28, 2486–2490. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Pi, Y.; Chen, B.; Chen, P.; Liu, Y.; Wang, R.; Li, X.; Waddington, G. Cognitive motor interference for gait and balance in stroke: A systematic review and meta-analysis. Eur. J. Neurol. 2015, 22, 555-e37. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, C.K. The community balance and mobility scale alleviates the ceiling effects observed in the currently used gait and balance assessments for the community-dwelling older adults. J. Geriatr. Phys. Ther. 2015, 38, 78–89. [Google Scholar] [CrossRef] [PubMed]
- Dalton, A.; Khalil, H.; Busse, M.; Rosser, A.; van Deursen, R.; ÓLaighin, G. Analysis of gait and balance through a single triaxial accelerometer in presymptomatic and symptomatic Huntington’s disease. Gait Posture 2013, 37, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Waters, D.L.; Hale, L.; Grant, A.M.; Herbison, P.; Goulding, A. Osteoporosis and gait and balance disturbances in older sarcopenic obese New Zealanders. Osteoporos. Int. 2010, 21, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Morton, S.M.; Tseng, Y.; Zackowski, K.M.; Daline, J.R.; Bastian, A.J. Longitudinal tracking of gait and balance impairments in cerebellar disease. Mov. Disord. 2010, 25, 1944–1952. [Google Scholar] [CrossRef]
- Patterson, K.K.; Wong, J.S.; Nguyen, T.-U.T.-U.; Brooks, D. A dance program to improve gait and balance in individuals with chronic stroke: A feasibility study. Top. Stroke Rehabil. 2018, 25, 410–416. [Google Scholar] [CrossRef] [PubMed]
- Suh, J.H.; Han, S.J.; Jeon, S.Y.; Kim, H.J.; Lee, J.E.; Yoon, T.S.; Chong, H.J. Effect of rhythmic auditory stimulation on gait and balance in hemiplegic stroke patients. NeuroRehabilitation 2014, 34, 193–199. [Google Scholar] [CrossRef]
- Koch, G.; Bonnì, S.; Casula, E.P.; Iosa, M.; Paolucci, S.; Pellicciari, M.C.; Cinnera, A.M.; Ponzo, V.; Maiella, M.; Picazio, S.; et al. Effect of cerebellar stimulation on gait and balance recovery in patients with hemiparetic stroke: A randomized clinical trial. JAMA Neurol. 2019, 76, 170–178. [Google Scholar] [CrossRef]
- Bernhard, F.P.; Sartor, J.; Bettecken, K.; Hobert, M.A.; Arnold, C.; Weber, Y.G.; Poli, S.; Margraf, N.G.; Schlenstedt, C.; Hansen, C.; et al. Wearables for gait and balance assessment in the neurological ward-study design and first results of a prospective cross-sectional feasibility study with 384 inpatients. BMC Neurol. 2018, 18, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Thiede, R.; Toosizadeh, N.; Mills, J.L.; Zaky, M.; Mohler, J.; Najafi, B. Gait and balance assessments as early indicators of frailty in patients with known peripheral artery disease. Clin. Biomech. 2015, 32, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Demain, A.; Westby, G.W.M.; Fernandez-Vidal, S.; Karachi, C.; Bonneville, F.; Do, M.C.; Delmaire, C.; Dormont, D.; Bardinet, E.; Agid, Y.; et al. High-level gait and balance disorders in the elderly: A midbrain disease? J. Neurol. 2014, 261, 196–206. [Google Scholar] [CrossRef] [PubMed]
- Barthélemy, D.; Willerslev-Olsen, M.; Lundell, H.; Biering-Sørensen, F.; Nielsen, J.B. Assessment of transmission in specific descending pathways in relation to gait and balance following spinal cord injury. Prog. Brain Res. 2015, 218, 79–101. [Google Scholar] [PubMed]
- Curtze, C.; Nutt, J.G.; Carlson-Kuhta, P.; Mancini, M.; Horak, F.B. Objective gait and balance impairments relate to balance confidence and perceived mobility in people with Parkinson disease. Phys. Ther. 2016, 96, 1734–1743. [Google Scholar] [CrossRef] [PubMed]
- Corwin, D.J.; Mcdonald, C.C.; Arbogast, K.B.; Mohammed, F.N.; Metzger, K.B.; Pfeiffer, M.R.; Patton, D.A.; Huber, C.M.; Margulies, S.S.; Grady, M.F.; et al. Clinical and device-based metrics of gait and balance in diagnosing youth concussion. Med. Sci. Sports Exerc. 2020, 52, 542–548. [Google Scholar] [CrossRef] [PubMed]
- Montero-Odasso, M.; Pieruccini-Faria, F.; Bartha, R.; Black, S.E.; Finger, E.; Freedman, M.; Greenberg, B.; Grimes, D.A.; Hegele, R.A.; Hudson, C.; et al. Motor phenotype in neurodegenerative disorders: Gait and balance platform study design protocol for the Ontario neurodegenerative research initiative (ONDRI). J. Alzheimer’s Dis. 2017, 59, 707–721. [Google Scholar] [CrossRef] [PubMed]
- Mihailovic, A.; De Luna, R.M.; West, S.K.; Friedman, D.S.; Gitlin, L.N.; Ramulu, P.Y. Gait and balance as predictors and/or mediators of falls in glaucoma. Investig. Opthalmol. Vis. Sci. 2020, 61, 30. [Google Scholar] [CrossRef]
- Olson, M.; Lockhart, T.E.; Lieberman, A. Motor learning deficits in Parkinson’s disease (PD) and their effect on training response in gait and balance: A narrative review. Front. Neurol. 2019, 10, 62. [Google Scholar] [CrossRef]
- Earhart, G.M.; Clark, B.R.; Tabbal, S.D.; Perlmutter, J.S. Gait and balance in essential tremor: Variable effects of bilateral thalamic stimulation. Mov. Disord. 2009, 24, 386–391. [Google Scholar] [CrossRef]
- Allen, J.L.; McKay, J.L.; Sawers, A.; Hackney, M.E.; Ting, L.H. Increased neuromuscular consistency in gait and balance after partnered, dance-based rehabilitation in Parkinson’s disease. J. Neurophysiol. 2017, 118, 363–373. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.L.; Virva, R.; Henderson, C.; Lenca, L.; Butzer, J.F.; Lovell, L.; Roth, E.; Graham, I.D.; Hornby, T.G. Applying the knowledge-to-action framework to implement gait and balance assessments in inpatient stroke rehabilitation. Arch. Phys. Med. Rehabil. 2022, 103, S230–S245. [Google Scholar] [CrossRef]
- Beauchet, O.; Annweiler, C.; Assal, F.; Bridenbaugh, S.; Herrmann, F.R.; Kressig, R.W.; Allali, G. Imagined Timed Up & Go test: A new tool to assess higher-level gait and balance disorders in older adults? J. Neurol. Sci. 2010, 294, 102–106. [Google Scholar] [PubMed]
- Norbye, A.D.; Midgard, R.; Thrane, G. Spasticity, gait, and balance in patients with multiple sclerosis: A cross-sectional study. Physiother. Res. Int. 2020, 25, e1799. [Google Scholar] [CrossRef] [PubMed]
- Gandolfi, M.; Geroin, C.; Picelli, A.; Munari, D.; Waldner, A.; Tamburin, S.; Marchioretto, F.; Smania, N. Robot-assisted vs. sensory integration training in treating gait and balance dysfunctions in patients with multiple sclerosis: A randomized controlled trial. Front. Hum. Neurosci. 2014, 8, 318. [Google Scholar] [CrossRef] [PubMed]
- Okawara, H.; Sawada, T.; Matsubayashi, K.; Sugai, K.; Tsuji, O.; Nagoshi, N.; Matsumoto, M.; Nakamura, M. Gait ability required to achieve therapeutic effect in gait and balance function with the voluntary driven exoskeleton in patients with chronic spinal cord injury: A clinical study. Spinal Cord 2020, 58, 520–527. [Google Scholar] [CrossRef] [PubMed]
- Duckrow, R.B.; Abu-Hasaballah, K.; Whipple, R.; Wolfson, L. Stance perturbation-evoked potentials in old people with poor gait and balance. Clin. Neurophysiol. 1999, 110, 2026–2032. [Google Scholar] [CrossRef]
- Galea, M.P.; Lizama, L.E.C.; Butzkueven, H.; Kilpatrick, T.J. Gait and balance deterioration over a 12-month period in multiple sclerosis patients with EDSS scores≤ 3.0. NeuroRehabilitation 2017, 40, 277–284. [Google Scholar] [CrossRef]
- Nutt, J.G.; Horak, F.B.; Bloem, B.R. Milestones in gait, balance, and falling. Mov. Disord. 2011, 26, 1166–1174. [Google Scholar] [CrossRef]
- Virmani, T.; Gupta, H.; Shah, J.; Larson-Prior, L. Objective measures of gait and balance in healthy non-falling adults as a function of age. Gait Posture 2018, 65, 100–105. [Google Scholar] [CrossRef]
- Wang, R.-Y.; Lin, P.-Y.; Lee, C.-C.; Yang, Y.-R. Gait and balance performance improvements attributable to ankle–foot orthosis in subjects with hemiparesis. Am. J. Phys. Med. Rehabil. 2007, 86, 556–562. [Google Scholar] [CrossRef] [PubMed]
- Suteerawattananon, M.; MacNeill, B.; Protas, E.J. Supported treadmill training for gait and balance in a patient with progressive supranuclear palsy. Phys. Ther. 2002, 82, 485–495. [Google Scholar] [CrossRef] [PubMed]
- Han, J.Y.; Kim, J.M.; Kim, S.K.; Chung, J.S.; Lee, H.-C.; Lim, J.K.; Lee, J.; Park, K.Y. Therapeutic effects of mechanical horseback riding on gait and balance ability in stroke patients. Ann. Rehabil. Med. 2012, 36, 762–769. [Google Scholar] [CrossRef] [PubMed]
- De Freitas, T.B.; Leite, P.H.W.; Doná, F.; Pompeu, J.E.; Swarowsky, A.; Torriani-Pasin, C. The effects of dual task gait and balance training in Parkinson’s disease: A systematic review. Physiother. Theory Pract. 2018, 36, 1088–1096. [Google Scholar] [CrossRef] [PubMed]
- Takahiko, Y.; Issei, S.; Yasuhiro, H.; Masahiro, K.; Daichi, S.; Makoto, N. Feasibility and efficacy of high-speed gait training with a voluntary driven exoskeleton robot for gait and balance dysfunction in patients with chronic stroke: Nonrandomized pilot study with concurrent control. Int. J. Rehabil. Res. 2015, 38, 338–343. [Google Scholar]
- Maetzler, W.; Nieuwhof, F.; Hasmann, S.E.; Bloem, B.R. Emerging therapies for gait disability and balance impairment: Promises and pitfalls. Mov. Disord. 2013, 28, 1576–1586. [Google Scholar] [CrossRef] [PubMed]
- Kahya, M.; Moon, S.; Ranchet, M.; Vukas, R.R.; Lyons, K.E.; Pahwa, R.; Akinwuntan, A.; Devos, H. Brain activity during dual task gait and balance in aging and age-related neurodegenerative conditions: A systematic review. Exp. Gerontol. 2019, 128, 110756. [Google Scholar] [CrossRef] [PubMed]
- Spain, R.I.; Mancini, M.; Horak, F.B.; Bourdette, D. Body-worn sensors capture variability, but not decline, of gait and balance measures in multiple sclerosis over 18 months. Gait Posture 2014, 39, 958–964. [Google Scholar] [CrossRef] [PubMed]
- Gaßner, H.; Steib, S.; Klamroth, S.; Pasluosta, C.F.; Adler, W.; Eskofier, B.M.; Pfeifer, K.; Winkler, J.; Klucken, J. Perturbation treadmill training improves clinical characteristics of gait and balance in Parkinson’s disease. J. Park. Dis. 2019, 9, 413–426. [Google Scholar] [CrossRef]
- Stephenson, J.; Zesiewicz, T.; Gooch, C.; Wecker, L.; Sullivan, K.; Jahan, I.; Kim, S.H. Gait and balance in adults with Friedreich’s ataxia. Gait Posture 2015, 41, 603–607. [Google Scholar] [CrossRef]
- Meldrum, D.; Herdman, S.; Moloney, R.; Murray, D.; Duffy, D.; Malone, K.; French, H.; Hone, S.; Conroy, R.; McConn-Walsh, R. Effectiveness of conventional versus virtual reality based vestibular rehabilitation in the treatment of dizziness, gait and balance impairment in adults with unilateral peripheral vestibular loss: A randomised controlled trial. BMC Ear Nose Throat Disord. 2012, 12, 3. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Al-Ali, F.; Rahemi, H.; Kulkarni, N.; Hamad, A.; Ibrahim, R.; Talal, T.K.; Najafi, B. Hemodialysis impact on motor function beyond aging and diabetes—Objectively assessing gait and balance by wearable technology. Sensors 2018, 18, 3939. [Google Scholar] [CrossRef] [PubMed]
- Mihara, M.; Fujimoto, H.; Hattori, N.; Otomune, H.; Kajiyama, Y.; Konaka, K.; Watanabe, Y.; Hiramatsu, Y.; Sunada, Y.; Miyai, I.; et al. Effect of neurofeedback facilitation on poststroke gait and balance recovery: A randomized controlled trial. Neurology 2021, 96, E2587–E2598. [Google Scholar] [CrossRef] [PubMed]
- Abdallat, R.; Sharouf, F.; Button, K.; Al-Amri, M. Dual-task effects on performance of gait and balance in people with knee pain: A systematic scoping review. J. Clin. Med. 2020, 9, 1554. [Google Scholar] [CrossRef] [PubMed]
- Alak, Z.Y.S.; Bulut, E.A.; Dokuzlar, O.; Yavuz, I.; Soysal, P.; Isik, A.T. Long-term effects of vitamin D deficiency on gait and balance in the older adults. Clin. Nutr. 2020, 39, 3756–3762. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.-Y.; Bourke, A.K.; Lipsmeier, F.; Bernasconi, C.; Belachew, S.; Gossens, C.; Graves, J.S.; Montalban, X.; Lindemann, M. U-turn speed is a valid and reliable smartphone-based measure of multiple sclerosis-related gait and balance impairment. Gait Posture 2021, 84, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Rentz, C.; Far, M.S.; Boltes, M.; Schnitzler, A.; Amunts, K.; Dukart, J.; Minnerop, M. System Comparison for Gait and Balance Monitoring Used for the Evaluation of a Home-Based Training. Sensors 2022, 22, 4975. [Google Scholar] [CrossRef] [PubMed]
- Loy, B.D.; Fling, B.W.; Horak, F.B.; Bourdette, D.N.; Spain, R.I. Effects of lipoic acid on walking performance, gait, and balance in secondary progressive multiple sclerosis. Complement. Ther. Med. 2018, 41, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, K.L.; Wood, T.A.; An, R.; Trinh, L.; Sosnoff, J.J. Gait and balance impairments in breast cancer survivors: A systematic review and meta-analysis of observational studies. Arch. Rehabil. Res. Clin. Transl. 2019, 1, 100001. [Google Scholar] [CrossRef]
- Grabli, D.; Karachi, C.; Welter, M.L.; Lau, B.; Hirsch, E.C.; Vidailhet, M.; François, C. Normal and pathological gait: What we learn from Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 2012, 83, 979–985. [Google Scholar] [CrossRef]
- Rudroff, T.; Proessl, F. Effects of muscle function and limb loading asymmetries on gait and balance in people with multiple sclerosis. Front. Physiol. 2018, 9, 531. [Google Scholar] [CrossRef] [PubMed]
- Dalmazane, M.; Gallou-Guyot, M.; Compagnat, M.; Magy, L.; Montcuquet, A.; Billot, M.; Daviet, J.-C.; Perrochon, A. Effects on gait and balance of home-based active video game interventions in persons with multiple sclerosis: A systematic review. Mult. Scler. Relat. Disord. 2021, 51, 102928. [Google Scholar] [CrossRef] [PubMed]
- Stack, B.; Sims, A. The relationship between posture and equilibrium and the auriculotemporal nerve in patients with disturbed gait and balance. Cranio® 2009, 27, 248–260. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, R.; Marquez, J.; Osmotherly, P. Gait and balance measures can identify change from a cerebrospinal fluid tap test in idiopathic normal pressure hydrocephalus. Arch. Phys. Med. Rehabil. 2018, 99, 2244–2250. [Google Scholar] [CrossRef] [PubMed]
- Rubenstein, L.Z.; Josephson, K.R.; Trueblood, P.R.; Yeung, K.; Harker, J.O.; Robbins, A.S. The reliability and validity of an obstacle course as a measure of gait and balance in older adults. Aging Clin. Exp. Res. 1997, 9, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Martens, K.A.E.; Matar, E.; Hall, J.M.; Phillips, J.; Szeto, J.Y.Y.; Gouelle, A.; Grunstein, R.R.; Halliday, G.M.; Lewis, S.J.G. Subtle gait and balance impairments occur in idiopathic rapid eye movement sleep behavior disorder. Mov. Disord. 2019, 34, 1374–1380. [Google Scholar] [CrossRef] [PubMed]
- Booth, C.E. Water exercise and its effect on balance and gait to reduce the risk of falling in older adults. Act. Adapt. Aging 2004, 28, 45–57. [Google Scholar] [CrossRef]
- Hill, K.K.; Campbell, M.C.; McNeely, M.E.; Karimi, M.; Ushe, M.; Tabbal, S.D.; Hershey, T.; Flores, H.P.; Hartlein, J.M.; Lugar, H.M.; et al. Cerebral blood flow responses to dorsal and ventral STN DBS correlate with gait and balance responses in Parkinson’s disease. Exp. Neurol. 2013, 241, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Calderon-Garciduenas, L.; Torres-Solorio, A.K.; Kulesza, R.J.; Torres-Jardon, R.; Gonzalez-Gonzalez, L.O.; Garcia-Arreola, B.; Chavez-Franco, D.A.; Luevano-Castro, S.C.; Hernandez-Castillo, A.; Carlos-Hernandez, E.; et al. Gait and balance disturbances are common in young urbanites and associated with cognitive impairment. Air pollution and the historical development of Alzheimer’s disease in the young. Environ. Res. 2020, 191, 110087. [Google Scholar] [CrossRef]
- Teixeira-Leite, H.; Manhães, A.C. Association between functional alterations of senescence and senility and disorders of gait and balance. Clinics 2012, 67, 719–729. [Google Scholar] [CrossRef]
- Bohnen, N.I.; Albin, R.L.; Müller, M.L.; Chou, K.L. Advances in therapeutic options for gait and balance in Parkinson’s disease. Eur. Neurol. Rev. 2011, 7, 100. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xu, F.; Shi, H.; Liu, R.; Wan, X. Effects of dual-task training on gait and balance in stroke patients: A meta-analysis. Clin. Rehabil. 2022, 36, 1186–1198. [Google Scholar] [CrossRef]
- Abou, L.; Malala, V.D.; Yarnot, R.; Alluri, A.; Rice, L.A. Effects of virtual reality therapy on gait and balance among individuals with spinal cord injury: A systematic review and meta-analysis. Neurorehabilit. Neural Repair 2020, 34, 375–388. [Google Scholar] [CrossRef]
- Louis, E.D.; Rao, A.K.; Gerbin, M. Functional correlates of gait and balance difficulty in essential tremor: Balance confidence, near misses and falls. Gait Posture 2012, 35, 43–47. [Google Scholar] [CrossRef]
- Lee, C.-W.; Cho, G.-H. Effect of stationary cycle exercise on gait and balance of elderly women. J. Phys. Ther. Sci. 2014, 26, 431–433. [Google Scholar] [CrossRef]
- Zhou, H.; Nguyen, H.; Enriquez, A.; Morsy, L.; Curtis, M.; Piser, T.; Kenney, C.; Stephen, C.D.; Gupta, A.S.; Schmahmann, J.D.; et al. Assessment of gait and balance impairment in people with spinocerebellar ataxia using wearable sensors. Neurol. Sci. 2021, 43, 2589–2599. [Google Scholar] [CrossRef] [PubMed]
- Sandrini, G.; Homberg, V.; Saltuari, L.; Smania, N.; Pedrocchi, A. Advanced Technologies for the Rehabilitation of Gait and Balance Disorders; Springer: Berlin/Heidelberg, Germany, 2018; Volume 19. [Google Scholar]
- Lewek, M.D.; Bradley, C.E.; Wutzke, C.J.; Zinder, S.M. The relationship between spatiotemporal gait asymmetry and balance in individuals with chronic stroke. J. Appl. Biomech. 2014, 30, 31–36. [Google Scholar] [CrossRef]
- Cantoral-Ceballos, J.A.; Nurgiyatna, N.; Wright, P.; Vaughan, J.; Brown-Wilson, C.; Scully, P.J.; Ozanyan, K.B. Intelligent carpet system, based on photonic guided-path tomography, for gait and balance monitoring in home environments. IEEE Sens. J. 2014, 15, 279–289. [Google Scholar] [CrossRef]
- Morelli, N.; Morelli, H. Dual task training effects on gait and balance outcomes in multiple sclerosis: A systematic review. Mult. Scler. Relat. Disord. 2021, 49, 102794. [Google Scholar] [CrossRef]
- Martínez-Amat, A.; Hita-Contreras, F.; Lomas-Vega, R.; Caballero-Martínez, I.; Alvarez, P.J.; Martínez-López, E. Effects of 12-week proprioception training program on postural stability, gait, and balance in older adults: A controlled clinical trial. J. Strength Cond. Res. 2013, 27, 2180–2188. [Google Scholar] [CrossRef]
- Williams, K.L.; Choy, N.L.L.; Brauer, S.G. Center-Based Group and Home-Based Individual Exercise Programs Have Similar Impacts on Gait and Balance in People With Multiple Sclerosis: A Randomized Trial. PM&R 2021, 13, 9–18. [Google Scholar]
- Howell, D.R.; Mayer, A.R.; Master, C.L.; Leddy, J.; Zemek, R.; Meier, T.B.; Yeates, K.O.; Arbogast, K.B.; Mannix, R.; Meehan, W.P. Prognosis for persistent post concussion symptoms using a multifaceted objective gait and balance assessment approach. Gait Posture 2020, 79, 53–59. [Google Scholar] [CrossRef]
- Tramontano, M.; Grasso, M.G.; Soldi, S.; Casula, E.P.; Bonni, S.; Mastrogiacomo, S.; D’Acunto, A.; Porrazzini, F.; Caltagirone, C.; Koch, G. Cerebellar intermittent theta-burst stimulation combined with vestibular rehabilitation improves gait and balance in patients with multiple sclerosis: A preliminary double-blind randomized controlled trial. Cerebellum 2020, 19, 897–901. [Google Scholar] [CrossRef]
- Peters, J.; Abou, L.; Wong, E.; Dossou, M.S.; Sosnoff, J.J.; Rice, L.A. Smartphone-based gait and balance assessment in survivors of stroke: A systematic review. Disabil. Rehabil. Assist. Technol. 2022, 19, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Koehler-McNicholas, S.R.; Danzl, L.; Cataldo, A.Y.; Oddsson, L.I.E. Neuromodulation to improve gait and balance function using a sensory neuroprosthesis in people who report insensate feet—A randomized control cross-over study. PLoS ONE 2019, 14, e0216212. [Google Scholar] [CrossRef]
- Kao, C.-C.; Chiu, H.-L.; Liu, D.; Chan, P.-T.; Tseng, I.-J.; Chen, R.; Niu, S.-F.; Chou, K.-R. Effect of interactive cognitive motor training on gait and balance among older adults: A randomized controlled trial. Int. J. Nurs. Stud. 2018, 82, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Fein, G.; Smith, S.; Greenstein, D. Gait and balance in treatment-naïve active alcoholics with and without a lifetime drug codependence. Alcohol. Clin. Exp. Res. 2012, 36, 1550–1562. [Google Scholar] [CrossRef]
- Alon, G.; Yungher, D.A.; Shulman, L.M.; Rogers, M.W. Safety and immediate effect of noninvasive transcranial pulsed current stimulation on gait and balance in Parkinson disease. Neurorehabilit. Neural Repair 2012, 26, 1089–1095. [Google Scholar] [CrossRef] [PubMed]
- Sarasso, E.; Filippi, M.; Agosta, F. Clinical and MRI features of gait and balance disorders in neurodegenerative diseases. J. Neurol. 2023, 270, 1798–1807. [Google Scholar] [CrossRef]
- Mahoney, G.; Martin, J.; Martin, R.; Yager, C.; Smith, M.L.; Grin, Z.; Vogel-Rosbrook, C.; Bradley, D.; Appiah-Kubi, K.O.; Boolani, A. Evidence that feelings of energy and fatigue are associated differently with gait characteristics and balance: An exploratory study. Fatigue Biomed. Health Behav. 2021, 9, 125–138. [Google Scholar] [CrossRef]
- Abreu, S.; Caldas, C. Gait speed, balance and age: A correlational study among elderly women with and without participation in a therapeutic exercise program. Braz. J. Phys. Ther. 2008, 12, 324–330. [Google Scholar] [CrossRef]
- McNeely, M.E.; Duncan, R.P.; Earhart, G.M. Medication improves balance and complex gait performance in Parkinson disease. Gait Posture 2012, 36, 144–148. [Google Scholar] [CrossRef] [PubMed]
- Morris, R.; Martini, D.N.; Madhyastha, T.; Kelly, V.E.; Grabowski, T.J.; Nutt, J.; Horak, F. Overview of the cholinergic contribution to gait, balance and falls in Parkinson’s disease. Park. Relat. Disord. 2019, 63, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Wecker, L.; Engberg, M.; Philpot, R.; Lambert, C.; Kang, C.; Antilla, J.; Bickford, P.; Hudson, C.; Zesiewicz, T.; Rowell, P.P. Neuronal nicotinic receptor agonists improve gait and balance in olivocerebellar ataxia. Neuropharmacology 2013, 73, 75–86. [Google Scholar] [CrossRef]
- Jiang, X.; Deng, F.; Rui, S.; Ma, Y.; Wang, M.; Deng, B.; Wang, H.; Du, C.; Chen, B.; Yang, X.; et al. The evaluation of gait and balance for patients with early diabetic peripheral neuropathy: A cross-sectional study. Risk Manag. Health Policy 2022, 15, 543–552. [Google Scholar] [CrossRef] [PubMed]
- Ülger, Ö.; Yağlı, N.V. Effects of yoga on balance and gait properties in women with musculoskeletal problems: A pilot study. Complement. Ther. Clin. Pract. 2011, 17, 13–15. [Google Scholar] [CrossRef] [PubMed]
- Yiou, E.; Caderby, T.; Delafontaine, A.; Fourcade, P.; Honeine, J.-L. Balance control during gait initiation: State-of-the-art and research perspectives. World J. Orthop. 2017, 8, 815–828. [Google Scholar] [CrossRef]
Keywords | Year | Strength | Begin | End | 1993–2023 |
---|---|---|---|---|---|
Elderly person | 1995 | 18.04 | 1995 | 2014 | ▂▂▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂ |
Community | 1997 | 16.12 | 1997 | 2013 | ▂▂▂▂▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂ |
Women | 1996 | 12.85 | 2003 | 2011 | ▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂ |
Age | 1993 | 9.96 | 1996 | 2009 | ▂▂▂▃▃▃▃▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂ |
Locomotion | 1997 | 9.66 | 1997 | 2014 | ▂▂▂▂▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂ |
Men | 1993 | 9.04 | 1993 | 2010 | ▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂ |
Posturography | 2000 | 9.03 | 2000 | 2011 | ▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂ |
Strength | 1998 | 8.31 | 1998 | 2006 | ▂▂▂▂▂▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂ |
Tai chi | 2004 | 7.29 | 2004 | 2008 | ▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂ |
Rating scale | 2010 | 6.96 | 2010 | 2016 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▂▂▂▂▂▂▂ |
Human | 1996 | 6.88 | 1996 | 2007 | ▂▂▂▃▃▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂ |
Exercise | 1995 | 6.88 | 1995 | 2004 | ▂▂▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂ |
Elderly patient | 1996 | 6.76 | 1996 | 2005 | ▂▂▂▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂ |
Randomized controlled trial | 1999 | 6.66 | 2014 | 2018 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▂▂▂▂▂ |
Machine learning | 2021 | 6.61 | 2021 | 2023 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃ |
Balance control | 1996 | 6.31 | 2006 | 2008 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂ |
Hip fracture | 1995 | 6.26 | 1995 | 2009 | ▂▂▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂ |
Accelerometer | 2015 | 6.22 | 2015 | 2018 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▂▂▂▂▂ |
Dwelling older adult | 2002 | 6.11 | 2012 | 2017 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▂▂▂▂▂▂ |
Postural response | 2003 | 6.07 | 2003 | 2009 | ▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂ |
Quality | 2004 | 5.98 | 2018 | 2023 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃ |
Cognitive impairment | 2010 | 5.93 | 2019 | 2023 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃ |
Sway | 2002 | 5.87 | 2002 | 2011 | ▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂ |
Gait initiation | 2007 | 5.79 | 2007 | 2013 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂ |
Motor | 2005 | 5.68 | 2020 | 2023 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃ |
Mini BEStest | 2017 | 5.58 | 2017 | 2021 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▂▂ |
Meta-analysis | 2005 | 5.57 | 2017 | 2018 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▂▂▂▂▂ |
Pattern | 1997 | 5.52 | 2005 | 2011 | ▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂ |
Rehabilitation | 2004 | 5.5 | 2009 | 2014 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂ |
Adult | 1993 | 5.47 | 2000 | 2009 | ▂▂▂▂▂▂▂▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂ |
Countries | Year | Strength | Begin | End | 1993–2022 |
---|---|---|---|---|---|
USA | 1993 | 44.56 | 1993 | 2007 | ▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂ |
Spain | 2010 | 10.26 | 2019 | 2022 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃ |
Switzerland | 2001 | 7.48 | 2010 | 2013 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▂▂▂▂▂▂▂▂▂ |
Canada | 1994 | 4.92 | 2002 | 2007 | ▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂ |
Saudi Arabia | 2013 | 3.82 | 2014 | 2015 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▂▂▂▂▂▂▂ |
Czech Republic | 2008 | 3.71 | 2020 | 2022 | ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, Q.; Zheng, W.; Shi, M.; Yang, F. Scientometric Research and Critical Analysis of Gait and Balance in Older Adults. Sensors 2024, 24, 3199. https://doi.org/10.3390/s24103199
Mao Q, Zheng W, Shi M, Yang F. Scientometric Research and Critical Analysis of Gait and Balance in Older Adults. Sensors. 2024; 24(10):3199. https://doi.org/10.3390/s24103199
Chicago/Turabian StyleMao, Qian, Wei Zheng, Menghan Shi, and Fan Yang. 2024. "Scientometric Research and Critical Analysis of Gait and Balance in Older Adults" Sensors 24, no. 10: 3199. https://doi.org/10.3390/s24103199