A Förster Resonance Energy Transfer (FRET)-Based Immune Assay for the Detection of Microcystin-LR in Drinking Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Indirect ELISA Test
2.3. Preparation of the Labeled Antibody Anti-Microcystin-LR
2.4. Preparation of the MC-LR BSA Labeling
2.5. Characterization of Anti-MC-LR 568 and MC-LR BSA 647 Conjugates
- ε = molar absorption coefficient of anti-MC-LR = 210,000 M−1 cm−1 and MC-LR BSA = 43,824 M−1 cm−1;
- A280 and Amax = the absorbance of the labeled molecules at 280 nm and the absorption maximum, respectively;
- CF = absorbance correction factor (CF568 = 0.08; CF647 = 0.03);
- Dilution factor = the extent to which the labeled molecules were diluted for absorbance measurement;
- MW = molecular weight (anti-MC-LR = 150,000 Da; MC-LR BSA = 67,463 Da);
- ε′ = molar absorption coefficient of the dye (CF568 = 100,000 M−1 cm−1; CF647 = 240,000 M−1 cm−1).
2.6. Fluorescence Steady-State Measurements
2.7. Microcystin FRET Competitive Assay Development
2.8. Statistical Analysis
3. Results
3.1. Selection of Anti-Microcystin-LR and Characterization of the Binding Capability
3.2. Production and Characterization of Anti-MC-LR 568 and MC-LR BSA 647
3.3. FRET Assay Development
3.3.1. Donor/Acceptor (D/A) Absorption and Emission Characterization
3.3.2. Microcystin-LR FRET Competitive Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Merel, S.; Walker, D.; Chicana, R.; Snyder, S.; Baurès, E.; Thomas, O. State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environ. Int. 2013, 59, 303–327. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wang, S.; Pi, K.; Ge, H.; Zhang, S.; Gerson, A.R. Coagulation as an effective method for cyanobacterial bloom control: A review. Water Environ. Res. 2024, 96, e11002. [Google Scholar] [CrossRef] [PubMed]
- Suikkanen, S.; Laamanen, M.; Huttunen, M. Long-Term Changes in Summer Phytoplankton Communities of the Open Northern Baltic Sea. Estuar. Coast. Shelf Sci. 2007, 71, 580–592. [Google Scholar] [CrossRef]
- Carmichael, W.W. The toxins of cyanobacteria. Sci. Am. 1994, 270, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Dittmann, E.; Wiegand, C. Cyanobacterial toxins—Occurrence, biosynthesis, and impact on human affairs. Mol. Nutr. Food Res. 2006, 50, 7–17. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research on Cancer. Ingested Nitrate and Nitrite, and Cyanobacterial Peptide Toxins; IARC monographs on the evaluation of carcinogenic risks to humans; IARC Press: Lyon, France, 2010; Volume 94, pp. 1–412. [Google Scholar]
- World Health Organization. Cyanobacterial Toxins: Microcystin-LR in Drinking-Water; World Health Organization: Geneva, Switzerland, 2003.
- Robert, L.; Teresa, L.; Diana, C.A.; Isabella, S. Cyanotoxins: Methods and Approaches for Their Analysis and Detection; EUR 28624; Publications Office of the European Union: Luxembourg, 2017. [CrossRef]
- Sangolkar, L.N.; Maske, S.S.; Chakrabarti, T. Methods for determining microcystins (peptide hepatotoxins) and microcystin-producing cyanobacteria. Water Res. 2006, 40, 3485–3496. [Google Scholar] [CrossRef] [PubMed]
- Massey, I.Y.; Wu, P.; Wei, J.; Luo, J.; Ding, P.; Wei, H.; Yang, F. A Mini-Review on Detection Methods of Microcystins. Toxins 2020, 12, 641. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Dixon, M.B.; Saint, C.; Teng, K.S.; Furumai, H. Electrochemical Biosensing of Algal Toxins in Water: The Current State-of-the-Art. ACS Sens. 2018, 3, 1233–1245. [Google Scholar] [CrossRef] [PubMed]
- Eissa, S.; Ng, A.; Siaj, M.; Zourob, M. Label-free voltametric aptasensor for the sensitive detection of microcystin-LR using graphene-modified electrodes. Anal. Chem. 2014, 86, 7551–7557. [Google Scholar] [CrossRef] [PubMed]
- D’Auria, S.; Apicella, E.; Staiano, M.; Di Giovanni, S.; Ruggiero, G.; Rossi, M.; Sarkar, P.; Luchowski, R.; Gryczynski, I.; Gryczynski, Z. Engineering resonance energy transfer for advanced immunoassays: The case of celiac disease. Anal. Biochem. 2012, 425, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Capo, A.; Pennacchio, A.; Varriale, A.; D’Auria, S.; Staiano, M. The porcine odorant-binding protein as molecular probe for benzene detection. PLoS ONE 2018, 13, e0202630. [Google Scholar] [CrossRef] [PubMed]
- Bojarski, P.; Kulak, L.; Walczewska-Szewc, K.; Synak, A.; Marzullo, V.M.; Luini, A.; D’Auria, S. Long-distance FRET analysis: A Monte Carlo simulation study. J. Phys. Chem. B 2011, 115, 10120–10125. [Google Scholar] [CrossRef] [PubMed]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: New York, NY, USA, 2006; pp. 27–60, 443–472. [Google Scholar]
- Albani, J.R. Fluorescence spectroscopy principles (Chapter 7). In Principles and Applications of Fluorescence Spectroscopy; Blackwell Science: Oxford, UK, 2007; pp. 88–113. [Google Scholar]
- Moghaddam, M.M.; Pirouzi, M.; Saberi, M.R.; Chamani, J. Comparison of the binding behavior of FCCP with HSA and HTF as determined by spectroscopic and molecular modeling techniques. Luminescence 2014, 29, 314–331. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, A.; Gupta, V.B. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron. Young Sci. 2011, 2, 21–25. [Google Scholar] [CrossRef]
- Valeur, B.; Berberan-Santos, M.N. Excitation energy transfer (Chapter 8). In Molecular Fluorescence: Principles and Applications, 2nd ed.; Wiley VCH: Weinheim, Germany, 2012; pp. 213–262. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capo, A.; Pennacchio, A.; Montagnese, C.; Hadjiantonis, A.; Demosthenous, P.; Giusti, A.; Staiano, M.; D’Auria, S.; Varriale, A. A Förster Resonance Energy Transfer (FRET)-Based Immune Assay for the Detection of Microcystin-LR in Drinking Water. Sensors 2024, 24, 3204. https://doi.org/10.3390/s24103204
Capo A, Pennacchio A, Montagnese C, Hadjiantonis A, Demosthenous P, Giusti A, Staiano M, D’Auria S, Varriale A. A Förster Resonance Energy Transfer (FRET)-Based Immune Assay for the Detection of Microcystin-LR in Drinking Water. Sensors. 2024; 24(10):3204. https://doi.org/10.3390/s24103204
Chicago/Turabian StyleCapo, Alessandro, Angela Pennacchio, Concetta Montagnese, Antonis Hadjiantonis, Panayiota Demosthenous, Alessandro Giusti, Maria Staiano, Sabato D’Auria, and Antonio Varriale. 2024. "A Förster Resonance Energy Transfer (FRET)-Based Immune Assay for the Detection of Microcystin-LR in Drinking Water" Sensors 24, no. 10: 3204. https://doi.org/10.3390/s24103204