Label-Free Three-Dimensional Morphological Characterization of Cell Death Using Holographic Tomography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Apoptosis Assay (Annexin V Staining) and Flow Cytometry for UV-Exposed Cells
2.3. Propidium Iodide (PI) Staining for Ferroptotic Cells
2.4. Immunofluorescence Imaging for Autophagic Cells
2.5. Western Blot Analysis
2.6. Holographic Tomography (HT) System
2.7. 3D Cell Morphology Segmentation and Analysis
2.8. Quantification Analysis of Cell Morphology
- The section area refers to the cell distribution at z = 0.
- The height refers to the maximum height of cells.
- The volume refers to the 3D distribution of cells.
- The average RI refers to the average RI distribution of the 3D cell region.
- The NCR is the ratio of the size (i.e., section area, height, volume, and average RI) of the nucleus of a cell to the size of the cytoplasm of that cell.
3. Results and Discussion
3.1. Observation and Verification of Cell Death
3.2. Cell Measurements
- For autophagic cells, most of the analytic parameter values ranked second highest after normal cells. The highest RI population belonged to the autophagic cells, as illustrated in the directly fitting plots of the RI histograms calculated from the section images in Figure 7. Due to the smaller number of highest RI regions, they were not significantly observed in the average RI value.
- Apoptotic nuclei exhibited significantly smaller sizes for section area, height, and volume. The RI is significantly increased in apoptotic nuclei but not in other types of cell death, indicating that chromatin/nucleus condensation occurs primarily in apoptosis but not in other types of cell death.
- Most of the analyzed physical parameters for ferroptotic cells fell between those of autophagic and apoptotic cells.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ellis, R.E.; Yuan, J.; Horvitz, H.R. Mechanisms and Functions of Cell Death. Annu. Rev. Cell Biol. 1991, 7, 663–698. [Google Scholar] [CrossRef] [PubMed]
- Vaux, D.L.; Korsmeyer, S.J. Cell Death in Development. Cell 1999, 96, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Green, D.R. The Coming Decade of Cell Death Research: Five Riddles. Cell 2019, 177, 1094–1107. [Google Scholar] [CrossRef] [PubMed]
- Reed, J.C. Mechanisms of Apoptosis. Am. J. Pathol. 2000, 157, 1415–1430. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Clark, R.K.; McDonnell, P.C.; Young, P.R.; White, R.F.; Barone, F.C.; Feuerstein, G.Z. Tumor necrosis factor-alpha expression in ischemic neurons. Stroke 1994, 25, 1481–1488. [Google Scholar] [CrossRef] [PubMed]
- Raucci, A.; Palumbo, R.; Bianchi, M.E. HMGB1: A signal of necrosis. Autoimmunity 2007, 40, 285–289. [Google Scholar] [CrossRef] [PubMed]
- Mizushima, N. Autophagy: Process and function. Genes. Dev. 2007, 21, 2861–2873. [Google Scholar] [CrossRef] [PubMed]
- Chaabane, W.; User, S.D.; El-Gazzah, M.; Jaksik, R.; Sajjadi, E.; Rzeszowska-Wolny, J.; Łos, M.J. Autophagy, Apoptosis, Mitoptosis and Necrosis: Interdependence Between Those Pathways and Effects on Cancer. Arch. Immunol. Ther. Exp. 2013, 61, 43–58. [Google Scholar] [CrossRef]
- Cohen, G.Y. Caspases: The executioners of apoptosis. Biochem. J. 1997, 326, 1–16. [Google Scholar] [CrossRef]
- Yan, G.; Elbadawi, M.; Efferth, T. Multiple cell death modalities and their key features (Review). World Acad. Sci. J. 2020, 2, 39–48. [Google Scholar] [CrossRef]
- Tang, D.; Kang, R.; Berghe, T.V.; Vandenabeele, P.; Kroemer, G. The molecular machinery of regulated cell death. Cell Res. 2019, 29, 347–364. [Google Scholar] [CrossRef]
- Suzanne, M.; Steller, H. Shaping organisms with apoptosis. Cell Death Differ. 2013, 20, 669–675. [Google Scholar] [CrossRef]
- Berghe, T.V.; Vanlangenakker, N.; Parthoens, E.; Deckers, W.; Devos, M.; Festjens, N.; Guerin, C.J.; Brunk, U.T.; Declercq, W.; Vandenabeele, P. Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features. Cell Death Differ. 2010, 17, 922–930. [Google Scholar] [CrossRef] [PubMed]
- Weerasinghe, P.; Buja, L.M. Oncosis: An important non-apoptotic mode of cell death. Exp. Mol. Pathol. 2012, 93, 302–308. [Google Scholar] [CrossRef]
- Klionsky, D.J.; Eskelinen, E.L.; Deretic, V. Autophagosomes, phagosomes, autolysosomes, phagolysosomes, autophagolysosomes…Wait, I’m confused. Autophagy 2014, 10, 549–551. [Google Scholar] [CrossRef]
- Liu, Y.; Levine, B. Autosis and autophagic cell death: The dark side of autophagy. Cell Death Differ. 2015, 22, 367–376. [Google Scholar] [CrossRef]
- Bergsbaken, T.; Fink, S.L.; Cookson, B.T. Pyroptosis: Host cell death and inflammation. Nat. Rev. Microbiol. 2009, 7, 99–109. [Google Scholar] [CrossRef]
- Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S.; et al. Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell 2012, 149, 1060–1072. [Google Scholar] [CrossRef] [PubMed]
- Latunde-Dada, G.O. Ferroptosis: Role of lipid peroxidation, iron and ferritinophagy. Biochim. Biophys. Acta Gen. Subj. 2017, 1861, 1893–1900. [Google Scholar] [CrossRef]
- Liu, Z.; Tian, L.; Liu, S.; Waller, L. Real-time brightfield, darkfield, and phase contrast imaging in a light-emitting diode array microscope. J. Biomed. Opt. 2014, 19, 106002. [Google Scholar] [CrossRef]
- Shibata, T.; Narita, T.; Suto, Y.; Yasmin, H.; Kabashima, T. A Facile Fluorometric Assay of Orotate Phosphoribosyltransferase Activity Using a Selective Fluorogenic Reaction for Orotic Acid. Sensors 2023, 23, 2507. [Google Scholar] [CrossRef] [PubMed]
- Vinoth, B.; Lai, X.J.; Lin, Y.C.; Tu, H.Y.; Cheng, C.J. Integrated dual-tomography for refractive index analysis of free-floating single living cell with isotropic superresolution. Sci. Rep. 2018, 8, 5943. [Google Scholar]
- Balasubramani, V.; Kujawińska, M.; Allier, C.; Anand, V.; Cheng, C.J.; Depeursinge, C.; Hai, N.; Juodkazis, S.; Kalkman, J.; Kuś, A.; et al. Roadmap on Digital Holography-Based Quantitative Phase Imaging. J. Imaging 2021, 7, 252. [Google Scholar] [CrossRef] [PubMed]
- Verrier, N.; Debailleul, M.; Haeberlé, O. Recent Advances and Current Trends in Transmission Tomographic Diffraction Microscopy. Sensors 2024, 24, 1594. [Google Scholar] [CrossRef] [PubMed]
- Baczewska, M.; Królikowska, M.; Mazur, M.; Nowak, N.; Szymański, J.; Krauze, W.; Cheng, C.J.; Kujawińska, M. Influence of Yokukansan on the refractive index of neuroblastoma cells. Biomed. Opt. Express 2023, 14, 1959–1973. [Google Scholar] [CrossRef]
- Phillips, K.G.; Jacques, S.L.; McCarty, O.J.T. Measurement of Single Cell Refractive Index, Dry Mass, Volume, and Density Using a Transillumination Microscope. Phys. Rev. Lett. 2012, 109, 118105. [Google Scholar] [CrossRef] [PubMed]
- Filali, S.; Geloën, A.; Lysenko, V.; Pirot, F.; Miossec, P. Live-stream characterization of cadmium-induced cell death using visible CdTe-QDs. Sci. Rep. 2018, 8, 12614. [Google Scholar] [CrossRef]
- Zhikhoreva, A.A.; Belashov, A.V.; Danilova, A.B.; Avdonkina, N.A.; Baldueva, I.A.; Gelfond, M.L.; Nekhaeva, T.L.; Semenova, I.V.; Vasyutinskii, O.S. Significant difference in response of malignant tumor cells of individual patients to photodynamic treatment as revealed by digital holographic microscopy. J. Photochem. Photobiol. B Biol. 2021, 221, 112235. [Google Scholar] [CrossRef]
- Szewczyk, A.; Saczko, J.; Kulbacka, J. Apoptosis as the main type of cell death induced by calcium electroporation in rhabdomyosarcoma cells. Bioelectrochemistry 2020, 136, 107592. [Google Scholar] [CrossRef]
- Lu, C.W.; Belashov, A.V.; Zhikhoreva, A.A.; Semenova, I.V.; Cheng, C.J.; Su, L.Y.; Wu, C.H. Application of digital holographic tomography in antitumor effect of cantharides complex on 4T1 breast cancer cells. Appl. Opt. 2021, 60, 3365–3373. [Google Scholar] [CrossRef]
- Yang, S.A.; Yoon, J.; Kim, K.; Park, Y.K. Measurements of Morphological and Biophysical Alterations in Individual Neuron Cells Associated with Early Neurotoxic Effects in Parkinson’s Disease. Cytom. A 2017, 91A, 510–518. [Google Scholar] [CrossRef] [PubMed]
- Salucci, S.; Battistelli, M.; Burattini, S.; Sbrana, F.; Falcieri, E. Holotomographic microscopy: A new approach to detect apoptotic cell features. Microsc. Res. Tech. 2020, 83, 1464–1470. [Google Scholar] [CrossRef] [PubMed]
- Yakimovich, A.; Witte, R.; Andriasyan, V. Label-Free Digital Holo-tomographic Microscopy Reveals Virus-Induced Cytopathic Effects in Live Cells. mSphere 2018, 3, e00599–e00618. [Google Scholar] [CrossRef] [PubMed]
- Hughes, A.J.; Spelke, D.P.; Xu, Z.; Kang, C.C.; Schaffer, D.V.; Herr, A.E. Single-cell western blotting. Nat. Methods 2014, 11, 749–755. [Google Scholar] [CrossRef] [PubMed]
- Balasubramani, V.; Kuś, A.; Tu, H.Y.; Cheng, C.J.; Baczewska, M.; Krauze, W.; Kujawińska, M. Holographic tomography: Techniques and biomedical applications [Invited]. Appl. Opt. 2021, 60, B65–B80. [Google Scholar] [CrossRef] [PubMed]
- Krauze, W.; Makowski, P.; Kujawińska, M.; Kuś, A. Generalized total variation iterative constraint strategy in limited angle optical diffraction tomography. Opt. Express 2016, 24, 4924–4936. [Google Scholar] [CrossRef] [PubMed]
- Borrelli, F.; Behal, J.; Bianco, V.; Capozzoli, A.; Curcio, C.; Liseno, A.; Miccio, L.; Memmolo, P.; Ferraro, P. Deep learning for accelerating Radon inversion in single-cells tomographic phase imaging flow cytometry. Opt. Lasers Eng. 2024, 172, 107873. [Google Scholar] [CrossRef]
- Szechyńska-Hebda, M.; Wędzony, M.; Dubas, E.; Kieft, H.; Lammeren, A. Visualisation of microtubules and actin filaments in fixed BY-2 suspension cells using an optimised whole mount immunolabelling protocol. Plant Cell Rep. 2006, 25, 758–766. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Almassalha, L.M.; Chandler, J.E.; Zhou, X.; Stypula-Cyrus, Y.E.; Hujsak, K.A.; Roth, E.W.; Bleher, R.; Subramanian, H.; Szleifer, I.; et al. The effects of chemical fixation on the cellular nanostructure. Exp. Cell Res. 2017, 358, 253–259. [Google Scholar] [CrossRef]
- Baczewska, M.; Eder, K.; Ketelhut, S.; Kemper, B.; Kujawińska, M. Refractive Index Changes of Cells and Cellular Compartments Upon Paraformaldehyde Fixation Acquired by Tomographic Phase Microscopy. Cytom. Part A 2021, 99, 388–398. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, C.-H.; Lai, Y.-J.; Chen, L.-N.; Hung, Y.-H.; Tu, H.-Y.; Cheng, C.-J. Label-Free Three-Dimensional Morphological Characterization of Cell Death Using Holographic Tomography. Sensors 2024, 24, 3435. https://doi.org/10.3390/s24113435
Huang C-H, Lai Y-J, Chen L-N, Hung Y-H, Tu H-Y, Cheng C-J. Label-Free Three-Dimensional Morphological Characterization of Cell Death Using Holographic Tomography. Sensors. 2024; 24(11):3435. https://doi.org/10.3390/s24113435
Chicago/Turabian StyleHuang, Chung-Hsuan, Yun-Ju Lai, Li-Nian Chen, Yu-Hsuan Hung, Han-Yen Tu, and Chau-Jern Cheng. 2024. "Label-Free Three-Dimensional Morphological Characterization of Cell Death Using Holographic Tomography" Sensors 24, no. 11: 3435. https://doi.org/10.3390/s24113435