Remaining Useful Life Prediction Based on Deep Learning: A Survey
Abstract
:1. Introduction
2. Related Works
- The literature is reviewed under unified problem formulation and framework for deep-learning-based RUL prediction.
- Different from deep neural network surveys, related works are surveyed mainly from the perspective of the RUL prediction problem.
- Details of deep technology are not introduced in the paper. It is assumed that readers already have this knowledge or can acquire it from other sources.
- In order to study the general methodology of deep-learning-based RUL prediction, specific application fields or test datasets will not be detailed.
3. Unified Framework and Models
3.1. Problem Formulation
3.2. Unified Framework
3.2.1. Data Preprocessing
- (1)
- Data filtering
- (2)
- Data normalization
- (3)
- Data splitting
3.2.2. Health Indicator Generation
- (1)
- Feature transformation and selection
- (2)
- HI fusion and regression
3.2.3. RUL Prediction
- (1)
- Deep neural network model
- (2)
- Deep neural network training
- (3)
- Deep neural network optimization
4. Application of Deep Learning in RUL Prediction
4.1. Deep-Learning-Based Health Indexing
4.1.1. Feature Transformation and Selection
4.1.2. Health Indicator Fusion and Regression
4.2. Deep Neural Network Models for RUL Prediction
4.2.1. Auto-Encoder Model
4.2.2. Restricted Boltzmann Machine Model
4.2.3. Recurrent Neural Network Model
- (1)
- Standard RNN methods
- (2)
- ESN methods
- (3)
- LSTM methods
- (4)
- GRU methods
4.2.4. Convolutional Neural Network Model
4.3. Deep Learning Methods for RUL Prediction
4.3.1. Transfer Learning Method
4.3.2. Hybrid Deep Learning Method
4.3.3. Ensemble Learning Method
4.4. Ad Hoc Deep-Learning-Based RUL Prediction
4.4.1. Multiple Operational Conditions Application
4.4.2. Insufficient Labeled Data Application
4.4.3. Uncertainty of RUL Prediction
5. Challenge and Future Directions
5.1. Unified Framework and Architecture
5.1.1. General Paradigm and Benchmarking
5.1.2. Open-Source Dataset
5.2. Health Indicator Generation
5.2.1. Deep-Learning-Based Health Indexing
5.2.2. Domain Knowledge Utilization
5.2.3. Feature Transformation and Regression
5.3. Deep-Learning-Based RUL Prediction
5.3.1. Hybrid Learning for RUL Prediction
5.3.2. Deep Neural Network Optimization for RUL Prediction
5.4. Real-World Applications
5.4.1. Imbalanced Dataset
5.4.2. Multiple Operation Condition
5.4.3. Cost of Deep Learning Method
5.4.4. Multi-Objective Deep-Learning-Based RUL Prediction
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Endrenyi, J.; Aboresheid, S.; Allan, R.; Anders, G.; Asgarpoor, S.; Billinton, R.; Chowdhury, N.; Dialynas, E.; Fipper, M.; Fletcher, R.; et al. The present status of maintenance strategies and the impact of maintenance on reliability. IEEE Trans. Power Syst. 2001, 16, 638–646. [Google Scholar] [CrossRef]
- Ahmad, R.; Kamaruddin, S. An overview of time-based and condition-based maintenance in industrial application. Comput. Ind. Eng. 2012, 63, 135–149. [Google Scholar] [CrossRef]
- Peng, Y.; Dong, M.; Zuo, M.J. Current status of machine prognostics in condition-based maintenance: A review. Int. J. Adv. Manuf. Technol. 2010, 50, 297–313. [Google Scholar] [CrossRef]
- Mazhar, M.; Kara, S.; Kaebernick, H. Remaining life estimation of used components in consumer products: Life cycle data analysis by Weibull and artificial neural networks. J. Oper. Manag. 2007, 25, 1184–1193. [Google Scholar] [CrossRef]
- Gebraeel, N.; Lawley, M.; Liu, R.; Parmeshwaran, V. Residual life predictions from vibration-based degradation signals: A neural network approach. IEEE Trans. Ind. Electron. 2004, 51, 694–700. [Google Scholar] [CrossRef]
- Shao, Y.; Nezu, K. Prognosis of remaining bearing life using neural networks. Proc. IMechE Part I J. Syst. Control Eng. 2000, 214, 217–230. [Google Scholar] [CrossRef]
- Gebraeel, N.Z.; Lawley, M.A. A neural network degradation model for computing and updating residual life distributions. IEEE Trans. Autom. Sci. Eng. 2008, 5, 154–163. [Google Scholar] [CrossRef]
- Si, X.S.; Wang, W.; Hu, C.H.; Zhou, D.H. Remaining useful life estimation—A review on the statistical data driven approaches. Eur. J. Oper. Res. 2011, 213, 1–14. [Google Scholar] [CrossRef]
- Hilbert, M.; López, P. The world’s technological capacity to store, communicate, and compute information. Science 2011, 332, 60–65. [Google Scholar] [CrossRef]
- Hey, T.; Tansley, S.; Tolle, K. The Fourth Paradigm: Data-Intensive Scientific Discovery; Microsoft Research: Redmond, WA, USA, 2009; Volume 1. [Google Scholar]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science 2006, 313, 504–507. [Google Scholar] [CrossRef] [PubMed]
- Schwabacher, M.; Goebel, K. A Survey of Artificial Intelligence for Prognostics. In Proceedings of the AAAI Fall Symposium: Artificial Intelligence for Prognostics, Arlington, VA, USA, 9–11 November 2007; pp. 108–115. [Google Scholar]
- Liu, R.; Yang, B.; Zio, E.; Chen, X. Artificial intelligence for fault diagnosis of rotating machinery: A review. Mech. Syst. Signal Process. 2018, 108, 33–47. [Google Scholar] [CrossRef]
- Nash, W.; Drummond, T.; Birbilis, N. A review of deep learning in the study of materials degradation. NPJ Mater. Degrad. 2018, 2, 37. [Google Scholar] [CrossRef]
- Zhao, G.; Zhang, G.; Ge, Q.; Liu, X. Research advances in fault diagnosis and prognostic based on deep learning. In Proceedings of the 2016 Prognostics and System Health Management Conference (PHM-Chengdu), Chengdu, China, 19–21 October 2016; pp. 1–6. [Google Scholar]
- Khan, S.; Yairi, T. A review on the application of deep learning in system health management. Mech. Syst. Signal Process. 2018, 107, 241–265. [Google Scholar] [CrossRef]
- Zhao, R.; Yan, R.; Chen, Z.; Mao, K.; Wang, P.; Gao, R.X. Deep learning and its applications to machine health monitoring. Mech. Syst. Signal Process. 2019, 115, 213–237. [Google Scholar] [CrossRef]
- Remadna, I.; Terrissa, S.L.; Zemouri, R.; Ayad, S. An overview on the deep-learning-based prognostic. In Proceedings of the 2018 International Conference on Advanced Systems and Electric Technologies (IC_ASET), Hammamet, Tunisia, 22–25 March 2018; pp. 196–200. [Google Scholar]
- Wang, S.; Jin, S.; Bai, D.; Fan, Y.; Shi, H.; Fernandez, C. A critical review of improved deep learning methods for the remaining useful life prediction of lithium-ion batteries. Energy Rep. 2021, 7, 5562–5574. [Google Scholar] [CrossRef]
- Banjevic, D. Remaining useful life in theory and practice. Metrika 2009, 69, 337–349. [Google Scholar] [CrossRef]
- Ren, L.; Cui, J.; Sun, Y.; Cheng, X. Multi-bearing remaining useful life collaborative prediction: A deep learning approach. J. Manuf. Syst. 2017, 43, 248–256. [Google Scholar] [CrossRef]
- Wu, Y.; Yuan, M.; Dong, S.; Lin, L.; Liu, Y. Remaining useful life estimation of engineered systems using vanilla LSTM neural networks. Neurocomputing 2018, 275, 167–179. [Google Scholar] [CrossRef]
- Huang, C.G.; Huang, H.Z.; Li, Y.F. A bidirectional LSTM prognostics method under multiple operational conditions. IEEE Trans. Ind. Electron. 2019, 66, 8792–8802. [Google Scholar] [CrossRef]
- Bektas, O.; Jones, J.A.; Sankararaman, S.; Roychoudhury, I.; Goebel, K. A neural network filtering approach for similarity-based remaining useful life estimation. Int. J. Adv. Manuf. Technol. 2019, 101, 87–103. [Google Scholar] [CrossRef]
- Heimes, F.O. Recurrent neural networks for remaining useful life estimation. In Proceedings of the 2008 International Conference on Prognostics and Health Management, Denver, CO, USA, 6–9 October 2008; pp. 1–6. [Google Scholar]
- Singhal, S.; Wu, L. Training multilayer perceptrons with the extended Kalman algorithm. In Proceedings of the Advances in Neural Information Processing Systems, Denver, CO, USA, 27–30 November 1989; pp. 133–140. [Google Scholar]
- Li, X.; Zhang, W.; Ding, Q. deep-learning-based remaining useful life estimation of bearings using multi-scale feature extraction. Reliab. Eng. Syst. Saf. 2019, 182, 208–218. [Google Scholar] [CrossRef]
- Li, N.; Lei, Y.; Lin, J.; Ding, S.X. An improved exponential model for predicting remaining useful life of rolling element bearings. IEEE Trans. Ind. Electron. 2015, 62, 7762–7773. [Google Scholar] [CrossRef]
- Shi, Z.; Chehade, A. A dual-LSTM framework combining change point detection and remaining useful life prediction. Reliab. Eng. Syst. Saf. 2021, 205, 107257. [Google Scholar] [CrossRef]
- Pan, Z.; Meng, Z.; Chen, Z.; Gao, W.; Shi, Y. A two-stage method based on extreme learning machine for predicting the remaining useful life of rolling-element bearings. Mech. Syst. Signal Process. 2020, 144, 106899. [Google Scholar] [CrossRef]
- Lim, P.; Goh, C.K.; Tan, K.C. A time window neural network based framework for Remaining Useful Life estimation. In Proceedings of the 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, 24–29 July 2016; pp. 1746–1753. [Google Scholar]
- Elsheikh, A.; Yacout, S.; Ouali, M.S. Bidirectional handshaking LSTM for remaining useful life prediction. Neurocomputing 2019, 323, 148–156. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, X.; Gao, D.; Chen, B.; Cheng, Y.; Yang, Y.; Yu, W.; Huang, Z.; Peng, J. A remaining useful life prediction model based on hybrid long–short sequences for engines. In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018; pp. 1757–1762. [Google Scholar]
- Javed, K.; Gouriveau, R.; Zerhouni, N.; Nectoux, P. Enabling health monitoring approach based on vibration data for accurate prognostics. IEEE Trans. Ind. Electron. 2014, 62, 647–656. [Google Scholar] [CrossRef]
- Boškoski, P.; Musizza, B.; Dolenc, B.; Juričić, Ð. Entropy Indices for Estimation of the Remaining Useful Life. In Advances in Technical Diagnostics, Proceedings of the 6th International Congress on Technical Diagnostic, ICDT2016, Gliwice, Poland, 12–16 September 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 373–384. [Google Scholar]
- Qiu, H.; Lee, J.; Lin, J.; Yu, G. Robust performance degradation assessment methods for enhanced rolling element bearing prognostics. Adv. Eng. Inform. 2003, 17, 127–140. [Google Scholar] [CrossRef]
- Baraldi, P.; Bonfanti, G.; Zio, E. Differential evolution-based multi-objective optimization for the definition of a health indicator for fault diagnostics and prognostics. Mech. Syst. Signal Process. 2018, 102, 382–400. [Google Scholar] [CrossRef]
- Guo, L.; Lei, Y.; Li, N.; Yan, T.; Li, N. Machinery health indicator construction based on convolutional neural networks considering trend burr. Neurocomputing 2018, 292, 142–150. [Google Scholar] [CrossRef]
- Li, X.; Jiang, H.; Xiong, X.; Shao, H. Rolling bearing health prognosis using a modified health index based hierarchical gated recurrent unit network. Mech. Mach. Theory 2019, 133, 229–249. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, X. A deep feature optimization fusion method for extracting bearing degradation features. IEEE Access 2018, 6, 19640–19653. [Google Scholar] [CrossRef]
- Xia, M.; Li, T.; Shu, T.; Wan, J.; De Silva, C.W.; Wang, Z. A two-stage approach for the remaining useful life prediction of bearings using deep neural networks. IEEE Trans. Ind. Inform. 2018, 15, 3703–3711. [Google Scholar] [CrossRef]
- Xia, M.; Li, T.; Liu, L.; Xu, L.; Gao, S.; De Silva, C.W. Remaining useful life prediction of rotating machinery using hierarchical deep neural network. In Proceedings of the 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Banff, AB, Canda, 5–8 October 2017; pp. 2778–2783. [Google Scholar]
- Senanayaka, J.S.L.; Van Khang, H.; Robbersmyr, K.G. Autoencoders and recurrent neural networks based algorithm for prognosis of bearing life. In Proceedings of the 2018 21st International Conference on Electrical Machines and Systems (ICEMS), Jeju, Republic of Korea, 7–10 October 2018; pp. 537–542. [Google Scholar]
- Guo, L.; Li, N.; Jia, F.; Lei, Y.; Lin, J. A recurrent neural network based health indicator for remaining useful life prediction of bearings. Neurocomputing 2017, 240, 98–109. [Google Scholar] [CrossRef]
- Gugulothu, N.; Tv, V.; Malhotra, P.; Vig, L.; Agarwal, P.; Shroff, G. Predicting remaining useful life using time series embeddings based on recurrent neural networks. arXiv 2017, arXiv:1709.01073. [Google Scholar] [CrossRef]
- Malhotra, P.; Tv, V.; Ramakrishnan, A.; Anand, G.; Vig, L.; Agarwal, P.; Shroff, G. Multi-sensor prognostics using an unsupervised health index based on LSTM encoder–decoder. arXiv 2016, arXiv:1608.06154. [Google Scholar]
- Hasani, R.M.; Wang, G.; Grosu, R. An automated auto-encoder correlation-based health-monitoring and prognostic method for machine bearings. arXiv 2017, arXiv:1703.06272. [Google Scholar]
- Chen, Y.; Peng, G.; Zhu, Z.; Li, S. A novel deep learning method based on attention mechanism for bearing remaining useful life prediction. Appl. Soft Comput. 2020, 86, 105919. [Google Scholar] [CrossRef]
- Sahu, A.; Apley, D.W.; Runger, G.C. Feature selection for noisy variation patterns using kernel principal component analysis. Knowl. Based Syst. 2014, 72, 37–47. [Google Scholar] [CrossRef]
- Yoo, Y.; Baek, J.G. A novel image feature for the remaining useful lifetime prediction of bearings based on continuous wavelet transform and convolutional neural network. Appl. Sci. 2018, 8, 1102. [Google Scholar] [CrossRef]
- Wen, L.; Li, X.; Gao, L.; Zhang, Y. A new convolutional neural-network-based data-driven fault diagnosis method. IEEE Trans. Ind. Electron. 2017, 65, 5990–5998. [Google Scholar] [CrossRef]
- Chitraganti, S.; Aberkane, S.; Aubrun, C. Statistical properties of exponentially weighted moving average algorithm for change detection. In Proceedings of the 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), Maui, HI, USA, 10–13 December 2012; pp. 574–578. [Google Scholar]
- Lin, Y.; Li, X.; Hu, Y. Deep diagnostics and prognostics: An integrated hierarchical learning framework in PHM applications. Appl. Soft Comput. 2018, 72, 555–564. [Google Scholar] [CrossRef]
- Tang, J.; Deng, C.; Huang, G.B. Extreme learning machine for multilayer perceptron. IEEE Trans. Neural Netw. Learn. Syst. 2015, 27, 809–821. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Wan, J.; Zhang, C.; Tang, S.; Hua, Q.; Wang, Z. Industrial big data analytics for prediction of remaining useful life based on deep learning. IEEE Access 2018, 6, 17190–17197. [Google Scholar] [CrossRef]
- Deutsch, J.; He, D. Using deep-learning-based approaches for bearing remaining useful life prediction. In Proceedings of the Annual Conference of the PHM Society, Denver, CO, USA, 3–6 October 2016; Volume 8. [Google Scholar]
- Liao, L.; Jin, W.; Pavel, R. Enhanced restricted Boltzmann machine with prognosability regularization for prognostics and health assessment. IEEE Trans. Ind. Electron. 2016, 63, 7076–7083. [Google Scholar] [CrossRef]
- Kohonen, T. The self-organizing map. Proc. IEEE 1990, 78, 1464–1480. [Google Scholar] [CrossRef]
- Ma, M.; Sun, C.; Chen, X. Discriminative deep belief networks with ant colony optimization for health status assessment of machine. IEEE Trans. Instrum. Meas. 2017, 66, 3115–3125. [Google Scholar] [CrossRef]
- Wang, P.; Gao, R.X.; Yan, R. A deep-learning-based approach to material removal rate prediction in polishing. CIRP Ann. 2017, 66, 429–432. [Google Scholar] [CrossRef]
- Shao, H.; Jiang, H.; Li, X.; Liang, T. Rolling bearing fault detection using continuous deep belief network with locally linear embedding. Comput. Ind. 2018, 96, 27–39. [Google Scholar] [CrossRef]
- Kuremoto, T.; Kimura, S.; Kobayashi, K.; Obayashi, M. Time series forecasting using a deep belief network with restricted Boltzmann machines. Neurocomputing 2014, 137, 47–56. [Google Scholar] [CrossRef]
- Chen, H.; Murray, A.F. Continuous restricted Boltzmann machine with an implementable training algorithm. IEE Proc. Vis. Image Signal Process. 2003, 150, 153–158. [Google Scholar] [CrossRef]
- Lipton, Z.C.; Berkowitz, J.; Elkan, C. A critical review of recurrent neural networks for sequence learning. arXiv 2015, arXiv:1506.00019. [Google Scholar]
- Malhotra, P.; TV, V.; Vig, L.; Agarwal, P.; Shroff, G. TimeNet: Pre-trained deep recurrent neural network for time series classification. arXiv 2017, arXiv:1706.08838. [Google Scholar]
- Che, Z.; Purushotham, S.; Cho, K.; Sontag, D.; Liu, Y. Recurrent neural networks for multivariate time series with missing values. Sci. Rep. 2018, 8, 6085. [Google Scholar] [CrossRef] [PubMed]
- Tse, P.; Atherton, D. Prediction of Machine Deterioration Using Vibration Based Fault Trends and Recurrent Neural Networks. Trans. ASME 1999, 121, 355–362. [Google Scholar] [CrossRef]
- Malhi, A.; Yan, R.; Gao, R.X. Prognosis of defect propagation based on recurrent neural networks. IEEE Trans. Instrum. Meas. 2011, 60, 703–711. [Google Scholar] [CrossRef]
- Tian, Z.; Zuo, M.J. Health condition prognostics of gears using a recurrent neural network approach. In Proceedings of the 2009 Annual Reliability and Maintainability Symposium, Fort Worth, TX, USA, 26–29 January 2009; pp. 460–465. [Google Scholar]
- Liu, J.; Saxena, A.; Goebel, K.; Saha, B.; Wang, W. An Adaptive Recurrent Neural Network for Remaining Useful Life Prediction of Lithium-Ion Batteries; Technical Report; National Aeronautics and Space Administration Ames Research: Moffett Field, CA, USA, 2010. [Google Scholar]
- Peng, Y.; Wang, H.; Wang, J.; Liu, D.; Peng, X. A modified echo state network based remaining useful life estimation approach. In Proceedings of the 2012 IEEE Conference on Prognostics and Health Management, Denver, CO, USA, 18–21 June 2012; pp. 1–7. [Google Scholar]
- Morando, S.; Jemei, S.; Gouriveau, R.; Zerhouni, N.; Hissel, D. Fuel cells prognostics using echo state network. In Proceedings of the IECON 2013-39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, Austria, 10–13 November 2013; pp. 1632–1637. [Google Scholar]
- Zhanga, B.; Zhang, L.; Xub, J. Remaining useful life prediction for rolling element bearing based on ensemble learning. Chem. Eng. 2013, 33, 157–162. [Google Scholar]
- Zheng, S.; Ristovski, K.; Farahat, A.; Gupta, C. Long short-term memory network for remaining useful life estimation. In Proceedings of the 2017 IEEE International Conference on Prognostics and Health Management (ICPHM), Dallas, TX, USA, 19–21 June 2017; pp. 88–95. [Google Scholar]
- Liu, J.; Li, Q.; Chen, W.; Yan, Y.; Qiu, Y.; Cao, T. Remaining useful life prediction of PEMFC based on long short-term memory recurrent neural networks. Int. J. Hydrogen Energy 2019, 44, 5470–5480. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiong, R.; He, H.; Liu, Z. A LSTM-RNN method for the lithuim-ion battery remaining useful life prediction. In Proceedings of the 2017 Prognostics and System Health Management Conference (PHM-Harbin), Harbin, China, 9–12 July 2017; pp. 1–4. [Google Scholar]
- Chemali, E.; Kollmeyer, P.J.; Preindl, M.; Ahmed, R.; Emadi, A. Long short-term memory networks for accurate state-of-charge estimation of Li-ion batteries. IEEE Trans. Ind. Electron. 2017, 65, 6730–6739. [Google Scholar] [CrossRef]
- Li, P.; Zhang, Z.; Xiong, Q.; Ding, B.; Hou, J.; Luo, D.; Rong, Y.; Li, S. State-of-health estimation and remaining useful life prediction for the lithium-ion battery based on a variant long short term memory neural network. J. Power Sources 2020, 459, 228069. [Google Scholar] [CrossRef]
- Park, K.; Choi, Y.; Choi, W.J.; Ryu, H.Y.; Kim, H. LSTM-based battery remaining useful life prediction with multi-channel charging profiles. IEEE Access 2020, 8, 20786–20798. [Google Scholar] [CrossRef]
- Zhou, F.; Hu, P.; Yang, X. RUL prognostics method based on real time updating of LSTM parameters. In Proceedings of the 2018 Chinese Control Decis. Conf. (CCDC), Shenyang, China, 9–11 June 2018; pp. 3966–3971. [Google Scholar]
- Zhang, Y.; Xiong, R.; He, H.; Pecht, M.G. Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries. IEEE Trans. Veh. Technol. 2018, 67, 5695–5705. [Google Scholar] [CrossRef]
- Dong, D.; Li, X.Y.; Sun, F.Q. Life prediction of jet engines based on lstm-recurrent neural networks. In Proceedings of the 2017 Prognostics and System Health Management Conference (PHM-Harbin), Harbin, China, 9–12 July 2017; pp. 1–6. [Google Scholar]
- Yuan, M.; Wu, Y.; Lin, L. Fault diagnosis and remaining useful life estimation of aero engine using LSTM neural network. In Proceedings of the 2016 IEEE International Conference on Aircraft Utility Systems (AUS), Beijing, China, 10–12 October 2016; pp. 135–140. [Google Scholar]
- Wang, F.; Liu, X.; Deng, G.; Yu, X.; Li, H.; Han, Q. Remaining life prediction method for rolling bearing based on the long short-term memory network. Neural Process. Lett. 2019, 50, 2437–2454. [Google Scholar] [CrossRef]
- Xiang, S.; Qin, Y.; Luo, J.; Pu, H.; Tang, B. Multicellular LSTM-based deep learning model for aero-engine remaining useful life prediction. Reliab. Eng. Syst. Saf. 2021, 216, 107927. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, M.; Zhao, R.; Guretno, F.; Yan, R.; Li, X. Machine remaining useful life prediction via an attention-based deep learning approach. IEEE Trans. Ind. Electron. 2020, 68, 2521–2531. [Google Scholar] [CrossRef]
- Hsu, C.S.; Jiang, J.R. Remaining useful life estimation using long short-term memory deep learning. In Proceedings of the 2018 IEEE International Conference on Applied System Invention (ICASI), Chiba, Japan, 13–17 April 2018; pp. 58–61. [Google Scholar]
- Lima, F.D.S.; Pereira, F.L.F.; Leite, L.G.; Gomes, J.P.P.; Machado, J.C. Remaining useful life estimation of hard disk drives based on deep neural networks. In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–7. [Google Scholar]
- Zhang, J.; Wang, P.; Yan, R.; Gao, R.X. Deep learning for improved system remaining life prediction. Procedia CIRP 2018, 72, 1033–1038. [Google Scholar] [CrossRef]
- Zheng, S.; Ristovski, K.; Gupta, C.; Farahat, A. Deep Long Short Term Memory Network for Estimation of Remaining Useful Life of the Components. U.S. Patent 11,288,577, 29 March 2019. [Google Scholar]
- Zhao, R.; Wang, J.; Yan, R.; Mao, K. Machine health monitoring with LSTM networks. In Proceedings of the 2016 10th International Conference on Sensing Technology (ICST), Nanjing, China, 11–13 November 2016; pp. 1–6. [Google Scholar]
- Zhang, J.; Wang, P.; Yan, R.; Gao, R.X. Long short-term memory for machine remaining life prediction. J. Manuf. Syst. 2018, 48, 78–86. [Google Scholar] [CrossRef]
- Zhou, J.; Qin, Y.; Luo, J.; Zhu, T. Remaining useful life prediction by distribution contact ratio health indicator and consolidated memory GRU. IEEE Trans. Ind. Informat. 2022, 19, 8472–8483. [Google Scholar] [CrossRef]
- Ren, L.; Cheng, X.; Wang, X.; Cui, J.; Zhang, L. Multi-scale dense gate recurrent unit networks for bearing remaining useful life prediction. Fut. Gener. Comput. Syst. 2019, 94, 601–609. [Google Scholar] [CrossRef]
- Chen, J.; Jing, H.; Chang, Y.; Liu, Q. Gated recurrent unit based recurrent neural network for remaining useful life prediction of nonlinear deterioration process. Reliab. Eng. Syst. Saf. 2019, 185, 372–382. [Google Scholar] [CrossRef]
- She, D.; Jia, M. A BiGRU method for remaining useful life prediction of machinery. Measurement 2021, 167, 108277. [Google Scholar] [CrossRef]
- Zhao, R.; Wang, D.; Yan, R.; Mao, K.; Shen, F.; Wang, J. Machine health monitoring using local feature-based gated recurrent unit networks. IEEE Trans. Ind. Electron. 2017, 65, 1539–1548. [Google Scholar] [CrossRef]
- Wu, J.; Hu, K.; Cheng, Y.; Zhu, H.; Shao, X.; Wang, Y. Data-driven remaining useful life prediction via multiple sensor signals and deep long short-term memory neural network. ISA Trans. 2020, 97, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Jiang, Y.; Wu, S.; Li, X.; Luo, H.; Yin, S. Prediction of remaining useful life based on bidirectional gated recurrent unit with temporal self-attention mechanism. Reliab. Eng. Syst. Saf. 2022, 221, 108297. [Google Scholar] [CrossRef]
- Storn, R. On the usage of differential evolution for function optimization. In Proceedings of the North American Fuzzy Information Processing, Berkeley, CA, USA, 19–22 June 1996; pp. 519–523. [Google Scholar]
- Morando, S.; Jemei, S.; Hissel, D.; Gouriveau, R.; Zerhouni, N. Proton exchange membrane fuel cell ageing forecasting algorithm based on Echo State Network. Int. J. Hydrogen Energy 2017, 42, 1472–1480. [Google Scholar] [CrossRef]
- Rigamonti, M.; Baraldi, P.; Zio, E.; Roychoudhury, I.; Goebel, K.; Poll, S. Echo state network for the remaining useful life prediction of a turbofan engine. In Proceedings of the European Conference of the PHM Society, Bilbao, Spain, 5–8 July 2016; pp. 255–270. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Mao, Z. Deep-convolution-based LSTM network for remaining useful life prediction. IEEE Trans. Ind. Inform. 2020, 17, 1658–1667. [Google Scholar] [CrossRef]
- Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations using RNN encoder–decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078. [Google Scholar]
- Babu, G.S.; Zhao, P.; Li, X.L. Deep convolutional neural network based regression approach for estimation of remaining useful life. In Database Systems for Advanced Applications, Proceeding of the 21st International Conference, DASFAA 2016, Dallas, TX, USA, 16–19 April 2016, Proceedings, Part I 21; Springer: Berlin/Heidelberg, Germany, 2016; pp. 214–228. [Google Scholar]
- Zhu, J.; Chen, N.; Peng, W. Estimation of bearing remaining useful life based on multiscale convolutional neural network. IEEE Trans. Ind. Electron. 2018, 66, 3208–3216. [Google Scholar] [CrossRef]
- Li, X.; Ding, Q.; Sun, J.Q. Remaining useful life estimation in prognostics using deep convolution neural networks. Reliab. Eng. Syst. Saf. 2018, 172, 1–11. [Google Scholar] [CrossRef]
- Ren, L.; Sun, Y.; Wang, H.; Zhang, L. Prediction of bearing remaining useful life with deep convolution neural network. IEEE Access 2018, 6, 13041–13049. [Google Scholar] [CrossRef]
- Jiang, J.R.; Kuo, C.K. Enhancing Convolutional Neural Network Deep Learning for Remaining Useful Life Estimation in Smart Factory Applications. In Proceedings of the 2017 International Conference on Information, Communication and Engineering (ICICE), Xiamen, China, 17–20 November 2017; pp. 120–123. [Google Scholar]
- Maas, A.L.; Hannun, A.Y.; Ng, A.Y. Rectifier nonlinearities improve neural network acoustic models. Proc. ICML 2013, 30, 3. [Google Scholar]
- Li, H.; Zhao, W.; Zhang, Y.; Zio, E. Remaining useful life prediction using multi-scale deep convolutional neural network. Appl. Soft Comput. 2020, 89, 106113. [Google Scholar] [CrossRef]
- Wang, B.; Lei, Y.; Li, N.; Wang, W. Multiscale convolutional attention network for predicting remaining useful life of machinery. IEEE Trans. Ind. Electron. 2020, 68, 7496–7504. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, K.; Ji, J.; Yu, K.; Ren, Z.; Liu, Z. Dynamic model-assisted bearing remaining useful life prediction using the cross-domain transformer network. IEEE/ASME Trans. Mechatron. 2022, 28, 1070–1080. [Google Scholar] [CrossRef]
- Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [Google Scholar] [CrossRef]
- Zhang, A.; Wang, H.; Li, S.; Cui, Y.; Liu, Z.; Yang, G.; Hu, J. Transfer learning with deep recurrent neural networks for remaining useful life estimation. Appl. Sci. 2018, 8, 2416. [Google Scholar] [CrossRef]
- Ramasso, E.; Saxena, A. Performance Benchmarking and Analysis of Prognostic Methods for CMAPSS Datasets. Int. J. Progn. Health Manag. 2014, 5, 1–15. [Google Scholar] [CrossRef]
- Sun, C.; Ma, M.; Zhao, Z.; Tian, S.; Yan, R.; Chen, X. Deep transfer learning based on sparse autoencoder for remaining useful life prediction of tool in manufacturing. IEEE Trans. Ind. Inform. 2018, 15, 2416–2425. [Google Scholar] [CrossRef]
- da Costa, P.R.d.O.; Akçay, A.; Zhang, Y.; Kaymak, U. Remaining useful lifetime prediction via deep domain adaptation. Reliab. Eng. Syst. Saf. 2020, 195, 106682. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, N.; Shen, C. A new data-driven transferable remaining useful life prediction approach for bearing under different working conditions. Mech. Syst. Signal Process. 2020, 139, 106602. [Google Scholar] [CrossRef]
- Cao, Y.; Jia, M.; Ding, P.; Ding, Y. Transfer learning for remaining useful life prediction of multi-conditions bearings based on bidirectional-GRU network. Measurement 2021, 178, 109287. [Google Scholar] [CrossRef]
- Cheng, H.; Kong, X.; Chen, G.; Wang, Q.; Wang, R. Transferable convolutional neural network based remaining useful life prediction of bearing under multiple failure behaviors. Measurement 2021, 168, 108286. [Google Scholar] [CrossRef]
- Dong, S.; Xiao, J.; Hu, X.; Fang, N.; Liu, L.; Yao, J. Deep transfer learning based on Bi-LSTM and attention for remaining useful life prediction of rolling bearing. Reliab. Eng. Syst. Saf. 2023, 230, 108914. [Google Scholar] [CrossRef]
- Long, J.; Sun, Z.; Li, C.; Hong, Y.; Bai, Y.; Zhang, S. A novel sparse echo autoencoder network for data-driven fault diagnosis of delta 3-D printers. IEEE Trans. Instrum. Meas. 2019, 69, 683–692. [Google Scholar] [CrossRef]
- Zhang, S.; Sun, Z.; Li, C.; Cabrera, D.; Long, J.; Bai, Y. Deep hybrid state network with feature reinforcement for intelligent fault diagnosis of delta 3-D printers. IEEE Trans. Ind. Inform. 2019, 16, 779–789. [Google Scholar] [CrossRef]
- Gao, Z.; Ma, C.; Luo, Y. Rul prediction for ima based on deep regression method. In Proceedings of the 2017 IWCIA, Hiroshima, Japan, 11–12 November 2017; pp. 25–31. [Google Scholar]
- Song, Y.; Shi, G.; Chen, L.; Huang, X.; Xia, T. Remaining useful life prediction of turbofan engine using hybrid model based on autoencoder and bidirectional long short-term memory. J. Shanghai Jiaotong Univ. 2018, 23, 85–94. [Google Scholar] [CrossRef]
- Zhao, R.; Yan, R.; Wang, J.; Mao, K. Learning to monitor machine health with convolutional bidirectional LSTM networks. Sensors 2017, 17, 273. [Google Scholar] [CrossRef]
- An, Q.; Tao, Z.; Xu, X.; El Mansori, M.; Chen, M. A data-driven model for milling tool remaining useful life prediction with convolutional and stacked LSTM network. Measurement 2020, 154, 107461. [Google Scholar] [CrossRef]
- Liu, H.; Liu, Z.; Jia, W.; Lin, X. Remaining useful life prediction using a novel feature-attention-based end-to-end approach. IEEE Trans. Ind. Inform. 2020, 17, 1197–1207. [Google Scholar] [CrossRef]
- Ren, L.; Dong, J.; Wang, X.; Meng, Z.; Zhao, L.; Deen, M.J. A data-driven auto-CNN-LSTM prediction model for lithium-ion battery remaining useful life. IEEE Trans. Ind. Inform. 2020, 17, 3478–3487. [Google Scholar] [CrossRef]
- Hinchi, A.Z.; Tkiouat, M. Rolling element bearing remaining useful life estimation based on a convolutional long–short-term memory network. Procedia Comput. Sci. 2018, 127, 123–132. [Google Scholar] [CrossRef]
- Ren, L.; Sun, Y.; Cui, J.; Zhang, L. Bearing remaining useful life prediction based on deep autoencoder and deep neural networks. J. Manuf. Syst. 2018, 48, 71–77. [Google Scholar] [CrossRef]
- Deutsch, J.; He, D. Using deep-learning-based approach to predict remaining useful life of rotating components. IEEE Trans. Syst. Man Cybern. Syst. 2017, 48, 11–20. [Google Scholar] [CrossRef]
- Daroogheh, N.; Baniamerian, A.; Meskin, N.; Khorasani, K. Prognosis and health monitoring of nonlinear systems using a hybrid scheme through integration of PFs and neural networks. IEEE Trans. Syst. Man Cybern. Syst. 2016, 47, 1990–2004. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L.; Wang, Z.; Dong, P. Remaining useful life prediction for lithium-ion batteries based on a hybrid model combining the long short-term memory and Elman neural networks. J. Energy Storage 2019, 21, 510–518. [Google Scholar] [CrossRef]
- Peel, L. Data driven prognostics using a Kalman filter ensemble of neural network models. In Proceedings of the 2008 International Conference on Prognostics and Health Management, Denver, CO, USA, 6–9 October 2008; pp. 1–6. [Google Scholar]
- Lim, P.; Goh, C.K.; Tan, K.C.; Dutta, P. Estimation of Remaining Useful Life Based on Switching Kalman Filter Neural Network Ensemble; Technical Report; Rolls Royce Singapore: Singapore, 2014. [Google Scholar]
- Lim, P.; Goh, C.K.; Tan, K.C.; Dutta, P. Multimodal degradation prognostics based on switching Kalman filter ensemble. IEEE Trans. Neural Netw. Learn. Syst. 2015, 28, 136–148. [Google Scholar] [CrossRef]
- Hu, C.; Youn, B.D.; Wang, P.; Yoon, J.T. Ensemble of data-driven prognostic algorithms for robust prediction of remaining useful life. Reliab. Eng. Syst. Saf. 2012, 103, 120–135. [Google Scholar] [CrossRef]
- Baraldi, P.; Compare, M.; Sauco, S.; Zio, E. Ensemble neural-network-based particle filtering for prognostics. Mech. Syst. Signal Process. 2013, 41, 288–300. [Google Scholar] [CrossRef]
- Rigamonti, M.; Baraldi, P.; Zio, E.; Roychoudhury, I.; Goebel, K.; Poll, S. Ensemble of optimized echo state networks for remaining useful life prediction. Neurocomputing 2018, 281, 121–138. [Google Scholar] [CrossRef]
- Li, Z.; Wu, D.; Hu, C.; Terpenny, J. An ensemble learning-based prognostic approach with degradation-dependent weights for remaining useful life prediction. Reliab. Eng. Syst. Saf. 2019, 184, 110–122. [Google Scholar] [CrossRef]
- Xia, T.; Song, Y.; Zheng, Y.; Pan, E.; Xi, L. An ensemble framework based on convolutional bidirectional LSTM with multiple time windows for remaining useful life estimation. Comput. Ind. 2020, 115, 103182. [Google Scholar] [CrossRef]
- Zhang, C.; Lim, P.; Qin, A.K.; Tan, K.C. Multiobjective deep belief networks ensemble for remaining useful life estimation in prognostics. IEEE Trans. Neural Netw. Learn. Syst. 2016, 28, 2306–2318. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhang, Q. Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comput. 2008, 13, 284–302. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Yan, H.; Liu, K.; Zhang, X.; Shi, J. Multiple sensor data fusion for degradation modeling and prognostics under multiple operational conditions. IEEE Trans. Reliab. 2016, 65, 1416–1426. [Google Scholar] [CrossRef]
- Mi, J.; Li, Y.F.; Yang, Y.J.; Peng, W.; Huang, H.Z. Reliability assessment of complex electromechanical systems under epistemic uncertainty. Reliab. Eng. Syst. Saf. 2016, 152, 1–15. [Google Scholar] [CrossRef]
- Yoon, A.S.; Lee, T.; Lim, Y.; Jung, D.; Kang, P.; Kim, D.; Park, K.; Choi, Y. Semi-supervised learning with deep generative models for asset failure prediction. arXiv 2017, arXiv:1709.00845. [Google Scholar]
- Ellefsen, A.L.; Bjørlykhaug, E.; Æsøy, V.; Ushakov, S.; Zhang, H. Remaining useful life predictions for turbofan engine degradation using semi-supervised deep architecture. Reliab. Eng. Syst. Saf. 2019, 183, 240–251. [Google Scholar] [CrossRef]
- Zhao, G.; Zhang, G.; Liu, Y.; Zhang, B.; Hu, C. Lithium-ion battery remaining useful life prediction with Deep Belief Network and Relevance Vector Machine. In Proceedings of the 2017 IEEE International Conference on Prognostics and Health Management (ICPHM), Dallas, TX, USA, 19–21 June 2017; pp. 7–13. [Google Scholar]
- Liao, Y.; Zhang, L.; Liu, C. Uncertainty prediction of remaining useful life using long short-term memory network based on bootstrap method. In Proceedings of the 2018 IEEE International Conference on Prognostics and Health Management (ICPHM), Seattle, WA, USA, 11–13 June 2018; pp. 1–8. [Google Scholar]
- Wang, B.; Lei, Y.; Yan, T.; Li, N.; Guo, L. Recurrent convolutional neural network: A new framework for remaining useful life prediction of machinery. Neurocomputing 2020, 379, 117–129. [Google Scholar] [CrossRef]
- Yang, J.; Peng, Y.; Xie, J.; Wang, P. Remaining useful life prediction method for bearings based on LSTM with uncertainty quantification. Sensors 2022, 22, 4549. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Shang, Y.; Ouyang, Q.; Widanage, W.D. A data-driven approach with uncertainty quantification for predicting future capacities and remaining useful life of lithium-ion battery. IEEE Trans. Ind. Electron. 2020, 68, 3170–3180. [Google Scholar] [CrossRef]
- Wang, W.; Lei, Y.; Yan, T.; Li, N.; Nandi, A.K. Residual Convolution Long Short-Term Memory Network for Machines Remaining Useful Life Prediction and Uncertainty Quantification. J. Dyn. Monit. Diagn. 2021, 1, 2–8. [Google Scholar] [CrossRef]
- Qin, Y.; Yang, J.; Zhou, J.; Pu, H.; Mao, Y. A new supervised multi-head self-attention autoencoder for health indicator construction and similarity-based machinery RUL prediction. Adv. Eng. Inform. 2023, 56, 101973. [Google Scholar] [CrossRef]
- Qin, Y.; Zhou, J.; Chen, D. Unsupervised health indicator construction by a novel degradation-trend-constrained variational autoencoder and its applications. IEEE/ASME Trans. Mechatron. 2021, 27, 1447–1456. [Google Scholar] [CrossRef]
- Zhou, J.; Qin, Y.; Luo, J.; Wang, S.; Zhu, T. Dual-thread gated recurrent unit for gear remaining useful life prediction. IEEE Trans. Ind. Inform. 2022, 19, 8307–8318. [Google Scholar] [CrossRef]
Notation | Description |
---|---|
TBM | Time-based maintenance |
CBM | Condition-based maintenance |
HI | Health indicator |
DNN | Deep neural network |
ANN | Artificial neural network |
AE | Auto-encoder |
SDA | Stacked denoising Auto-encoder |
SAE | Stacked sparse Auto-encoder |
EAE | Enhanced Auto-encoder |
RBM | Restricted Boltzmann machines |
DBN | Deep belief network |
CDBN | Continuous deep belief network |
FNN | Feed-forward neural network |
RNN | Recurrent neural network |
RNN-ED | RNN encoder–decoder |
ESN | Echo state network |
LSTM | Long short-term memory |
GRU | Gated recurrent unit |
CNN | Convolutional neural network |
MSCNN | Multi-scale convolutional neural network |
PCA | Principle component analysis |
KPCA | Kernel principal component analysis |
MA | Moving average method |
EWMA | Exponentially weighted moving average |
GWO | Grey wolf optimizer |
SOM | Self-organizing map |
CWT | Continuous wavelet transform |
GPR | Gaussian process regression |
ELM | Extreme learning machines |
HELM | Hierarchical extreme learning machines |
ACO | Ant colony optimization |
GA | Genetic algorithm |
BPTT | Back-propagation through time |
SSL | Semi-supervised learning |
ReLU | Rectified linear unit |
GBR | Gradient-boosting regression |
PHM | RUL | TDD | SNN | DNN | |
---|---|---|---|---|---|
Schwabacher et al. [14] | ✓ | ✓ | |||
Si et al. [8] | ✓ | ✓ | |||
Liu et al. [15] | ✓ | ✓ | |||
Nash et al. [16] | ✓ | ✓ | |||
Zhao et al. [17] | ✓ | ✓ | |||
Khan et al. [18] | ✓ | ✓ | |||
Zhao et al. [19] | ✓ | ✓ | |||
Remadna et al. [20] | ✓ | ✓ | |||
Wang et al. [21] | ✓ | ✓ |
Transformation and Selection | Fusion and Regression | |
---|---|---|
Baraldi et al. [39] | Binary Differential Evolution | Auto-Associative Kernel Regression |
Guo et al. [40] | CNN | 3 rule |
Li et al. [41] | KPCA | Exponentially weighted moving average |
Zhao et al. [42] | Enhanced autoencoder, SOM network | Grey wolf optimizer |
Yoo et al. [42] | CWT, CNN | Gaussian process regression |
Xia et al. [43,44] | SDA | shallow ANN |
Senanayaka et al. [45] | CWT, sparse autoencoder | LSTM |
Guo et al. [46] | Related-similarity feature approach | RNN |
Gugulothu et al. [47,48] | RNN-ED | Masking vector, Delta vector |
Hasani et al. [49] | Auto-encoder | Moving average filter |
Chen et al. [50] | CNN, bidirectional GRU | GRU |
Field | Structure | |
---|---|---|
Ma et al. [61] | Bearings, turbine engine | Stacked RBMs followed by an discriminative fine-tuning layer |
Wang et al. [62] | Material removal rate | Stacked RBMs followed by an feed-forward three layers perceptron network |
Shao et al. [63] | Rolling bearing | CDBN |
Liao et al. [59] | Bearings | Enhanced RBM with SOM method for feature fusion |
Field | Structure | |
---|---|---|
Tse et al. [69] | Industrial machines | The output node is feedback loop linked to extra input nodes. |
Malhi et al. [70] | Rolling bearing | The output node is feedback loop linked to extra input nodes. |
Tian et al. [71] | Gearbox | Extended RNN |
Liu et al. [72] | Lithium-ion battery | Adaptive RNN |
Heimes et al. [27] | PHM 08 Challenge dataset | RNN |
Peng et al. [73] | Turbofan engine | Modified ESN |
Morando et al. [74,75] | Proton Exchange Membrane Fuel Cell | ESN |
Zheng et al. [76] | C-MAPSS dataset, PHM 08 Challenge dataset, Milling dataset | LSTM |
Liu et al. [77] | PEMFC | LSTM |
Zhang et al. [78], Chemali et al. [79], Li et al. [80], Park et al. [81], Zhou et al. [82], Zhang et al. [83] | Lithium-ion battery | LSTM |
Dong et al. [84] | Jet engines | LSTM |
Yuan et al. [85] | Aero engines | LSTM |
Wang et al. [86] | Rolling bearing | LSTM |
Xiang et al. [87] | Aero engines | MCLSTM |
Chen et al. [88] | C-MAPSS dataset | LSTM |
Hsu et al. [89] | C-MAPSS dataset | Stacking two LSTM layers |
Lima et al. [90] | Hard disk drivers | Stacking two LSTM layers and one fully connected layer |
Zhang et al. [91] | Gas turbine engine | Deep LSTM |
Zheng et al. [92] | Equipment system | Deep LSTM |
Zhao et al. [93] | Tool wear | Stacking multiple LSTM layers |
Zhang et al. [94] | C-MAPSS dataset | Bidirectional LSTM |
Zhou et al. [95] | Bearing | CMGRU |
Ren et al. [96] | Bearing | MDGRU |
Chen et al. [97] | C-MAPSS dataset | GRU |
She et al. [98] | Bearing | BiGRU |
Zhao et al. [99] | Tool wear | LFGRU |
Wu et al. [100] | C-MAPSS dataset | deep LSTM |
Zhang et al. [101] | Turbofan engine | BiGRU |
Field | Structure | |
---|---|---|
Babu et al. [108] | C-MAPSS dataset, PHM 08 Challenge dataset | CNN |
Zhu et al. [109] | Bearing | MSCNN |
Li et al. [110] | C-MAPSS dataset | DCNN |
Li et al. [29] | PHM 2012 Challenge dataset | MSCNN |
Ren et al. [111] | Bearing | CNN |
Jiang et al. [112] | C-MAPSS dataset | ECNN |
Field | Structure | |
---|---|---|
Gao et al. [128] | IMA | SDAE, SVM |
Song et al. [129] | Turbofan Engine | Autoencoder–BLSTM |
Zhao et al. [130] | CNC machine | CNN, BLSTM |
An et al. [131] | Milling tool | CNN, LSTM |
Liu et al. [132] | Turbofan Engine | CNN, BGRU |
Ren et al. [133] | Lithium-ion batteries | CNN, LSTM |
Hinchi et al. [134] | Rolling element bearing | CNN, LSTM |
Ren et al. [135] | Bearings | Deep autoencoder, DNN |
Deutsch et al. [136] | Gears, bearings | DBN, FNN |
Daroogheh et al. [137] | Gas turbine engine | PFs, MLP, RNNs, WNN |
Li et al. [138] | Lithium-ion batteries | LSTM, Elman neural networks |
Field | Models | Feature Fusion | |
---|---|---|---|
Peel et al. [139] | PHM 2008 Dataset | RBF, MLP | Kalman filter |
Lim et al. [140,141] | PHM 2008 Dataset | MLPs | Switching Kalman filter |
Hu et al. [142] | PHM 2008 Dataset, power transformer, electric cooling fan | RVM, SVM, exponential fitting, quadratic fitting, RNN | Accuracy-based weighting, diversity-based weighting, optimization-based weighting |
Baraldi et al. [143] | Crack propagation | ANNs | Particle filter |
Zhang et al. [75] | Rolling element bearing | ANNs | Dynamically weights updating |
Rigamonti et al. [144] | C-MAPSS dataset, Cutting knives | ESNs | Dynamically local aggregation |
Li et al. [145] | Aeroengine Bearings, Aircraft engines | RS, ES, SS, QB, RNN | Degradation-dependent weighting |
Xia et al. [146] | C-MAPSS dataset | CNN-BLSTM | Weighted average method |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, F.; Wu, Q.; Tan, Y.; Xu, X. Remaining Useful Life Prediction Based on Deep Learning: A Survey. Sensors 2024, 24, 3454. https://doi.org/10.3390/s24113454
Wu F, Wu Q, Tan Y, Xu X. Remaining Useful Life Prediction Based on Deep Learning: A Survey. Sensors. 2024; 24(11):3454. https://doi.org/10.3390/s24113454
Chicago/Turabian StyleWu, Fuhui, Qingbo Wu, Yusong Tan, and Xinghua Xu. 2024. "Remaining Useful Life Prediction Based on Deep Learning: A Survey" Sensors 24, no. 11: 3454. https://doi.org/10.3390/s24113454