Preliminary Experience with Three Alternative Motion Sensors for 0.55 Tesla MR Imaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pilot-Tone
2.1.1. Description and Technical Principle
2.1.2. MRI and Pilot-Tone Data Acquisition
2.1.3. MRI and Pilot-Tone Data Processing and Deep Learning for Liver Position Prediction and Motion Correction
2.2. Ultrasound Sensor
2.2.1. Description and Technical Principle
2.2.2. MRI and Ultrasound Data Acquisition
2.2.3. MRI and Ultrasound Data Processing and Deep Learning Prediction of Bladder Position
2.3. Time-of-Flight Camera
2.3.1. Description and Technical Principle
2.3.2. MRI and ToF Data Acquisition
2.3.3. MRI and ToF Data Processing
2.4. Scanner-Less Simultaneous Sensor Tracking of Respiratory Motion Outside the MR System
2.4.1. Physical Components and Technical Principle
2.4.2. Data Acquisition
2.4.3. Data Processing
3. Results
3.1. Pilot-Tone
3.2. Ultrasound
3.3. Time-of-Flight (ToF) Camera
3.4. Outside the MRI: Scanner-Less Simultaneous Sensor Tracking of Respiratory Motion
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MRI | Magnetic Resonance Imaging |
OCM | Organ Configuration Motion |
PT | Pilot-Tone |
RF | Radiofrequency |
SNR | signal-to-noise ratio |
ToF | Time-of-Flight |
References
- Andre, J.B.; Bresnahan, B.W.; Mossa-Basha, M.; Hoff, M.N.; Smith, C.P.; Anzai, Y.; Cohen, W.A. Toward quantifying the prevalence, severity, and cost associated with patient motion during clinical MR examinations. J. Am. Coll. Radiol. 2015, 12, 689–695. [Google Scholar] [CrossRef]
- Littlejohns, T.J.; Holliday, J.; Gibson, L.M.; Garratt, S.; Oesingmann, N.; Alfaro-Almagro, F.; Bell, J.D.; Boultwood, C.; Collins, R.; Conroy, M.C.; et al. The UK Biobank imaging enhancement of 100,000 participants: Rationale, data collection, management and future directions. Nat. Commun. 2020, 11, 2624. [Google Scholar] [CrossRef]
- Slipsager, J.M.; Glimberg, S.L.; Søgaard, J.; Paulsen, R.R.; Johannesen, H.H.; Martens, P.C.; Seth, A.; Marner, L.; Henriksen, O.M.; Olesen, O.V.; et al. Quantifying the financial savings of motion correction in brain MRI: A model-based estimate of the costs arising from patient head motion and potential savings from implementation of motion correction. J. Magn. Reson. Imaging 2020, 52, 731–738. [Google Scholar] [CrossRef]
- Campbell-Washburn, A.E.; Keenan, K.E.; Hu, P.; Mugler III, J.P.; Nayak, K.S.; Webb, A.G.; Obungoloch, J.; Sheth, K.N.; Hennig, J.; Rosen, M.S.; et al. Low-field MRI: A report on the 2022 ISMRM workshop. Magn. Reson. Med. 2023, 90, 1682–1694. [Google Scholar] [CrossRef]
- Hennig, J. An evolution of low-field strength MRI. Magn. Reson. Mater. Phys. Biol. Med. 2023, 36, 335–346. [Google Scholar] [CrossRef]
- Arnold, T.C.; Freeman, C.W.; Litt, B.; Stein, J.M. Low-field MRI: Clinical promise and challenges. J. Magn. Reson. Imaging 2023, 57, 25–44. [Google Scholar] [CrossRef]
- Maclaren, J.; Speck, O.; Stucht, D.; Schulze, P.; Hennig, J.; Zaitsev, M. Navigator accuracy requirements for prospective motion correction. Magn. Reson. Med. 2010, 63, 162–170. [Google Scholar] [CrossRef]
- Santelli, C.; Nezafat, R.; Goddu, B.; Manning, W.J.; Smink, J.; Kozerke, S.; Peters, D.C. Respiratory bellows revisited for motion compensation: Preliminary experience for cardiovascular MR. Magn. Reson. Med. 2011, 65, 1097–1102. [Google Scholar] [CrossRef]
- Röwer, L.M.; Uelwer, T.; Hußmann, J.; Malik, H.; Eichinger, M.; Voit, D.; Wielpütz, M.O.; Frahm, J.; Harmeling, S.; Klee, D.; et al. Spirometry-based reconstruction of real-time cardiac MRI: Motion control and quantification of heart–lung interactions. Magn. Reson. Med. 2021, 86, 2692–2702. [Google Scholar] [CrossRef]
- Zaitsev, M.; Maclaren, J.; Herbst, M. Motion artifacts in MRI: A complex problem with many partial solutions. J. Magn. Reson. Imaging 2015, 42, 887–901. [Google Scholar] [CrossRef] [PubMed]
- Han, F.; Zhou, Z.; Cao, M.; Yang, Y.; Sheng, K.; Hu, P. Respiratory motion-resolved, self-gated 4D-MRI using rotating cartesian k-space (ROCK). Med. Phys. 2017, 44, 1359–1368. [Google Scholar] [CrossRef] [PubMed]
- Madore, B.; Preiswerk, F.; Bredfeldt, J.S.; Zong, S.; Cheng, C.C. Ultrasound-based sensors to monitor physiological motion. Med. Phys. 2021, 48, 3614–3622. [Google Scholar] [CrossRef] [PubMed]
- Madore, B.; Hess, A.T.; van Niekerk, A.M.; Hoinkiss, D.C.; Hucker, P.; Zaitsev, M.; Afacan, O.; Günther, M. External Hardware and Sensors, for Improved MRI. J. Magn. Reson. Imaging 2023, 57, 690–705. [Google Scholar] [CrossRef] [PubMed]
- Solomon, E.; Rigie, D.S.; Vahle, T.; Paška, J.; Bollenbeck, J.; Sodickson, D.K.; Boada, F.E.; Block, K.T.; Chandarana, H. Free-breathing radial imaging using a pilot-tone radiofrequency transmitter for detection of respiratory motion. Magn. Reson. Med. 2021, 85, 2672–2685. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Liu, Y.; Simonetti, O.P.; Tong, M.; Jin, N.; Bacher, M.; Speier, P.; Ahmad, R. Cardiac and respiratory motion extraction for MRI using pilot tone—A patient study. Int. J. Cardiovasc. Imaging 2023, 40, 93–105. [Google Scholar] [CrossRef]
- Lin, K.; Sarnari, R.; Speier, P.; Hayes, C.; Davids, R.; Carr, J.C.; Markl, M. Pilot Tone-Triggered MRI for Quantitative Assessment of Cardiac Function, Motion, and Structure. Investig. Radiol. 2023, 58, 239–243. [Google Scholar] [CrossRef] [PubMed]
- Preiswerk, F.; Toews, M.; Cheng, C.C.; Chiou, J.y.G.; Mei, C.S.; Schaefer, L.F.; Hoge, W.S.; Schwartz, B.M.; Panych, L.P.; Madore, B. Hybrid MRI-Ultrasound acquisitions, and scannerless real-time imaging. Magn. Reson. Med. 2017, 78, 897–908. [Google Scholar] [CrossRef]
- Vahle, T.; Bacher, M.; Rigie, D.; Fenchel, M.; Speier, P.; Bollenbeck, J.; Schäfers, K.P.; Kiefer, B.; Boada, F.E. Respiratory motion detection and correction for MR using the pilot tone: Applications for MR and simultaneous PET/MR examinations. Investig. Radiol. 2020, 55, 153–159. [Google Scholar] [CrossRef]
- Schroeder, L.; Wetzl, J.; Maier, A.; Rehner, R.; Fenchel, M.; Speier, P. Two-dimensional respiratory-motion characterization for continuous MR measurements using pilot tone navigation. In Proceedings of the 24th Annual Meeting of ISMRM, Singapore, 7–13 May 2016; p. 3103. [Google Scholar]
- Speier, P.; Fenchel, M.; Rehner, R. PT-Nav: A novel respiratory navigation method for continuous acquisitions based on modulation of a pilot tone in the MR-receiver. Magn. Reson. Mater. Phys. Biol. Med. 2015, 28, S97–S98. [Google Scholar]
- Rigie, D.; Vahle, T.; Brown, R.; Zhao, T.; Fenchel, M.; Speier, P.; Jackson, K.; Boada, F. Tracking respiratory motion throughout arbitrary MRI sequences via pilot tone navigation. In Proceedings of the Joint Annual Meeting ISMRM-ESMRMB 2018, Paris, France, 16–21 June 2018. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015, Proceedings of the 18th International Conference, Munich, Germany, 5–9 October 2015; Proceedings, Part III 18; Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef]
- Ismail Fawaz, H.; Forestier, G.; Weber, J.; Idoumghar, L.; Muller, P.A. Deep learning for time series classification: A review. Data Min. Knowl. Discov. 2019, 33, 917–963. [Google Scholar] [CrossRef]
- Fessler, J.A.; Sutton, B.P. Nonuniform fast Fourier transforms using min-max interpolation. IEEE Trans. Signal Process. 2003, 51, 560–574. [Google Scholar] [CrossRef]
- Pasinetti, S.; Hassan, M.M.; Eberhardt, J.; Lancini, M.; Docchio, F.; Sansoni, G. Performance analysis of the PMD camboard picoflexx time-of-flight camera for markerless motion capture applications. IEEE Trans. Instrum. Meas. 2019, 68, 4456–4471. [Google Scholar] [CrossRef]
- Maniyara, R.A.; Graham, C.; Paulillo, B.; Bi, Y.; Chen, Y.; Herranz, G.; Baker, D.E.; Mazumder, P.; Konstantatos, G.; Pruneri, V. Highly transparent and conductive ITO substrates for near infrared applications. APL Mater. 2021, 9, 021121. [Google Scholar] [CrossRef]
- He, Y.; Liang, B.; Zou, Y.; He, J.; Yang, J. Depth errors analysis and correction for time-of-flight (ToF) cameras. Sensors 2017, 17, 92. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K.; Mukaigawa, Y.; Kubo, H.; Matsushita, Y.; Yagi, Y. Recovering transparent shape from time-of-flight distortion. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 4387–4395. [Google Scholar]
- Ludwig, J.; Speier, P.; Seifert, F.; Schaeffter, T.; Kolbitsch, C. Pilot tone–based motion correction for prospective respiratory compensated cardiac cine MRI. Magn. Reson. Med. 2021, 85, 2403–2416. [Google Scholar] [CrossRef] [PubMed]
- Falcão, M.B.; Di Sopra, L.; Ma, L.; Bacher, M.; Yerly, J.; Speier, P.; Rutz, T.; Prša, M.; Markl, M.; Stuber, M.; et al. Pilot tone navigation for respiratory and cardiac motion-resolved free-running 5D flow MRI. Magn. Reson. Med. 2022, 87, 718–732. [Google Scholar] [CrossRef]
- Ludwig, J.; Kerkering, K.M.; Speier, P.; Schaeffter, T.; Kolbitsch, C. Pilot tone-based prospective correction of respiratory motion for free-breathing myocardial T1 mapping. Magn. Reson. Mater. Phys. Biol. Med. 2023, 36, 135–150. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.S.; Boyacioglu, R.; Bolding, R.; MacAskill, C.; Chen, Y.; Griswold, M.A. Free-breathing abdominal magnetic resonance fingerprinting using a pilot tone navigator. J. Magn. Reson. Imaging 2021, 54, 1138–1151. [Google Scholar] [CrossRef]
- Mackowiak, A.L.; Roy, C.W.; Yerly, J.; Falcão, M.B.; Bacher, M.; Speier, P.; Piccini, D.; Stuber, M.; Bastiaansen, J.A. Motion-resolved fat-fraction mapping with whole-heart free-running multiecho GRE and pilot tone. Magn. Reson. Med. 2023, 90, 922–938. [Google Scholar] [CrossRef]
- Giger, A.; Stadelmann, M.; Preiswerk, F.; Jud, C.; De Luca, V.; Celicanin, Z.; Bieri, O.; Salomir, R.; Cattin, P.C. Ultrasound-driven 4D MRI. Phys. Med. Biol. 2018, 63, 145015. [Google Scholar] [CrossRef]
- Delgado San Martin, J.; Worthington, P.; Yates, J. Non-invasive 3D time-of-flight imaging technique for tumour volume assessment in subcutaneous models. Lab. Anim. 2015, 49, 168–171. [Google Scholar] [CrossRef]
- Wentz, T.; Fayad, H.; Bert, J.; Pradier, O.; Clément, J.F.; Vourch, S.; Boussion, N.; Visvikis, D. Accuracy of dynamic patient surface monitoring using a time-of-flight camera and B-spline modeling for respiratory motion characterization. Phys. Med. Biol. 2012, 57, 4175. [Google Scholar] [CrossRef]
- Pycinski, B.; Czajkowska, J.; Badura, P.; Juszczyk, J.; Pietka, E. Time-of-flight camera, optical tracker and computed tomography in pairwise data registration. PLoS ONE 2016, 11, e0159493. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Eldeniz, C.; Fraum, T.J.; Ludwig, D.R.; Gan, W.; Liu, J.; Kamilov, U.S.; Yang, D.; Gach, H.M.; An, H. Respiratory motion management using a single rapid MRI scan for a 0.35 T MRI-Linac system. Med. Phys. 2023, 50, 6163–6176. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tibrewala, R.; Brantner, D.; Brown, R.; Pancoast, L.; Keerthivasan, M.; Bruno, M.; Block, K.T.; Madore, B.; Sodickson, D.K.; Collins, C.M. Preliminary Experience with Three Alternative Motion Sensors for 0.55 Tesla MR Imaging. Sensors 2024, 24, 3710. https://doi.org/10.3390/s24123710
Tibrewala R, Brantner D, Brown R, Pancoast L, Keerthivasan M, Bruno M, Block KT, Madore B, Sodickson DK, Collins CM. Preliminary Experience with Three Alternative Motion Sensors for 0.55 Tesla MR Imaging. Sensors. 2024; 24(12):3710. https://doi.org/10.3390/s24123710
Chicago/Turabian StyleTibrewala, Radhika, Douglas Brantner, Ryan Brown, Leanna Pancoast, Mahesh Keerthivasan, Mary Bruno, Kai Tobias Block, Bruno Madore, Daniel K. Sodickson, and Christopher M. Collins. 2024. "Preliminary Experience with Three Alternative Motion Sensors for 0.55 Tesla MR Imaging" Sensors 24, no. 12: 3710. https://doi.org/10.3390/s24123710
APA StyleTibrewala, R., Brantner, D., Brown, R., Pancoast, L., Keerthivasan, M., Bruno, M., Block, K. T., Madore, B., Sodickson, D. K., & Collins, C. M. (2024). Preliminary Experience with Three Alternative Motion Sensors for 0.55 Tesla MR Imaging. Sensors, 24(12), 3710. https://doi.org/10.3390/s24123710