A Novel Fast Iterative STAP Method with a Coprime Sampling Structure
Abstract
:1. Introduction
2. Coprime Sampling Structured STAP
2.1. Coprime Sampling Structured Model
2.2. Difference Operation
2.3. The STAP Method
3. Fast Iterative Coprime STAP Method
3.1. Truncated Kernel Norm
3.2. TNNM-STAP Method
- (1)
- Given , , and , we have
- (2)
- Given , , and , we have
- (3)
- Given , , and , we have
- (4)
- Given , , and , we have
4. Simulation Experiments
4.1. The Root Mean Square Error (RMSE)
4.2. DOF
4.3. Beampatterns
4.4. SCNR
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Melvin, W.L. A STAP overview. IEEE Aerosp. Electron. Syst. Mag. 2004, 19, 19–35. [Google Scholar] [CrossRef]
- Cao, J.; Wang, T.; Wang, D. Beam-Space Post-Doppler Reduced-Dimension STAP Based on Sparse Bayesian Learning. Remote Sens. 2024, 16, 307. [Google Scholar] [CrossRef]
- Sun, Y.; Xie, J.; Gong, Y.; Zhang, Z.; Wang, L. Adaptive interference mitigation space-time array reconfiguration by joint selection of antenna and delay tap. IET Radar Sonar Navig. 2024, 18, 448–462. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, L.; Zhou, Y.; Lin, C.; Tang, S.; Wan, J. A non-adaptive space-time clutter canceller for multi-channel synthetic aperture radar. Signal Process. IET 2019, 13, 472–479. [Google Scholar] [CrossRef]
- Wang, W.; Zou, L.; Wang, X. A Novel Two-Level Nested STAP Strategy for Clutter Suppression in Airborne Radar. Math. Probl. Eng. 2019, 2019, 2540858. [Google Scholar] [CrossRef]
- Zhao, X.; He, Z.; Wang, Y.; Sun, G. Reduced-dimension STAP using a modified generalised sidelobe canceller for collocated MIMO radars. IET Radar Sonar Navig. 2018, 12, 1476–1483. [Google Scholar] [CrossRef]
- Wang, W.; Zou, L.; Wang, X.; Yang, Y. Deterministic-aided single dataset STAP method based on sparse recovery in heterogeneous clutter environments. EURASIP J. Adv. Signal Process. 2018, 2018, 24. [Google Scholar] [CrossRef]
- Liu, M.; Zou, L.; Yu, X.; Zhou, Y.; Wang, X.; Tang, B. Knowledge Aided Covariance Matrix Estimation via Gaussian Kernel Function for Airborne SR-STAP. IEEE Access 2020, 8, 5970–5978. [Google Scholar] [CrossRef]
- Wang, W.-Q. Frequency Diverse Array SAR With Fast-Time Space-Time Adaptive Processing for Subsurface Imaging. IEEE Access 2023, 11, 122128–122140. [Google Scholar] [CrossRef]
- Ren, B.; Wang, T. Space-Time Adaptive Processing Based on Modified Sparse Learning via Iterative Minimization for Conformal Array Radar. Sensors 2022, 22, 6917. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, T.; Liu, C.; Wang, D. A Space-Time Adaptive Processing Method Based on Sparse Bayesian Learning for Maneuvering Airborne Radar. Sensors 2022, 22, 5479. [Google Scholar] [CrossRef]
- Fu, D.; Liao, G.; Xu, J. Clutter Subspace Characteristics-Aided Space-Time Adaptive Outlier Sample Selection Method. Sensors 2021, 21, 3108. [Google Scholar] [CrossRef]
- Chen, N.; Wei, P.; Ai, X. A Robust STAP Method Based on Alternating Projection and Clutter Cancellation. IEEE Access 2019, 7, 179880–179890. [Google Scholar] [CrossRef]
- Xie, L.; He, Z.; Tong, J.; Zhang, W. A Recursive Angle-Doppler Channel Selection Method for Reduced-Dimension Space-Time Adaptive Processing. IEEE Trans. Aerosp. Electron. Syst. 2020, 56, 3985–4000. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, Z.; Xing, M.; Zhang, S.; Wang, Y. Research on Multi-Domain Dimensionality Reduction Joint Adaptive Processing Method for Range Ambiguous Clutter of FDA-Phase-MIMO Space-Based Early Warning Radar. Remote Sens. 2022, 14, 5536. [Google Scholar] [CrossRef]
- Fa, R.; de Lamare, R.C.; Wang, L. Reduced-Rank STAP Schemes for Airborne Radar Based on Switched Joint Interpolation, Decimation and Filtering Algorithm. IEEE Trans. Signal Process. 2010, 58, 4182–4194. [Google Scholar] [CrossRef]
- Wong, M.; Aboutanios, E.; Rosenberg, L. A STAP Detection Scheme for Low Sample Support Maritime Environments. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 5671–5683. [Google Scholar] [CrossRef]
- Zhang, W.; Han, M.; He, Z.; Li, H. Data-dependent reduced-dimension STAP. IET Radar Sonar Navig. 2019, 13, 1287–1294. [Google Scholar] [CrossRef]
- Shen, M.; Wang, J.; Wu, D.; Zhu, D. An Efficient Moving Target Detection Algorithm Based on Sparsity-Aware Spectrum Estimation. Sensors 2014, 14, 17055–17067. [Google Scholar] [CrossRef]
- Tong, Y.; Wang, T.; Wu, J. Improving EFA-STAP performance using persymmetric covariance matrix estimation. IEEE Trans. Aerosp. Electron. Syst. 2015, 51, 924–936. [Google Scholar] [CrossRef]
- Ciuonzo, D.; Orlando, D.; Pallotta, L. On the maximal invariant statistic for adaptive radar detection in partially homogeneous disturbance with persymmetric covariance. IEEE Signal Process. Lett. 2016, 23, 1830–1834. [Google Scholar] [CrossRef]
- Sun, K.; Meng, H.; Wang, Y.; Wang, X. Direct data domain STAP using sparse representation of clutter spectrum. arXiv 2010, arXiv:1008.4184. [Google Scholar] [CrossRef]
- Rivera Velázquez, J.M.; Latorre, L.; Mailly, F.; Nouet, P. A New Algorithm for Fault Tolerance in Redundant Sensor Systems Based on Real-Time Variance Estimation. IEEE Sens. J. 2022, 22, 15410–15418. [Google Scholar] [CrossRef]
- Ma, H.; Mao, X.; Wang, X.; Gao, Y. A new array extension configuration method based on nesting and minimum redundancy. IET Radar Sonar Navig. 2023, 17, 748–758. [Google Scholar] [CrossRef]
- Wei, S.; Zhu, G.; Su, Y. A Novel Sparse Array Configuration for Direction of Arrival Estimation with Increased Uniform Degrees of Freedom and Reduced Mutual Coupling. Sensors 2024, 24, 808. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhao, L.; Jiang, Y. Super Augmented Nested Arrays: A New Sparse Array for Improved DOA Estimation Accuracy. IEEE Signal Process. Lett. 2024, 31, 26–30. [Google Scholar] [CrossRef]
- Li, N.; Zhang, X.-K.; Zong, B.; Lv, F.; Xu, J.; Wang, Z. An off-grid direction-of-arrival estimator based on sparse Bayesian learning with three-stage hierarchical Laplace priors. Signal Process. 2024, 218, 109371. [Google Scholar] [CrossRef]
- Liu, M.; Wang, X.; Zou, L. Robust STAP With Reduced Mutual Coupling and Enhanced DOF Based on Super Nested Sampling Structure. IEEE Access 2019, 7, 175420–175428. [Google Scholar] [CrossRef]
- Wang, X.; Yang, Z.; Huang, J. Robust space-time adaptive processing for airborne radar with coprime arrays in presence of gain and phase errors. IET Radar Sonar Navig. 2020, 15, 75–84. [Google Scholar] [CrossRef]
- Li, B.; Lu, L.; Zhou, C. SADOE: Sequential-based angle-Doppler off-grid estimation with coprime sampling structures for space-time adaptive processing. IET Radar Sonar Navig. 2021, 15, 775–787. [Google Scholar] [CrossRef]
- Liu, M.; Tang, B.; Zheng, X.; Wang, Q.; Wang, S.; Wang, X.; Fang, M.; Zhu, J.; Feng, C. STAP for Airborne Radar Based on Dual-Frequency Space-Time Coprime Sampling Structure. IEEE Access 2020, 8, 138673–138681. [Google Scholar] [CrossRef]
- Liu, S.; Mao, Z.; Zhang, Y.D.; Huang, Y. Rank Minimization-Based Toeplitz Reconstruction for DoA Estimation Using Coprime Array. IEEE Commun. Lett. 2021, 25, 2265–2269. [Google Scholar] [CrossRef]
- Qiao, H.; Pal, P. Unified analysis of co-array interpolation for direction-of-arrival estimation. In Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5–9 March 2017; pp. 3056–3060. [Google Scholar]
- Zhou, C.; Gu, Y.; Shi, Z.; Zhang, Y.D. Off-Grid Direction-of-Arrival Estimation Using Coprime Array Interpolation. IEEE Signal Process. Lett. 2018, 25, 1710–1714. [Google Scholar] [CrossRef]
- Zhou, C.; Gu, Y.; Fan, X.; Shi, Z.; Mao, G.; Zhang, Y.D. Direction-of-Arrival Estimation for Coprime Array via Virtual Array Interpolation. IEEE Trans. Signal Process. 2018, 66, 5956–5971. [Google Scholar] [CrossRef]
- Stoica, P.; Wang, Z.; Li, J. Robust Capon beam map. IEEE Signal Process. Lett. 2003, 10, 172–175. [Google Scholar] [CrossRef]
- Cai, J.-F.; Candès, E.J.; Shen, Z. A Singular Value Thresholding Algorithm for Matrix Completion. SIAM J. Optim. 2010, 20, 1956–1982. [Google Scholar] [CrossRef]
- Lin, Z.; Liu, R.; Su, Z. Linearized Alternating Direction Method with Adaptive Penalty for Low-Rank Representation. In Proceedings of the Neural Information Processing Systems 2011, Granada, Spain, 12–15 December 2011. [Google Scholar]
- Hu, Y.; Zhang, D.; Ye, J.; Li, X.; He, X. Fast and Accurate Matrix Completion via Truncated Nuclear Norm Regularization. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 2117–2130. [Google Scholar] [CrossRef]
- Donoho, D. De-noising by soft-thresholding. IEEE Trans. Inf. Theory 1995, 41, 613–627. [Google Scholar] [CrossRef]
Abbreviation | Full Name |
---|---|
STAP | space-time adaptive processing |
TKNM | truncated kernel norm minimization |
CCM | clutter covariance matrix |
SINR | signal-to-interference-to-noise ratio |
DOF | degrees of freedom |
TNNM-FIC-STAP | fast iterative coprime STAP algorithm |
PRI | pulse repetition interval |
CPI | coherent processing interval |
ULAs | uniform linear arrays |
CNCM | clutter plus noise covariance matrix |
SNR | signal-to-noise ratio |
SVD | singular value decomposition |
SVT | singular value threshold |
T-STAP | traditional STAP |
C-STAP | traditional coprime STAP |
RMSE | root mean square error |
SCM | sample covariance matrix |
NNM | minimum nuclear norm |
Step | Computational Complexity |
---|---|
Step 1 | |
Step 2 | |
Step 3 | |
Step 4 | |
Step 5 |
Symbol | Quantity | Value |
---|---|---|
the number of sensors | 6 | |
the number of pulses | 6 | |
carrier wavelength | 0.2 m | |
minimal PRI | 0.5 ms | |
radar velocity | 100 m/s | |
noise power | 1 dB | |
number of independent clutter patches | 361 | |
CNR | clutter to noise ratio | 30 dB |
SNR | Signal-to-noise ratio | 0 dB |
normalized angle frequency of target | 0.1 | |
normalized Doppler frequency of target | 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Li, H. A Novel Fast Iterative STAP Method with a Coprime Sampling Structure. Sensors 2024, 24, 4007. https://doi.org/10.3390/s24124007
Li M, Li H. A Novel Fast Iterative STAP Method with a Coprime Sampling Structure. Sensors. 2024; 24(12):4007. https://doi.org/10.3390/s24124007
Chicago/Turabian StyleLi, Mingfu, and Hui Li. 2024. "A Novel Fast Iterative STAP Method with a Coprime Sampling Structure" Sensors 24, no. 12: 4007. https://doi.org/10.3390/s24124007