A Coupled Double-Layer Electrical Impedance Tomography-Based Sensing Skin for Pressure and Leak Detection
Abstract
:1. Introduction
2. Single-Layer EIT-Based Sensing Skin
2.1. Forward Problem
2.2. Inverse Problem
3. A Coupled Double-Layer Sensing Skin
3.1. Forward Model Solution
3.2. Prior Functions
4. Simulations and Experimental Studies
4.1. Simulation Setup
- Reference measurements of the layers separately, i.e., with zero coupling between the layers.
- Reference measurements of the assembled sensing skin, i.e., with homogeneous coupling.
- Measurements with the effect (i.e., applied pressure or water) in place.
4.2. Experimental Setup
4.3. Reconstruction
- From measurements made of the two layers separately, their initial conductivity distributions and the contact impedances of electrodes are estimated as in single-layer EIT described in Section 2.
- From measurements, where the layers were combined, but no pressure or water had yet been applied, a homogeneous estimate of the coupling is computed, using the conductivity distribution and contact impedances estimated in step 1. Using the estimate , a correction to the measurements is computed as specified in reference [24].
- From measurements after applying pressure or water, the coupling distribution is estimated together with re-estimation of the conductivity distribution.
5. Results and Discussion
5.1. Simulations
5.2. Experimental Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
EIT | Electrical impedance tomography |
SHM | Structural health monitoring |
CEM | Complete electrode model |
FEM | Finite element method |
MAP | Maximum a posteriori |
GN | Gauss–Newton |
FE | Finite element |
Appendix A. FEM Formulation for Coupled Double-Layer Sensing Skin
Computing the Jacobian
References
- Soleimani, M.; Friedrich, M. E-Skin Using Fringing Field Electrical Impedance Tomography with an Ionic Liquid Domain. Sensors 2022, 22, 5040. [Google Scholar] [CrossRef] [PubMed]
- Tallman, T.; Gungor, S.; Wang, K.; Bakis, C. Tactile imaging and distributed strain sensing in highly flexible carbon nanofiber/polyurethane nanocomposites. Carbon 2015, 95, 485–493. [Google Scholar] [CrossRef]
- Silvera-Tawil, D.; Rye, D.; Soleimani, M.; Velonaki, M. Electrical Impedance Tomography for Artificial Sensitive Robotic Skin: A Review. IEEE Sens. J. 2015, 15, 2001–2016. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, W.; Chen, X.; Ye, J.; Wu, H. A flexible touching sensor with the variation of electrical impedance distribution. Measurement 2021, 183, 109778. [Google Scholar] [CrossRef]
- Zhang, H.; Kalra, A.; Lowe, A.; Yu, Y.; Anand, G. A Hydrogel-Based Electronic Skin for Touch Detection Using Electrical Impedance Tomography. Sensors 2023, 23, 1571. [Google Scholar] [CrossRef] [PubMed]
- Yao, A.; Soleimani, M. A pressure mapping imaging device based on electrical impedance tomography of conductive fabrics. Sens. Rev. 2012, 32, 310–317. [Google Scholar] [CrossRef]
- Liu, K.; Wu, Y.; Wang, S.; Wang, H.; Chen, H.; Chen, B.; Yao, J. Artificial Sensitive Skin for Robotics Based on Electrical Impedance Tomography. Adv. Intell. Syst. 2020, 2, 1900161. [Google Scholar] [CrossRef]
- Liu, J.; Liu, N.; Wang, P.; Wang, M.; Guo, S. Array-less touch position identification based on a flexible capacitive tactile sensor for human-robot interactions. In Proceedings of the 2019 IEEE 4th International Conference on Advanced Robotics and Mechatronics (ICARM), Toyonaka, Japan, 3–5 July 2019; pp. 458–462. [Google Scholar] [CrossRef]
- Duan, X.; Taurand, S.; Soleimani, M. Artificial skin through super-sensing method and electrical impedance data from conductive fabric with aid of deep learning. Sci. Rep. 2019, 9, 8831. [Google Scholar] [CrossRef]
- Lee, H.; Park, H.; Serhat, G.; Sun, H.; Kuchenbecker, K.J. Calibrating a Soft ERT-Based Tactile Sensor with a Multiphysics Model and Sim-to-real Transfer Learning. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 1632–1638. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, M.; Bruck, H.A.; Smela, E. Compliant multi-layer tactile sensing for enhanced identification of human touch. Smart Mater. Struct. 2018, 27, 125009. [Google Scholar] [CrossRef]
- Yao, A.; Yang, L.; Seo, K.; Soleimani, M. EIT-Based Fabric Pressure Sensing. In Computational and Mathematical Methods in Medicine; Wiley: Hoboken, NJ, USA, 2013; p. 405325. [Google Scholar] [CrossRef]
- Jamshidi, M.; Park, C.B.; Azhari, F. An EIT-based piezoresistive sensing skin with a lattice structure. Mater. Des. 2023, 233, 112227. [Google Scholar] [CrossRef]
- Weichart, J.; Roman, C.; Hierold, C. Tactile Sensing with Scalable Capacitive Sensor Arrays on Flexible Substrates. J. Microelectromechanical Syst. 2021, 30, 915–929. [Google Scholar] [CrossRef]
- Yang, T.; Xie, D.; Li, Z.; Zhu, H. Recent advances in wearable tactile sensors: Materials, sensing mechanisms, and device performance. Mater. Sci. Eng. R Rep. 2017, 115, 1–37. [Google Scholar] [CrossRef]
- Kim, J.T.; Choi, H.; Shin, E.; Park, S.; Kim, I.G. Graphene-based optical waveguide tactile sensor for dynamic response. Sci. Rep. 2018, 8, 16118. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, N.; Hashimoto, K.; Meng, C.; Guo, S. Touch position identification based on a flexible array-less supercapacitive tactile sensor. AIP Adv. 2019, 9, 015026. [Google Scholar] [CrossRef]
- Guo, H.; Xiao, G.; Mrad, N.; Yao, J. Fiber Optic Sensors for Structural Health Monitoring of Air Platforms. Sensors 2011, 11, 3687–3705. [Google Scholar] [CrossRef] [PubMed]
- Nauman, S. Piezoresistive Sensing Approaches for Structural Health Monitoring of Polymer Composites—A Review. Eng 2021, 2, 197–226. [Google Scholar] [CrossRef]
- Yao, Y.; Glisic, B. Sensing sheets: Optimal arrangement of dense array of sensors for an improved probability of damage detection. Struct. Health Monit. 2015, 14, 513–531. [Google Scholar] [CrossRef]
- Wan, Y.; Dong, Z.; Cai, Y.; Xue, Q.; Liu, K.; Liu, L.; Guo, D. Geomembrane leaks detection and leakage correlation factor analysis of composite liner systems for fifty-five (55) solid waste landfills in China. Environ. Technol. Innov. 2023, 32, 103308. [Google Scholar] [CrossRef]
- Lugli, F.; Mahler, C.F. Analytical study of the performance of a geomembrane leak detection system. Waste Manag. Res. 2016, 34, 482–486. [Google Scholar] [CrossRef] [PubMed]
- Frangos, W. Electrical detection of leaks in lined waste disposal ponds. Geophysics 1997, 62, 1737–1744. [Google Scholar] [CrossRef]
- Hallaji, M.; Pour-Ghaz, M. A new sensing skin for qualitative damage detection in concrete elements: Rapid difference imaging with electrical resistance tomography. NDT E Int. 2014, 68, 13–21. [Google Scholar] [CrossRef]
- Yao, Y.; Glisic, B. Detection of Steel Fatigue Cracks with Strain Sensing Sheets Based on Large Area Electronics. Sensors 2015, 15, 8088–8108. [Google Scholar] [CrossRef] [PubMed]
- Thomas, A.; Kim, J.; Tallman, T.; Bakis, C. Damage detection in self-sensing composite tubes via electrical impedance tomography. Compos. Part B 2019, 177, 107276. [Google Scholar] [CrossRef]
- Loh, K.J.; Hou, T.C.; Lynch, J.P.; Kotov, N.A. Carbon Nanotube Sensing Skins for Spatial Strain and Impact Damage Identification. J. Nondestruct. Eval. 2009, 28, 9–25. [Google Scholar] [CrossRef]
- Gupta, R.; Mitchell, D.; Blanche, J.; Harper, S.; Tang, W.; Pancholi, K.; Baines, L.; Bucknall, D.G.; Flynn, D. A Review of Sensing Technologies for Non-Destructive Evaluation of Structural Composite Materials. J. Compos. Sci. 2021, 5, 319. [Google Scholar] [CrossRef]
- Chung, D. A review to elucidate the multi-faceted science of the electrical-resistance-based strain/temperature/damage self-sensing in continuous carbon fiber polymer-matrix structural composites. J. Mater. Sci. 2023, 58, 483–526. [Google Scholar] [CrossRef]
- Tallman, T.N.; Wang, K.W. Damage and strain identification in multifunctional materials via electrical impedance tomography with constrained sine wave solutions. Struct. Health Monit. 2016, 15, 235–244. [Google Scholar] [CrossRef]
- Tallman, T.N.; Gungor, S.; Wang, K.W.; Bakis, C.E. Damage detection via electrical impedance tomography in glass fiber/epoxy laminates with carbon black filler. Struct. Health Monit. 2015, 14, 100–109. [Google Scholar] [CrossRef]
- Tallman, T.N.; Gungor, S.; Wang, K.W.; Bakis, C.E. Damage detection and conductivity evolution in carbon nanofiber epoxy via electrical impedance tomography. Smart Mater. Struct. 2014, 23, 045034. [Google Scholar] [CrossRef]
- Sannamani, M.; Gao, J.; Chen, W.W.; Tallman, T.N. Damage detection in non-planar carbon fiber-reinforced polymer laminates via electrical impedance tomography with surface-mounted electrodes and directional sensitivity matrices. Compos. Sci. Technol. 2022, 224, 109429. [Google Scholar] [CrossRef]
- Augustin, T.; Karsten, J.; Fiedler, B. Detection and localization of impact damages in carbon nanotube–modified epoxy adhesive films with printed circuits. Struct. Health Monit. 2018, 17, 1166–1177. [Google Scholar] [CrossRef]
- Hou, T.C.; Loh, K.; Lynch, J. Spatial conductivity mapping of carbon nanotube composite thin films by electrical impedance tomography for sensing applications. Nanotechnology 2007, 18, 315501. [Google Scholar] [CrossRef]
- Rashetnia, R.; Hallaji, M.; Smyl, D.; Seppänen, A.; Pour-Ghaz, M. Detection and localization of changes in two-dimensional temperature distributions by electrical resistance tomography. Smart Mater. Struct. 2017, 26, 115021. [Google Scholar] [CrossRef]
- Seppänen, A.; Hallaji, M.; Pour-Ghaz, M. A functionally layered sensing skin for the detection of corrosive elements and cracking. Struct. Health Monit. 2017, 16, 215–224. [Google Scholar] [CrossRef]
- Alirezaei, H.; Nagakubo, A.; Kuniyoshi, Y. A tactile distribution sensor which enables stable measurement under high and dynamic stretch. In Proceedings of the IEEE Symposium on 3D User Interfaces, 3DUI 2009, Lafayette, LA, USA, 14–15 March 2009; IEEE Computer Society: Los Alamitos, CA, USA, 2009; pp. 87–93. [Google Scholar] [CrossRef]
- Tawil, D.S.; Rye, D.C.; Velonaki, M. Touch modality interpretation for an EIT-based sensitive skin. In Proceedings of the IEEE International Conference on Robotics and Automation, ICRA 2011, Shanghai, China, 9–13 May 2011; pp. 3770–3776. [Google Scholar] [CrossRef]
- Cheng, K.S.; Isaacson, D.; Newell, J.C.; Gisser, D.G. Electrode Models for Electric Current Computed Tomography. IEEE Trans. Biomed. Eng. 1989, 36, 918–924. [Google Scholar] [CrossRef]
- Somersalo, E.; Cheney, M.; Isaacson, D. Existence and Uniqueness for Electrode Models for Electric Current Computed Tomography. SIAM J. Appl. Math. 1992, 52, 1023–1040. [Google Scholar] [CrossRef]
- Vauhkonen, P.J.; Vauhkonen, M.; Savolainen, T.; Kaipio, J.P. Three-Dimensional Electrical Impedance Tomography Based on the Complete Electrode Model. IEEE Trans. Biomed. Imaging 1999, 46, 1150–1160. [Google Scholar] [CrossRef]
- Voss, A. Imaging Moisture Flows in Cement-Based Materials Using Electrical Capacitance Tomography. Ph.D. Thesis, University of Eastern Finland, Kuopio, Finland, 2020. [Google Scholar]
- Kaipio, J.; Somersalo, E. Statistical and Computational Inverse Problems; Springer Science+Business Media Inc.: New York, NY, USA, 2004. [Google Scholar]
- Nocedal, J.; Wright, S.J. Numerical Optimization; Springer: New York, NY, USA, 2006. [Google Scholar]
- Vauhkonen, P. Image Reconstruction in Three-Dimensional Electrical Impedance Tomography. Ph.D. Thesis, University of Kuopio, Kuopio, Finland, 2004. [Google Scholar]
- Vilhunen, T.; Kaipio, J.P.; Vauhkonen, P.J.; Savolainen, T.; Vauhkonen, M. Simultaneous reconstruction of electrode contact impedances and internal electrical properties: I. Theory. Meas. Sci. Technol. 2002, 13, 1848. [Google Scholar] [CrossRef]
- Heikkinen, L.M.; Vilhunen, T.; West, R.M.; Vauhkonen, M. Simultaneous reconstruction of electrode contact impedances and internal electrical properties: II. Laboratory experiments. Meas. Sci. Technol. 2002, 13, 1855. [Google Scholar] [CrossRef]
- Lipponen, A.; Seppänen, A.; Kaipio, J. Electrical impedance tomography imaging with reduced-order model based on proper orthogonal decomposition. J. Electron. Imaging 2013, 22, 023008. [Google Scholar] [CrossRef]
- González, G.; Huttunen, J.M.J.; Kolehmainen, V.; Seppänen, A.; Vauhkonen, M. Experimental Evaluation of 3D Electrical Impedance Tomography with Total Variation Prior. Inverse Probl. Sci. Eng. 2016, 24, 1411–1431. [Google Scholar] [CrossRef]
- Nissinen, A.; Heikkinen, L.M.; Kaipio, J.P. The Bayesian approximation error approach for electrical impedance tomography—Experimental results. Meas. Sci. Technol. 2007, 19, 015501. [Google Scholar] [CrossRef]
- Nissinen, A.; Kolehmainen, V.P.; Kaipio, J.P. Compensation of Modelling Errors Due to Unknown Domain Boundary in Electrical Impedance Tomography. IEEE Trans. Med. Imaging 2011, 30, 231–242. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuusela, P.; Seppänen, A. A Coupled Double-Layer Electrical Impedance Tomography-Based Sensing Skin for Pressure and Leak Detection. Sensors 2024, 24, 4134. https://doi.org/10.3390/s24134134
Kuusela P, Seppänen A. A Coupled Double-Layer Electrical Impedance Tomography-Based Sensing Skin for Pressure and Leak Detection. Sensors. 2024; 24(13):4134. https://doi.org/10.3390/s24134134
Chicago/Turabian StyleKuusela, Petri, and Aku Seppänen. 2024. "A Coupled Double-Layer Electrical Impedance Tomography-Based Sensing Skin for Pressure and Leak Detection" Sensors 24, no. 13: 4134. https://doi.org/10.3390/s24134134