Dynamic Modeling and Analysis of Flexible-Joint Robots with Clearance
Abstract
:1. Introduction
2. Modeling of Joint Clearance
3. Modeling of the Flexible-Joint Robots with Clearance
4. Simulation and Analysis
4.1. Simulation Parameters and Model
- (1)
- Define parameters required for simulation, set radius of journal m, size of clearance m.
- (2)
- Define the initial value of the system at and set the initial variables .
- (3)
- Calculate the contact depth according to the parameters and the variable values to further judge the contact state.
- (4)
- Establish the contact model of the clearance and calculate the contact force .
- (5)
- Establish the system dynamic equation considering joint clearance and joint flexibility.
- (6)
- Use DAEs solver to solve the system equation to obtain the variable values, and set the solver parameters: integral step is 1 × 10−3 and integral tolerance is 1 × 10−7.
- (7)
- Repeat steps (3)–(6) until the simulation is over.
4.2. Influences of Flexible Joint and Clearance
4.3. Influences of Clearance Size
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, F.L.; Yuan, Z.H. The study of coupling dynamics modeling and characteristic analysis for flexible robots with nonlinear and frictional joints. Arab. J. Sci. Eng. 2022, 47, 15347–15363. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, Y.Q. P-Rob six-degree-of-freedom robot manipulator dynamics modeling and anti-disturbance control. IEEE Access 2021, 9, 141403–141420. [Google Scholar] [CrossRef]
- Cui, W. Research on the Dynamics and Control Algorithm of the Multi-Link Flexible-Joint Robot. Master’s Thesis, Nanjing University of Aeronautics and Astronautics, Nanjing, China, 2016. [Google Scholar]
- Erkaya, S. Investigation of joint clearance effects on welding robot manipulators. Robot. Comput.-Integr. Manuf. 2012, 28, 449–457. [Google Scholar] [CrossRef]
- Duan, S.Y.; Li, C.L.; Han, X.; Liu, G.R. Forward-inverse dynamics analysis of robot arm trajectories and development of a nonlinear friction model for robot joints. J. Mech. Eng. 2020, 56, 18–28. [Google Scholar]
- Madsen, E.; Rosenlund, O.S.; Brandt, D.; Zhang, X.P. Comprehensive modeling and identification of nonlinear joint dynamics for collaborative industrial robot manipulators. Control Eng. Pract. 2020, 101, 104462. [Google Scholar] [CrossRef]
- Ibrahim, O.; Khalil, W. Inverse and direct dynamic models of hybrid robots. Mech. Mach. Theory 2010, 45, 627–640. [Google Scholar] [CrossRef]
- Dong, C.L.; Liu, H.T.; Xiao, J.L.; Huang, T. Dynamic modeling and design of a 5-DOF hybrid robot for machining. Mech. Mach. Theory 2021, 165, 104438. [Google Scholar] [CrossRef]
- Li, Y.B.; Zheng, H.; Sun, P.; Xu, T.T.; Wang, Z.S.; Qing, S.Y. Dynamic modeling with joint friction and research on the inertia coupling property of a 5-PSS/UPU parallel manipulator. J. Mech. Eng. 2019, 55, 43–52. [Google Scholar] [CrossRef]
- Sun, H.H.; Zhang, Y.J.; Xie, B.; Zi, B. Dynamic modeling and error analysis of a cable-linkage serial-parallel palletizing robot. IEEE Access 2021, 9, 2188–2200. [Google Scholar] [CrossRef]
- Zhang, F.L.; Yuan, Z.H. The Study of Dynamic modeling and multivariable feedback control for flexible manipulators with friction effect and terminal load. Sensors 2021, 21, 1522. [Google Scholar] [CrossRef]
- Ban, C.X.; Cai, G.W.; Wei, W.; Peng, S.X. Dynamic response and chaotic behavior of a controllable flexible robot. Nonlinear Dynam. 2022, 109, 547–562. [Google Scholar] [CrossRef]
- Peza-Solis, J.F.; Silva-Navarro, G.; Garcia-Perez, O.A.; Trujillo-Franco, L.G. Trajectory tracking of a single flexible-link robot using a modal cascaded-type control. Appl. Math. Model. 2022, 104, 531–547. [Google Scholar] [CrossRef]
- Gu, Y.X.; Zhao, J.L.; Yan, S.Z.; Wu, J.N. Kinematic accuracy of the flexible space manipulator with harmonic drive. J. Mech. Eng. 2013, 49, 74–79. [Google Scholar] [CrossRef]
- Spong, M.W. Modeling and control of elastic joint robots. J. Dyn. Syst.-T. ASME 1987, 109, 310–319. [Google Scholar] [CrossRef]
- Ruderman, M.; Hoffmann, F.; Bertram, T. Modeling and identification of elastic robot joints with hysteresis and backlash. IEEE Trans. Ind. Electron. 2009, 56, 3840–3847. [Google Scholar] [CrossRef]
- Ruderman, M.; Iwasaki, M. Sensorless torsion control of elastic-joint robots with hysteresis and friction. IEEE Trans. Ind. Electron. 2016, 63, 1889–1899. [Google Scholar] [CrossRef]
- Ruderman, M.; Bertram, T.; Iwasaki, M. Modeling, observation, and control of hysteresis torsion in elastic robot joints. Mechatronics 2014, 24, 407–415. [Google Scholar] [CrossRef]
- Ruderman, M. On stability of virtual torsion sensor for control of flexible robotic joints with hysteresis. Robotica 2020, 38, 1191–1204. [Google Scholar] [CrossRef]
- Fateh, M.M. Nonlinear control of electrical flexible-joint robots. Nonlinear Dynam. 2012, 67, 2549–2559. [Google Scholar] [CrossRef]
- Spyrakos-Papastavridis, E.; Dai, J.S. Minimally model-based trajectory tracking and variable impedance control of flexible-joint robots. IEEE Trans. Ind. Electron. 2021, 68, 6031–6041. [Google Scholar] [CrossRef]
- Farah, J.; Chanal, H.; Bouton, N.; Gagnol, V. A model-based control law for vibration reduction of serial robots with flexible joints. Mech. Ind. 2021, 22, 38. [Google Scholar] [CrossRef]
- Do, T.T.; Vu, V.H.; Liu, Z.H. Linearization of dynamic equations for vibration and modal analysis of flexible joint manipulators. Mech. Mach. Theory 2022, 167, 104516. [Google Scholar] [CrossRef]
- Jing, X.; Chen, Z.S.; Gao, H.B.; Wang, Y.B. A recursive inverse dynamics algorithm for robotic manipulators with elastic joints and its application to control. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2023, 237, 1908–1925. [Google Scholar] [CrossRef]
- Flores, P.; Ambrósio, J. Revolute joints with clearance in multibody systems. Comput. Struct. 2004, 82, 1359–1369. [Google Scholar] [CrossRef]
- Flores, P.; Ambrósio, J.; Claro, J.; Lankarani, H.M.; Koshy, C.S. A study on dynamics of mechanical systems including joints with clearance and lubrication. Mech. Mach. Theory 2006, 41, 247–261. [Google Scholar] [CrossRef]
- Flores, P. A parametric study on the dynamic response of planar multibody systems with multiple clearance joints. Nonlinear Dynam. 2010, 61, 633–653. [Google Scholar] [CrossRef]
- Tian, Q.; Flores, P.; Lankarani, H.M. A comprehensive survey of the analytical, numerical and experimental methodologies for dynamics of multibody mechanical systems with clearance or imperfect joints. Mech. Mach. Theory 2018, 122, 1–57. [Google Scholar] [CrossRef]
- Flores, P.; Ambrosio, J.; Lankarani, H.M. Contact-impact events with friction in multibody dynamics: Back to basics. Mech. Mach. Theory 2023, 184, 105305. [Google Scholar] [CrossRef]
- Wang, G.; Liu, C. Further investigation on improved viscoelastic contact force model extended based on hertz’s law in multibody system. Mech. Mach. Theory 2020, 153, 103986. [Google Scholar] [CrossRef]
- Wang, G.; Ma, D.; Liu, C.; Liu, Y. Development of a compliant dashpot model with nonlinear and linear behaviors for the contact of multibody systems. Mech. Syst. Signal Process. 2023, 185, 109785. [Google Scholar] [CrossRef]
- Gao, H.; Zhai, J.; Zhang, H.; Han, Q.; Liu, J. Dynamic investigation of a spatial multi-body mechanism considering joint clearance and friction based on coordinate partitioning method. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2021, 235, 7569–7587. [Google Scholar] [CrossRef]
- Xiang, W.; Yan, S. Dynamic analysis of space robot manipulator considering clearance joint and parameter uncertainty: Modeling, analysis and quantification. Acta Astronaut. 2020, 169, 158–169. [Google Scholar] [CrossRef]
- Tang, Z.; Peng, J.; Sun, J.; Meng, X. Non-probabilistic reliability analysis of robot accuracy under uncertain joint clearance. Machines 2022, 10, 917. [Google Scholar] [CrossRef]
- Chen, G.; Xu, X.Y. A nonlinear dynamic characteristic modeling method of shift manipulator for robot driver with multiple clearance joints. Nonlinear Dynam. 2022, 110, 219–236. [Google Scholar] [CrossRef]
- Wang, Y.; Li, R.; Liu, J.; Jia, Z.; Liang, H. Dynamic characteristics analysis of an assembly robot for a wine box base considering radial and axial clearances in a 3d revolute joint. Appl. Sci. 2023, 13, 2211. [Google Scholar] [CrossRef]
- Machado, M.; Moreira, P.; Flores, P.; Lankarani, H.M. Compliant contact force models in multibody dynamics: Evolution of the Hertz contact theory. Mech. Mach. Theory 2012, 53, 99–121. [Google Scholar] [CrossRef]
- Jin, Y.L.; Lu, Z.Y.; Yang, R.; Hou, L.; Chen, Y.S. A new nonlinear force model to replace the Hertzian contact model in a rigid-rotor ball bearing system. Appl. Math. Mech. 2018, 39, 365–378. [Google Scholar] [CrossRef]
- Hertz, H. Ueber die beruehrung fester elastischer koerper. J. Fuer Die Reine Angew. Math. 1881, 91, 156–171. [Google Scholar]
- Goldsmith, W.; Frasier, J.T. Impact: The theory and physical behavior of colliding solids. J. Appl. Mech. 1961, 28, 639. [Google Scholar] [CrossRef]
- Lankarani, H.M.; Nikravesh, P.E. A contact force model with hysteresis damping for impact analysis of multibody systems. J. Mech. Des. 1990, 112, 369–376. [Google Scholar] [CrossRef]
- Farahan, S.B.; Ghazavi, M.R.; Rahmanian, S. Bifurcation in a planar four-bar mechanism with revolute clearance joint. Nonlinear Dynam. 2017, 87, 955–973. [Google Scholar] [CrossRef]
Description | Value | Unit |
---|---|---|
Length of link 1 | 0.61 | m |
Length of link 2 | 0.66 | m |
Density | 2830 | kg/m3 |
Restitution coefficient | 0.46 | - |
Friction coefficient | 0.01 | - |
Poisson’s ratio | 0.33 | - |
Young’s modulus | 7.17 × 1010 | N/m2 |
Nonlinear index | 1.5 | - |
Torsional stiffness of spring 1 | 200 | Nm/rad |
Torsional stiffness of spring 2 | 200 | Nm/rad |
0.06- | 0.32- | 0.74- | 0.78- | 1.05- | 1.21- | |
( mm) | 69,649.14 | 67,131.48 | 47,781.60 | 73,830.14 | 34,785.59 | 72,705.91 |
( mm) | 27,106.01 | 47,742.36 | 24,968.80 | 30,575.93 | 26,351.63 | 34,631.73 |
( mm) | 23,114.30 | 16,496.32 | 12,556.42 | 14,103.36 | 19,974.02 | 26,565.43 |
1.37- | 1.48- | 1.58- | 1.63- | 1.81- | 1.97- | |
( mm) | 49,662.00 | 35,175.79 | 58,652.83 | 65,669.90 | 35,513.15 | 28,366.82 |
( mm) | 37,232.58 | 14,555.25 | 37,532.75 | 50,338.52 | 29,881.80 | 23,187.64 |
( mm) | 20,992.97 | 13,598.44 | 9204.30 | 25,292.24 | 17,553.99 | 20,334.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Zhou, S.; Wu, J.; Qing, J.; Kang, T.; Shao, M. Dynamic Modeling and Analysis of Flexible-Joint Robots with Clearance. Sensors 2024, 24, 4396. https://doi.org/10.3390/s24134396
Wang J, Zhou S, Wu J, Qing J, Kang T, Shao M. Dynamic Modeling and Analysis of Flexible-Joint Robots with Clearance. Sensors. 2024; 24(13):4396. https://doi.org/10.3390/s24134396
Chicago/Turabian StyleWang, Jing, Shisheng Zhou, Jimei Wu, Jiajuan Qing, Tuo Kang, and Mingyue Shao. 2024. "Dynamic Modeling and Analysis of Flexible-Joint Robots with Clearance" Sensors 24, no. 13: 4396. https://doi.org/10.3390/s24134396
APA StyleWang, J., Zhou, S., Wu, J., Qing, J., Kang, T., & Shao, M. (2024). Dynamic Modeling and Analysis of Flexible-Joint Robots with Clearance. Sensors, 24(13), 4396. https://doi.org/10.3390/s24134396