A Node Generation and Refinement Algorithm in Meshless RPIM for Electromagnetic Analysis of Sensors
Abstract
:1. Introduction
2. Implementation of RPIM for Electromagnetic Computation
2.1. Radial Point Interpolation Method
2.2. Initial Node-Generation Method
2.3. Adaptive Refinement Algorithm
Algorithm 1: Adaptive Refinement for RPIM | |
1: | Initialize node and grid distribution, maximum iteration count imax |
2: | While (iteration < imax) do |
3: | Calculate errors for each node |
4: | for each background grid: |
5: | Eg ← maximum error of each grid |
6: | end for |
7: | Mark the background grid with the largest Eg |
8: | Error threshold ← second-largest Eg |
9: | for each node in the marked background grid: |
10: | If error (node) > error threshold: |
11: | Mark this node |
12: | end if |
13: | end for |
14: | x ← number of the marked node |
15: | If x = 1: |
16: | The closest node ← nearest neighbor search |
17: | If number of the closest node ≠ 1: |
18: | The closest node ← the closest node with the largest error |
19: | end if |
20: | Refined nodes = initial nodes + midpoint (the marked node, the closest node) |
21: | end if |
22: | If x = 2: |
23: | Refined nodes = initial nodes + midpoint (the marked node) |
24: | end if |
25: | If x = 3: |
26: | If the three nodes form a triangle: |
27: | Refined nodes = initial nodes + centroid (the marked node) |
28: | end if |
29: | else |
30: | Refined nodes = initial nodes + midpoint (the marked node) |
31: | end else |
32: | end if |
33: | If x > 3: |
34: | The marked node with the largest error ← nearest neighbor search |
35: | Back to 25 |
36: | end if |
37: | end while |
38: | Return refined node distribution |
2.4. Algorithm Description
3. Numerical Results
3.1. Square Metal Box
3.2. Static Iron Piece
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, M.; Zhou, X.; Chen, Y. A highly sensitive and miniature optical fiber sensor for electromagnetic pulse fields. Sensors 2021, 21, 8137. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Guo, Y. Design and Non-Linearity Optimization of a Vertical Brushless Electric Power Steering Angle Sensor. Sensors 2024, 24, 2469. [Google Scholar] [CrossRef] [PubMed]
- Beato-López, J.J.; Royo-Silvestre, I.; Algueta-Miguel, J.M.; Gomez-Polo, C. A combination of a vibrational electromagnetic energy harvester and a giant magnetoimpedance (GMI) sensor. Sensors 2020, 207, 1873. [Google Scholar] [CrossRef] [PubMed]
- Razek, A. Assessment of a Functional Electromagnetic Compatibility Analysis of Near-Body Medical Devices Subject to Electromagnetic Field Perturbation. Electronics 2023, 12, 4780. [Google Scholar] [CrossRef]
- Ji, Y.; Yu, Y.; Zhao, X. Characteristic research on electromagnetic response of two-dimensional complex structure targets based on meshless method. Radio Sci. 2023, 58, 1–13. [Google Scholar] [CrossRef]
- Ye, L.; Hu, S.; Xu, G.; Yan, T. A meshless regularized method of fundamental solution for electromagnetic scattering problems of three-dimensional perfect electric conductor targets. Eng. Anal. Bound. Elem. 2023, 155, 401–406. [Google Scholar] [CrossRef]
- Zhang, M.; Farquharson, C.G.; Lin, T. 3-D forward modelling of controlled-source frequency-domain electromagnetic data using the meshless generalized finite-difference method. Geophys. J. Int. 2023, 235, 750–764. [Google Scholar] [CrossRef]
- Long, J. Meshfree modelling of magnetotelluric and controlled-source electromagnetic data for conductive earth models with complex geometries. Int. J. Appl. Electromagn. Mech. Front. Earth Sci. 2024, 12, 1432992. [Google Scholar] [CrossRef]
- Nikan, O.; Avazzadeh, Z.; Machado, J.T.; Rasoulizadeh, M.N. An accurate localized meshfree collocation technique for the telegraph equation in propagation of electrical signals. Eng. Comput. 2023, 39, 2327–2344. [Google Scholar] [CrossRef]
- Saberi, H.; Nguyen, C.T.; Saberi, H.; Sabagh, M.; Nguyen, M.N.; Bui, T.Q. A computational meshfree RPIM approach for phase-field modeling of brittle fracture. Acta Mech. 2024, 235, 3721–3743. [Google Scholar] [CrossRef]
- Bartwal, N.; Shahane, S.; Roy, S.; Vanka, S.P. Simulation of heat conduction in complex domains of multi-material composites using a meshless method. Appl. Math. Comput. 2023, 457, 128208. [Google Scholar] [CrossRef]
- Rao, X.; Zhao, H.; Liu, Y. A novel meshless method based on the virtual construction of node control domains for porous flow problems. Eng. Comput. 2024, 40, 171–211. [Google Scholar] [CrossRef]
- Safari, F.; Duan, Y. A novel meshless method in conjunction with a regularization technique for solving the transient heat source with additive noise. Int. Commun. Heat Mass Transf. 2024, 158, 107949. [Google Scholar] [CrossRef]
- Dang, O.T. An Improved Adaptive Meshless Refinement for the RBF-FD Method for 2D Elliptic Equations. Vietnam. J. Math. 2024, 53, 365–387. [Google Scholar] [CrossRef]
- Peng, J.; Feng, R.; Xue, M.; Zhou, E.; Wang, J.; Zhong, Z.; Ku, X. Research Progress and Engineering Applications of Viscous Fluid Mechanics. Appl. Sci. 2025, 15, 357. [Google Scholar] [CrossRef]
- Marcinkevicius, R.; Telksniene, I.; Telksnys, T.; Navickas, Z.; Ragulskis, M. The step-wise construction of solitary solutions to Riccati equations with diffusive coupling. AIMS Math. 2023, 8, 30683–30703. [Google Scholar] [CrossRef]
- Ershkov, S.; Leshchenko, D. Solving procedure for the dynamics of charged particle in variable (time-dependent) electromagnetic field. Z. Für Angew. Math. Phys. 2020, 71, 1–8. [Google Scholar] [CrossRef]
- Li, Q.; Lee, K.M. An adaptive meshless method for magnetic field computation. IEEE Trans. Magn. 2006, 42, 1996–2003. [Google Scholar] [CrossRef]
- Kaennakham, S.; Chuathong, N. An automatic node-adaptive scheme applied with a RBF-collocation meshless method. Appl. Math. Comput. 2019, 348, 102–125. [Google Scholar] [CrossRef]
- Cavoretto, R.; De Rossi, A. A two-stage adaptive scheme based on RBF collocation for solving elliptic PDEs. Comput. Math. Appl. 2020, 79, 3206–3222. [Google Scholar] [CrossRef]
- Zou, Y.; Lei, G.; Shao, K. Hybrid approach of radial basis function and finite element method for electromagnetic problems. IEEE Trans. Magn. 2015, 51, 1–4. [Google Scholar] [CrossRef]
- da Rocha Coppoli, E.H.; Ramdane, B.; Maréchal, Y. Meshless Local Radial Point Interpolation Method for Electromagnetic Devices Modeling. In Proceedings of the 19th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering (ISEF), Nancy, France, 29–31 August 2019; pp. 1–2. [Google Scholar]
i | êmax | No. Nodes | Error_th |
---|---|---|---|
0 | 8.677 × 10−3 | 40 | 6.25 × 10−3 |
1 | 5.908 × 10−3 | 41 | 5.67 × 10−3 |
2 | 5.718 × 10−3 | 42 | 5.56 × 10−3 |
3 | 5.410 × 10−3 | 42 | ---------- |
Algorithm | Emax | Runtime (s) | Memory (MB) | No. Nodes |
---|---|---|---|---|
Hybrid method in [21] | 9.80 × 10−3 | 0.84 | 1.23 | 40 |
RBF method in [20] | 7.65 × 10−3 | 2.61 | 2.31 | 110 |
The proposed method | 4.95 × 10−3 | 0.93 | 1.87 | 43 |
Method | Nodes | Condition Number | Runtime (s) | Memory (MB) | Emax | Az1 (Wb/m) | Az2 (Wb/m) | Az3 (Wb/m) | Az4 (Wb/m) |
---|---|---|---|---|---|---|---|---|---|
FEM | 365 | ---------- | ---------- | ---------- | ---------- | 0.3194 | 0.5899 | 0.7414 | 0.8510 |
Without grids | 289 | 1.5826 × 109 | 11.23 | 13.76 | 1.8 × 10−2 | 0.3163 | 0.5877 | 0.7295 | 0.8331 |
Without refinemen | 289 | 1.2638 × 10−5 | 2.01 | 1.97 | 9.8 × 10−3 | 0.3199 | 0.5943 | 0.7378 | 0.8426 |
Proposed method | 296 | 2.5120 × 10−5 | 7.39 | 2.01 | 7.9 × 10−3 | 0.3207 | 0.5954 | 0.7385 | 0.8431 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; An, S.; Zou, G.; Han, J. A Node Generation and Refinement Algorithm in Meshless RPIM for Electromagnetic Analysis of Sensors. Sensors 2025, 25, 1115. https://doi.org/10.3390/s25041115
Li Z, An S, Zou G, Han J. A Node Generation and Refinement Algorithm in Meshless RPIM for Electromagnetic Analysis of Sensors. Sensors. 2025; 25(4):1115. https://doi.org/10.3390/s25041115
Chicago/Turabian StyleLi, Zihao, Siguang An, Guoping Zou, and Jianqiang Han. 2025. "A Node Generation and Refinement Algorithm in Meshless RPIM for Electromagnetic Analysis of Sensors" Sensors 25, no. 4: 1115. https://doi.org/10.3390/s25041115
APA StyleLi, Z., An, S., Zou, G., & Han, J. (2025). A Node Generation and Refinement Algorithm in Meshless RPIM for Electromagnetic Analysis of Sensors. Sensors, 25(4), 1115. https://doi.org/10.3390/s25041115