Tiny Medicine: Nanomaterial-Based Biosensors
Abstract
:1. Introduction
2. Advances in Sensor Recognition Proteins (Nanomaterial 1)
2.1. Antibody and Antibody Fragments Based Recognition
3. Sensing Nanomaterials (Nanomaterial 2)
4. Device Fabrication and Characterization
5. Biosensors in Cell Biology
5.1. Biosensors in Orthopedic Biology
5.2. Biosensors in Cancer Biology
5.3. Implantable Biosensors
6. Future Biosensors
7. Conclusions
Acknowledgments
References
- You, C.; Bhagawati, M.; Brecht, A.; Piehler, J. Affinity capturing for targeting proteins into micro and nanostructures. Anal. Bioanal. Chem. 2009, 393, 1563–1570. [Google Scholar]
- Velasco, M.N. Optical biosensors for probing at the cellular level: A review of recent progress and future prospects. Semin. Cell Dev. Biol. 2009, 20, 27–33. [Google Scholar]
- Fan, X.; White, I.M.; Shopova, S.I.; Zhu, H.; Suter, J.D.; Sun, Y. Sensitive optical biosensors for unlabeled targets: A review. Anal. Chim. Acta 2008, 620, 8–26. [Google Scholar]
- Khanna, V.K. New-generation nano-engineered biosensors, enabling nanotechnologies and nanomaterials. Sens. Rev. 2008, 28, 39–45. [Google Scholar]
- Dixon, M.C. Quartz crystal microbalance with dissipation monitoring: enabling real-time characterization of biological materials and their interactions. J. Biomol. Tech. 2008, 19, 151–158. [Google Scholar]
- Fritz, J. Cantilever biosensors. Analyst 2008, 133, 855–863. [Google Scholar]
- Gavilondo, J.V.; Larrick, J.W. Antibody engineering at the millennium. BioTechniques 2000, 29, 128–145. [Google Scholar]
- Nygren, P.-A.; Uhlen, M. Scaffolds for engineering novel binding sites in proteins. Curr. Opin. Struct. Boil. 1997, 7, 463–469. [Google Scholar]
- Hosse, R.J.; Rothe, A.; Power, B.E. A new generation of protein display scaffolds for molecular recognition. Protein Sci. 2006, 15, 14–27. [Google Scholar]
- Skerra, A. Alternative non-antibody scaffolds for molecular recognition. Curr. Opin. Biotechnol. 2007, 18, 295–304. [Google Scholar]
- Goodchild, S.; Love, T.; Hopkins, N.; Mayers, C. Engineering antibodies for biosensor technologies. Adv. Appl. Microbiol. 2006, 58, 185–226. [Google Scholar]
- Saerens, D.; Huang, L.; Bonroy, K.; Muyldermans, S. Antibody fragments as probes in biosensor development. Sensors 2008, 8, 4669–4686. [Google Scholar]
- Lee, J.-O.; So, H.-M.; Jeon, E.-K. Aptamers as molecular recognition elements for electrical nanobiosensors. Anal. Bioanal. Chem. 2008, 390, 1023–1032. [Google Scholar]
- Jelinek, R.; Kolusheva, S. Carbohydrate biosensors. Chem. Rev. 2004, 104, 5987–6016. [Google Scholar]
- Zuckermann, R.N. Bioinspired polymeric materials: in-between proteins and plastics. Curr. Opin. Chem. Biol. 1999, 3, 681–687. [Google Scholar]
- Kodadek, T.; Bachhawat-Sikder, K. Optimized protocols for the isolation of specific protein-binding peptides or peptoids from combinatorial libraries displayed on beads. Mol. BioSyst. 2006, 2, 25–35. [Google Scholar]
- Chambers, J.P.; Arunlanandam, B.P.; Matta, L.L.; Weis, A.; Valdes, J.J. Biosensing recognition elements. Curr. Issues Mol. Biol. 2008, 10, 1–12. [Google Scholar]
- Khanna, V.K. New-generation nano-engineered biosensors, enabling technologies and nanomaterials. Sens. Rev. 2008, 28, 39–45. [Google Scholar]
- Iqbal, S.S.; Mayo, M.W.; Bruno, J.G.; Bronk, B.V.; Batt, C.A.; Chambers, J.P. A review of molecular recognition technologies for detection of biological threat agents. Biosens. Bioeletron. 2000, 15, 549–578. [Google Scholar]
- Rogers, K.R; Mulchandani, A. Affinity Biosensors: Techniques and Protocols; Humana Press: Totowa, NJ, USA, 1998. [Google Scholar]
- Piervincenzi, R.T.; Reichert, W.M.; Hellinga, H.W. Genetic engineering of a single-chain antibody fragment for surface immobilization in an optical biosensor. Biosens. Bioelectron. 1998, 13, 305–312. [Google Scholar]
- Hellinga, H.W.; Marvin, J.S. Protein engineering and the development of generic biosensors. Trends Biotechnol. 1998, 16, 183–189. [Google Scholar]
- Marvin, J.S.; Corcoran, E.E.; Hattangadi, N.A.; Zhang, J.V.; Gere, S.A.; Hellinga, H.W. The rational design of allosteric interactions in a monomeric protein and its applications to the construction of biosensors. Proc. Natl. Acad. Sci. USA 1997, 94, 4366–4371. [Google Scholar]
- Gilardi, G.; den Blaauwen, T.; Canters, G.W. Molecular recognition: design of a biosensor with genetically engineered azurin as redox mediator. J. Control. Rel. 1994, 29, 231–238. [Google Scholar]
- Aizawa, M.; Yanagida, Y.; Haruyama, T.; Kobatake, E. Genetically engineered molecular networks for biosensing systems. Sensors Actuators 1998, B52, 204–211. [Google Scholar]
- Hock, B.; Seifert, M.; Kramer, K. Engineering receptors and antibodies for biosensors. Biosens. Bioelectr. 2002, 17, 239–249. [Google Scholar]
- Ryu, D.D.Y.; Nam, D-H. Recent progress in biomolecular engineering. Biotechnol. Prog. 2000, 16, 2–16. [Google Scholar]
- Scott, J.K.; Smith, G.P. Searching for peptide ligands with an epitope library. Science 1990, 249, 386–390. [Google Scholar]
- Hoess, R.H. Protein design and phage display. Chem. Rev. 2001, 101, 3205–3218. [Google Scholar]
- Berry, J.D.; Popkov, M.; Gubbins, M.; Mandeville, R. Recent innovations and analytical applications of phage display libraries. Anal. Lett. 2003, 36, 3227–3240. [Google Scholar]
- Azzazy, H.M.E.; Highsmith, W.E., Jr. Phage display technology: clinical applications and recent innovations. Clin. Biochem. 2002, 35, 425–445. [Google Scholar]
- Willats, W.G.T. Phage display: practicalities and prospects. Plant Mol. Biol. 2002, 50, 837–854. [Google Scholar]
- Nagpal, P.; Lindquist, N.C.; Oh, S.H.; Norris, D.J. Ultrasmooth patterned metals for plasmonics and metamaterials. Science 2009, 31, 594–597. [Google Scholar]
- Fang, Z.; Kelley, S.O. Direct electrocatalytic mRNA detection using PNA-nanowire sensors. Anal. Chem. 2009, 15, 612–617. [Google Scholar]
- Hsiao, C.Y.; Lin, C.H; Hung, C.H.; Su, C.J.; Lo, Y.R.; Lee, C.C.; Lin, H.C.; Ko, F.H.; Huang, T.Y.; Yang, Y.S. Novel poly-silicon nanowire field effect transistor for biosensing application. Biosens. Bioelectron. 2009, 24, 1223–1229. [Google Scholar]
- Porter, M.D.; Lipert, R.J.; Siperko, L.M.; Wang, G.; Narayanan, R. SERS as a bioassay platform: fundamentals, design, and applications. Chem. Soc. Rev. 2008, 37, 1001–1011. [Google Scholar]
- Biju, V.; Itoh, T.; Anas, A.; Sujith, A.; Ishikawa, M. Semiconductor quantum dots and metal nanoparticles: syntheses, optical properties, and biological applications. Anal. Bioanal. Chem. 2008, 391, 2469–2495. [Google Scholar]
- Huser, T. Nano-biophotonics:new tools for chemical nano-analytics. Curr. Opin. Chem. Biol. 2008, 12, 497–504. [Google Scholar]
- Borisov, S.M.; Klimant, I. Optical nanosensors—smart tools in bioanalytics. Analyst 2008, 133, 1302–1307. [Google Scholar]
- Zin, M.T.; Leong, K.; Wong, N.Y; Sarikaya, M.; Jen, A.K. Surface-plasmon-enhanced fluorescence from periodic quantum dot arrays through distance control using biomolecular linkers. Nanotechnology 2009, 20, 015305. [Google Scholar]
- Hoa, X.D.; Kirk, A.G.; Tabrizian, M. Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress. Biosens. Bioelectron. 2007, 23, 151–160. [Google Scholar]
- Gao, J.; Gu, H.; Xu, B. Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Account. Chem. Res. 2009. (In Press) [Google Scholar]
- Chan, Y.H.; Chen, J.; Wark, S.E.; Skiles, S.L.; Son, D.H.; Batteas, J.D. Using patterned arrays of metal nanoparticles to probe plasmon enhanced luminescence of CdSe quantum dots. ACS Nano 2009. (In Press) [Google Scholar]
- Nel, A.E.; Mädler, L.; Velego, D.; Xia, T.; Hoek, E.M.V.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M. Understanding biophysicochemical interactions at the nano–bio interface. Nat. Mater. 2009, 8, 543–557. [Google Scholar]
- Zhang, X.; Guo, Q.; Cui, D. Recent advances in nanotechnology applied to biosensors. Sensors 2009, 9, 1033–1053. [Google Scholar]
- Schlücker, S. SERS microscopy: nanoparticle probes and biomedical applications. Chem. Phys. Chem. 2009, 10, 1344–1354. [Google Scholar]
- Posthuma-Trumpie, G.A.; Korf, J.; van Amerongen, A. Lateral flow (immuno)assay: its strengths, weaknesses, opportunities and threats. A literature survey. Anal. Bioanal. Chem. 2009, 393, 569–582. [Google Scholar]
- Liu, C.; Qiu, X.; Ongagna, S.; Chen, D.; Chen, Z.; Abrams, W.R.; Malamud, D.; Corstjens, P.L.; Bau, H.H. A timer-actuated immunoassay cassette for detecting molecular markers in oral fluids. Lab. Chip. 2009, 9, 768–776. [Google Scholar]
- Wang, S.; Zhang, C.; Zhang, Y. Lateral flow colloidal gold-based immunoassay for pesticide. Methods Mol. Biol. 2009, 504, 237–252. [Google Scholar]
- Quake, S.R.; Scherer, A. From micro- to nanofabrication with soft materials. Science 2000, 290, 1536–1540. [Google Scholar]
- Gates, B.D.; Xu, Q.; Stewart, M.; Ryan, D.; Willson, C.G.; Whitesides, G.M. New approaches to nanofabrication: molding, printing, and other techniques. Chem. Rev. 2005, 105, 1171–1196. [Google Scholar]
- Herriott, D.R.; Collier, R.J.; Alles, D.S.; Stafford, J.W. EBES: A practical electron lithographic system. IEEE Trans. Electron. Devices 1975, 22, 385–392. [Google Scholar]
- Chou, S.Y.; Krauss, P.R.; Renstrom, P.J. Imprint lithography with 25-nanometer resolution. Science 1996, 272, 85–87. [Google Scholar]
- Salaita, K.; Wang, Y.; Mirkin, C.A. Applications of dip-pen nanolithography. Nat. Nanotechnol. 2007, 2, 145–155. [Google Scholar]
- Tseng, A.A.; Notargiacomo, A. Nanoscale fabrication by nonconventional approaches. J. Nanosci. Nanotechnol. 2005, 5, 683–702. [Google Scholar]
- Mahalik, N.P. Micromanufacturing and Nanotechnology, 1st ed.; Springer: New York, NY, USA, 2005. [Google Scholar]
- Huie, J.C. Guided molecular self-assembly: A review of recent efforts. Smart Mater. Struct. 2003, 12, 264–271. [Google Scholar]
- Zheng, G.; Patolsky, F.; Cui, Y.; Wang, W.U.; Lieber, C.M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 2005, 23, 1294–1301. [Google Scholar]
- Fan, R.; Vermesh, O.; Srivastava, A.; Yen, B.K.H.; Qin, L.; Ahmad, H.; Kwong, G.A.; Liu, C.; Gould, J.; Hood, L.; Heath, J.R. Integrated barcode chips for rapid, multiplexed analysis of proteins in microliter quantities of blood. Nat. Biotechnol. 2008, 26, 1373–1378. [Google Scholar]
- Haeberle, S.; Zengerle, R. Microfluidic platforms for lab-on-a-chip applications. Lab Chip 2007, 7, 1094–1110. [Google Scholar]
- Lee, M.; Baik, K.Y.; Noah, M.; Kwon, Y.-K.; Lee, J.-O.; Hong, S. Nanowire and nanotube transistors for lab-on-a-chip applications. Lab Chip 2009, 9, 2267–2280. [Google Scholar]
- Whitesides, G.M. The origins and the future of microfluidics. Nature 2006, 442, 368–373. [Google Scholar]
- Yager, P.; Edwards, T.; Fu, E.; Helton, K.; Nelson, K.; Tam, M.R.; Weigl, B.H. Microfluidic diagnostic technologies for global public health. Nature 2006, 442, 412–418. [Google Scholar]
- Do, J.; Lee, S.; Han, J.; Kai, J.; Hong, C.; Gao, C.; Nevin, J.H.; Beaucage, G.; Ahn, C.H. Development of functional lab-on-a-chip on polymer for point-of-care testing of metabolic parameters. Lab Chip 2008, 8, 2113–2120. [Google Scholar]
- Ahn, C.H.; Choi, J.; Beaucage, G.; Nevin, J.H.; Lee, J.; Puntambeker, A.; Lee, J.Y. Disposable smart lab on a chip for point-of-care clinical diagnostics. Proc. IEEE 2004, 92, 154–173. [Google Scholar]
- Patolsky, F.; Zheng, G.; Lieber, C.M. Nanowire-based biosensors. Anal. Chem. 2006, 78, 4260–4269. [Google Scholar]
- Wanekaya, A.K.; Chen, W.; Myung, N.V.; Mulchandani, A. Nanowire-based electrochemical biosensors. Electroanalysis 2006, 18, 533–550. [Google Scholar]
- Vijayaraghavan, A.; Blatt, S.; Weissenberger, D.; Carl, M.; Hennrich, F.; Gerthsen, D.; Hahn, H.; Krupke, R. Ultra-large-scale directed assembly of single-walled carbon nanotube devices. Nano Lett 2007, 7, 1556–1560. [Google Scholar]
- Rao, S.G.; Huang, L.; Setyawan, W.; Hong, S. Large-scale assembly of carbon nanotubes. Nature 2003, 425, 36–37. [Google Scholar]
- Wang, Y.; Maspoch, D.; Zou, S.; Schatz, G.C.; Smalley, R.E.; Mirkin, C.A. Controlling the shape, orientation, and linkage of carbon nanotube features with nano affinity templates. PNAS 2006, 103, 2026–2031. [Google Scholar]
- Shim, J.S.; Yun, Y.H.; Rust, M.J.; Do, J.; Shanov, V.; Schulz, M.J.; Ahn, C.H. Precise self-assembly of individual carbon nanotube using magnetic capturing and fluidic alignment. Nanotechnology 2009, 20, 325607. [Google Scholar]
- Cheng, W.; Ding, L.; Ding, S.; Yin, Y.; Ju, H. A simple electrochemical cytosensor array for dynamic analysis of carcinoma cell surface glycans. Angew. Chem. Int. Ed. 2009, 48, 6465–6468. [Google Scholar]
- Rao, S.G.; Huang, L.; Setyawan, W.; Hong, S. Large-scale assembly of carbon nanotubes. Nature 2003, 425, 36. [Google Scholar]
- Xu, G.; Ye, X.; Qin, L.; Xu, Y.; Li, Y.; Li, R.; Wa, P. Cell-based biosensors based on light-addressable potentiometric sensors for single cell monitoring. Biosens. Bioelectron. 2005, 20, 1757–1763. [Google Scholar]
- Ghosh, G.; Bachas, L.G.; Anderson, K. Biosensor incorporating cell barrier architectures on ion selective electrodes for early screening of cancer. Anal. Bioanal. Chem. 2008, 391, 2783–2791. [Google Scholar]
- Marx, K.A.; Zhou, T.; Montrone, A.; McIntosh, D.; Braunhut, S.J. A comparative study of the cytoskeleton binding drugs nocodazole and taxol with a mammalian cell quartz crystal microbalance biosensor: Different dynamic responses and energy dissipation effects. Anal. Biochem. 2007, 361, 77–92. [Google Scholar]
- Chena, P.; Liu, X.; Wang, B.; Cheng, G.; Wang, P. A biomimetic taste receptor cell-based biosensor for electrophysiology, recording and acidic sensation. Sensor. Actuator B 2009, 139, 576–583. [Google Scholar]
- May, K.M.L.; Vogt, A.; Bachas, L.G.; Anderson, K.W. Vascular endothelial growth factor as a biomarker for the early detection of cancer using a whole cell-based biosensor. Anal. Bioanal. Chem. 2005, 382, 1010–1016. [Google Scholar]
- Curtis, T.; Naa, R.Z.G.; Batt, C.; Tab, J.; Holowk, D. Development of a mast cell-based biosensor. Biosens. Bioelectron. 2008, 23, 1024–1031. [Google Scholar]
- Swensen, J.S.; Xiao, Y.; Ferguson, B.S.; Lubin, A.A.; Lai, R.Y.; Heeger, A.J.; Plaxco, K.W.; Soh, H.T. Continuous, real-time monitoring of cocaine in undiluted blood serum via a microfluidic, electrochemical aptamer-based sensor. J. Am. Chem. Soc. 2009, 131, 4262–4266. [Google Scholar]
- Martinsa, V.C.; Cardosoa, F.A.; Germanod, J.; Cardosoa, S.; Sousad, L.; Piedaded, M.; Freitasa, P.P.; Fonsecab, L.P. Femtomolar limit of detection with a magnetoresistive biochip. Biosens. Bioelectron. 2009, 8, 2690–2695. [Google Scholar]
- Thaler, M.; Buhl, A.; Welter, H.; Schreiegg, A.; Kehrel, M.; Alber, B.; Metzger, J.; Luppa, P.B. Biosensor analyses of serum autoantibodies: application to antiphospholipid syndrome and systemic lupus erythematosus. Anal. Bioanal. Chem. 2009, 393, 1417–1429. [Google Scholar]
- Puleo, C.M.; Yeh, H.C.; Wang, T.H. Applications of MEMS technologies in tissue engineering. Tiss. Eng. 2007, 13, 2839–2854. [Google Scholar]
- Wang, J.; Ren, L.; Li, L.; Liu, W.; Zhou, J.; Yu, W.; Tonga, D.; Chen, S. Microfluidics: a new cosset for neurobiology. Lab Chip 2009, 9, 644–652. [Google Scholar]
- Zhong, J.F.; Feng, Y.; Taylor, C.R. Microfluidic devices for investigating stem cell gene regulation via single-cell analysis. Curr. Med. Chem. 2008, 15, 2897–2900. [Google Scholar]
- Faratian, D.; Goltsov, A.; Lebedeva, G.; Sorokin, A.; Moodie, S.; Mullen, P.; Kay, C.; Um, I.H.; Langdon, S.; Goryanin, I.; Harrison, D.J. Systems biology reveals new strategies for personalizing cancer medicine and confirms the role of PTEN in resistance to trastuzumab. Cancer Res 2009, 15, 6713–6720. [Google Scholar]
- Burgeson, R.E. Serum crossLaps one step ELISA: first application of monoclonal antibodies for measurement in serum of bone-related degradation products from C-terminal telopeptides of type I collagen. Annu. Rev. Cell. Biol. 1998, 4, 552–577. [Google Scholar]
- Rosenquist, C.; Fledeliu, C.; Christgau, S.; Pedersen, B.J.; Bonde, M.; Qvist, P.; Christiansen, C. First application of monoclonal antibodies for measurement in serum of bone-related degradation products from C-terminal telopdptides of type I collagen. Clin. Chem. 1998, 44, 2281–2289. [Google Scholar]
- Okuno, S.; Inaba, M.; Kitatani, K.; Ishimura, E.; Yamakawa, T.; Nishizawa, Y. Serum levels of C-terminal telopeptide of type I collagen: a useful new marker of cortical bone loss in hemodialysis patient. Osteoporosis Int 2005, 16, 501–509. [Google Scholar]
- Carey, J.J.; Licata, A.A.; Delaney, M.F. Biochemical markers of bone turnover. Clin. Rev. Bone Miner. Metab. 2006, 4, 197–212. [Google Scholar]
- Yun, Y.H.; Bange, A.; Heineman, W.R.; Halsall, H.B.; Shanov, V.N.; Dong, Z.; Pixley, S.; Behbehani, M. A nanotube array immunosensor for direct electrochemical detection of antigen-antibody binding. Sensor. Actuator B 2007, 123, 177–182. [Google Scholar]
- Soper, S.A.; Brown, K.; Ellington, A.; Frazier, B.; Manero, G.G.; Gau, V.; Gutman, S.I.; Hayes, D.F.; Korte, B.; Landers, J.L.; Larson, D.; Ligler, F.; Majumdar, A.; Mascini, M.; Nolte, D.; Rosenzweig, Z.; Wang, J.; Wilson, D. Point-of-care biosensor systems for cancer diagnostics/prognostics. Biosens. Bioelectron. 2006, 21, 1932–1942. [Google Scholar]
- Jokerst, J.V.; Raamanathan, A.; Christodoulides, N.; Floriano, P.N.; Pollard, A.A.; Simmons, G.W.; Wong, J.; Gage, C.; Furmaga, W.B.; Redding, S.W.; McDevitt, J.T. Nano-bio-chips for high performance multiplexed protein detection: determinations of cancer biomarkers in serum and saliva using quantum dot bioconjugate labels. Biosens. Bioelectron. 2009, 15, 3622–3629. [Google Scholar]
- Mani, V.; Chikkaveeraiah, B.V.; Patel, V.; Gutkind, J.S.; Rusling, J.F. Ultrasensitive immunosensor for cancer biomarker proteins using gold nanoparticle film electrodes and multienzyme-particle amplification. ACS Nano 2009, 24, 585–594. [Google Scholar]
- Mukundan, H.; Xie, H.; Anderson, A.S.; Grace, W.K.; Shively, J.E.; Swanson, B.I. Optimizing a waveguide-based sandwich immunoassay for tumor biomarkers: evaluating fluorescent labels and functional surfaces. Bioconjug. Chem. 2009, 20, 222–230. [Google Scholar]
- Nagrath, S.; Sequist, L.V.; Maheswaran, S.; Bell, D.W.; Irimia, D.; Ulkus, L.; Smith, M.R.; Kwak, E.L.; Digumarthy, S.; Muzikansky, A.; Ryan, P.; Balis, U.J.; Tompkins, R.G.; Haber, D.A.; Toner, M. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 2007, 450, 1235–1239. [Google Scholar]
- Yun, Y.H.; Dong, Z.; Shanov, V.N.; Heineman, W.R.; Halsall, H.B.; Bhattacharya, A.; Schulz, M.J. Carbon nanotube electrodes and biosensors: review. Nanotoday 2007, 2, 30–38. [Google Scholar]
- Yun, Y.H.; Dong, Z.; Shanov, V.N.; Schulz, M.J. Carbon nanotube array for electrochemical impedance measurement of prostate cancer cells under microfludic channel. Nanotechnology 2007, 18, 465505. [Google Scholar]
- Sawhney, R.S.; Sharma, B.; Humphrey, L.E.; Brattain, M.G. Integrin 2 and extracellular signal-regulated kinase are functionally linked in highly malignant autocrine transforming growth factor-driven colon cancer cells. J. Biol. Chem. 2003, 278, 19861–19869. [Google Scholar]
- Joyce, J.A.; Pollard, J.W. Microenvironmental regulation of metastasis. Nat. Rev. 2009, 9, 239–252. [Google Scholar]
- Tothill, I.E. Biosensors for cancer markers diagnosis. Semin. Cell Dev. Biol. 2009, 20, 55–62. [Google Scholar]
- Suresh, S. Biomechanics and biophysics of cancer cells. Acta Biomater 2007, 3, 413–438. [Google Scholar]
- Li, C.M.; Dong, H.; Cao, X.; Luong, J.H.; Zhang, X. Implantable electrochemical sensors for biomedical and clinical applications: progress, problems, and future possibilities. 1:. Curr. Med. Chem. 2007, 14, 937–951. [Google Scholar]
- Staples, M.; Daniel, K.; Cima, M.J.; Langer, R. Application of micro- and nano-electromechanical devices to drug delivery. Pharm Res 2006, 23, 847–863. [Google Scholar]
- Wu, Y.; Meyerhoff, M.E. Nitric oxide-releasing/generating polymers for the development of implantable chemical sensors with enhanced biocompatibility. Talanta 2008, 75, 642–650. [Google Scholar]
- Koschwaneza, H.E.; Reichert, W.M. In vitro, in vivo and post explantation testing of glucose-detecting biosensors: Current methods and recommendations. Biomaterials 2007, 28, 3687–3703. [Google Scholar]
- Chiu, N.F.; Wang, J.M.; Liao, C.W.; Chen, C.H.; Chen, H.C.; Yang, L.J.; Lu, S.S.; Lin, C.W. An Implantable Multifunctional Needle Type Biosensor with Integrated RF Capability. Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, September 1-4, 2005.
- Gifforda, R.; Kehoea, J.J.; Barnesa, S.L.; Kornilayev, B.A.; Alterman, M.A.; Wilson, G.S. Protein interactions with subcutaneously implanted biosensors. Biomaterials 2006, 27, 2587–2598. [Google Scholar]
- Wilson, I.D. Drugs, bugs, and personalized medicine: pharmacometabonomics enters the ring. Proc. Natl. Acad. Sci. USA 2009, 106, 14187–14188. [Google Scholar]
- Katsanis, S.H.; Javitt, G.; Hudson, K. A case study of personalized medicine. Science 2008, 320, 53–54. [Google Scholar]
- Jain, K.K. Applications of biochips: from diagnostics to personalized medicine. Curr. Opin. Drug Discov. Devel. 2004, 7, 285–289. [Google Scholar]
- Srinivasan, B.; Li, Y.; Jing, Y.; Xu, Y.; Yao, X.; Xing, C.; Wang, J.P. A detection system based on giant magnetoresistive sensors and high-moment magnetic nanoparticles demonstrates zeptomole sensitivity: potential for personalized medicine. Angew. Chem. Int. Ed. 2009, 48, 2764–2767. [Google Scholar]
- Rix, U.; Superti-Furga, G. Target profiling of small molecules by chemical proteomics. Nat. Chem. Biol. 2009, 5, 616–624. [Google Scholar]
Round Input phages (pfu) | Eluted phages (pfu) | Phage recovery | ||||
---|---|---|---|---|---|---|
I | J | I | J | I | J | |
1 | 1 × 1012 | 1 × 1012 | 1.1 × 106 | 4 × 106 | 1.1 × 10−6 | 4 × 10−6 |
2 | 3 × 1012 | 2 × 1012 | 5.5 × 106 | 3.4 × 108 | 1.83 × 10−6 | 1.7 × 10−4 |
3 | 6 × 1012 | 3 × 1012 | 4 × 107 | 4 × 109 | 0.67 × 10−5 | 1.33 × 10−3 |
4 | 3 × 1012 | 1 × 1012 | 3.5 × 108 | 5 × 109 | 1.17 × 10−4 | 5 × 10−3 |
Markers for bone resorption | Markers of bone formation |
---|---|
Cross-linked telopeptides (NTx, CTx) | Total alkaline phosphatase |
Pyidinolines(Pyridinoline, deoxypyridinoline) | Bone alkaline phosphatase |
Hydroxyproline | Osteocalcin |
Deoxypridinoline | Procollagen type I propeptides |
Cathepsin K | |
Tartrate-resistant acid phosphatase |
Cancer type disease | Biomarker |
---|---|
Prostate | PSA, PAP |
Breast | CA15-3, CA125, CA27.29, CEABRCA1, BRCA2, MUC-1, CEA, NY-BR-1, ING-1 |
Leukaemia | Chromosomal abnormalities |
Testicular | α-Fetoprotein (AFP), β-human chorionic gonadatropin, CAGE-1, ESO-1 |
Ovarian | CA125, AFP, hCG, p53, CEA |
Any solid tumour | Circulating tumour cells in biological fluids, expression of targeted growth factor receptors |
Colon and pancreatic | CEA, CA19-9, CA24-2, p53 |
Lung | NY-ESO-1, CEA, CA19-9, SCC, CYFRA21-1, NSE |
Melanoma | Tyrosinase, NY-ESO-1 |
Liver | AFP, CEA |
Gastric carcinoma | CA72-4, CEA, CA19-9 |
Esophagus carcinoma | SCC |
Trophoblastic | SCC, hCG |
Bladder | BAT, FDP, NMP22, HA-Hase, BLCA-4, CYFRA 21-1 |
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Yun, Y.-H.; Eteshola, E.; Bhattacharya, A.; Dong, Z.; Shim, J.-S.; Conforti, L.; Kim, D.; Schulz, M.J.; Ahn, C.H.; Watts, N. Tiny Medicine: Nanomaterial-Based Biosensors. Sensors 2009, 9, 9275-9299. https://doi.org/10.3390/s91109275
Yun Y-H, Eteshola E, Bhattacharya A, Dong Z, Shim J-S, Conforti L, Kim D, Schulz MJ, Ahn CH, Watts N. Tiny Medicine: Nanomaterial-Based Biosensors. Sensors. 2009; 9(11):9275-9299. https://doi.org/10.3390/s91109275
Chicago/Turabian StyleYun, Yeo-Heung, Edward Eteshola, Amit Bhattacharya, Zhongyun Dong, Joon-Sub Shim, Laura Conforti, Dogyoon Kim, Mark J. Schulz, Chong H. Ahn, and Nelson Watts. 2009. "Tiny Medicine: Nanomaterial-Based Biosensors" Sensors 9, no. 11: 9275-9299. https://doi.org/10.3390/s91109275
APA StyleYun, Y. -H., Eteshola, E., Bhattacharya, A., Dong, Z., Shim, J. -S., Conforti, L., Kim, D., Schulz, M. J., Ahn, C. H., & Watts, N. (2009). Tiny Medicine: Nanomaterial-Based Biosensors. Sensors, 9(11), 9275-9299. https://doi.org/10.3390/s91109275