Colon Cancer: Overview on Improved Therapeutic Potential of Plant-Based Compounds Using Nanotechnology
Abstract
:1. Introduction
2. Search Methodology
3. Colon Cancer Risk Factors
4. Current/Innovative Diagnosis Techniques for Colon Cancer
5. Treatments of Colon Cancer
5.1. Surgery Therapy
5.2. Chemotherapy
5.3. Radiation Therapy
5.4. Other Therapeutic Strategies for CC
5.4.1. Monoclonal Antibodies
5.4.2. Photodynamic Therapy
5.4.3. Cryotherapy
5.4.4. Immunotherapy
5.4.5. Personalized Therapy
6. Medicinal Plants in the Prevention and Treatment of Colon Cancer
7. Green Nanoparticles Against Colon Cancer
7.1. Types of Nanoparticles Used in Colon Cancer Treatment
7.2. Nanoparticles Loaded with Plant Derivatives Against Colon Cancer
Nosology | Type of Nanoparticles | Model | Proposed Mechanism of Action | Therapeutic Effect | References |
---|---|---|---|---|---|
Euphorbia lathyris : laxative | Calcium phosphate NPs | In vitro assay: A CELL proliferation assay was performed on T84 (human colon cancer) and MC38 cell lines. The cells were seeded in 48-well plates at a density of 4 × 103 cells/well. After 24 h, the cells were exposed to calcium phosphate NPs at different concentrations. Finally, the optical density (OD) was measured at 492 nm, and the percentage of cell survival was calculated. In vivo assay: Female C57BL/6 mice (18–20 g, 6 months old) were used. The tumor was induced subcutaneously using MC38 cells, and the treatment with calcium phosphate NPs was administered intraperitoneally for 3 days (seven doses). The tumor volume was measured at the end of the treatment. | Reduction in carbonic anhydrase activity and induction of autophagy likely activated through the formation of autophagic vesicles, potentially driven by modulation of key autophagy-related proteins, including upregulation of LC3-II and Beclin and downregulation of ATG3 and p62. | Reduction in induced CRC volume by 62% and a decrease in the number and size of polyps. | [110,113] |
Vaccinium corymbosum: antioxidant and anticancer properties | PLGA nanoparticles surface-modified with chitosan | In vitro: The MTT cytotoxicity assay was performed against CC HT-29 cell lines. The cells were seeded in 96-well plates and incubated for 72 h. Absorbance was measured at 570 nm and the IC50 was calculated. Ex vivo: A permeability study of the three formulations presented by Mostafa was conducted. | Inhibition of vascular endothelial growth factor and the STAT-3 protein; stimulation of the caspase-3 protein. | No data. | [114] |
Argemone mexicana: analgesic, diuretic, tumors, inflammation, rheumatism, leprosy | Golden nanoparticles | In vitro: The cytotoxicity study of the loaded nanoparticles was conducted using the MTT assay on HCT colon cancer cell lines. The cells were exposed to the loaded nanoparticles 24 h after incubation, followed by an additional 4 h of incubation, and the absorbance was measured at 560 nm. Additionally, a DNA fragmentation assay was performed to evaluate genotoxicity, and a caspase-3 assay was conducted to examine apoptosis. | Nanoparticles can exert antiproliferative and genotoxic effects by suppressing cell growth and inducing apoptosis through mitochondrial membrane potential disruption, leading to extensive nuclear DNA fragmentation with double-strand breaks and resulting in a time-dependent upregulation of caspase-3 activity. This was confirmed by Western blot analyses, which revealed an increase in p53 and caspase-3 expression, verifying the activation of the intrinsic apoptotic pathway mediated by p53 and executed by caspase-3. | No data. | [117,118] |
Croton tiglium: used for the treatment of constipation | Silver nanoparticles | In vivo: CRC was induced in 36 adult Wistar rats through a single injection of azoxymethane (AOM), and the induction process was accelerated with dextran sulfate sodium (DSS). The nano-extract was administered orally for 21 days. | Prevention of anti-Keratin 20 antibody expression. Regulation of the genetic expression of the TP53 and APC genes. | Minimization of inflammatory reactions. Regulation of molecular and biochemical alterations caused by cancer induction through AOM. | [119] |
Albizia lebbeck: abdominal tumors, cough, ocular conditions, pulmonary conditions | Golden nanoparticles | In vitro: The cell viability study of the nanoparticles was conducted using the MTT assay on the HCT-116 cell line. The cells were incubated for 24 h in 96-well plates, after which the nanoparticles were added and the incubation continued for an additional 24 h. Absorbance was measured at 560 nm. Additionally, assays for ROS, caspases, and Western blot analysis were performed. | Induction of apoptosis through ROS production and a reduction in mitochondrial membrane potential facilitated cytochrome c release and triggered caspase-9 and caspase-3 activation, leading to DNA fragmentation. The latter was reinforced by the upregulation of pro-apoptotic proteins Bax and Bid and the downregulation of anti-apoptotic Bcl-2. | No data. | [117,120,121] |
7.3. Application of Nanoparticles to Combat Cancer Stem Cells
8. Physiological Limitations in the Therapeutic Scope of Treating Colon Cancer with Orally Administered Drugs
9. Advantages of Using Nanotechnology in the Treatment of Colon Cancer
10. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mármol, I.; Sánchez-de-Diego, C.; Pradilla Dieste, A.; Cerrada, E.; Rodriguez Yoldi, M. Colorectal Carcinoma: A General Overview and Future Perspectives in Colorectal Cancer. Int. J. Mol. Sci. 2017, 18, 197. [Google Scholar] [CrossRef]
- Hossain, M.S.; Karuniawati, H.; Jairoun, A.A.; Urbi, Z.; Ooi, D.J.; John, A.; Lim, Y.C.; Kibria, K.M.K.; Mohiuddin, A.K.M.; Ming, L.C.; et al. Colorectal Cancer: A Review of Carcinogenesis, Global Epidemiology, Current Challenges, Risk Factors, Preventive and Treatment Strategies. Cancers 2022, 14, 1732. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.C.; Itzkowitz, S.H. Colorectal Cancer in Inflammatory Bowel Disease: Mechanisms and Management. Gastroenterology 2022, 162, 715–730.e3. [Google Scholar] [CrossRef]
- Siegel, R.L.; Wagle, N.S.; Cercek, A.; Smith, R.A.; Jemal, A. Colorectal Cancer Statistics, 2023. CA Cancer J. Clin. 2023, 73, 233–254. [Google Scholar] [CrossRef] [PubMed]
- Xi, Y.; Xu, P. Global Colorectal Cancer Burden in 2020 and Projections to 2040. Transl. Oncol. 2021, 14, 101174. [Google Scholar] [CrossRef]
- Salmerón-Manzano, E.; Garrido-Cardenas, J.A.; Manzano-Agugliaro, F. Worldwide Research Trends on Medicinal Plants. Int. J. Environ. Res. Public Health 2020, 17, 3376. [Google Scholar] [CrossRef] [PubMed]
- Rivas-Morales, C.; Rivas-Galindo, V.M.; Rodríguez-Rodríguez, J.; Galindo-Rodríguez, S.A.; Leos-Rivas, C.; García-Hernández, D.G. Bactericidal Activity, Isolation and Identification of Most Active Compound from 20 Plants Used in Traditional Mexican Medicine against Multidrug-Resistant Bacteria. Int. J. Pharmacol. 2018, 14, 203–214. [Google Scholar] [CrossRef]
- Botta, A.; Martínez, V.; Balboa, E.; Conde, E.; Vinardell, M.P. Toxicology in Vitro Erythrocytes and Cell Line-Based Assays to Evaluate the Cytoprotective Activity of Antioxidant Components Obtained from Natural Sources. Toxicol. Vitr. 2014, 28, 120–124. [Google Scholar] [CrossRef]
- Palhares, R.M.; Drummond, M.G.; Dos Santos Alves Figueiredo Brasil, B.; Cosenza, G.P.; Das Graças Lins Brandão, M.; Oliveira, G. Medicinal Plants Recommended by the World Health Organization: DNA Barcode Identification Associated with Chemical Analyses Guarantees Their Quality. PLoS ONE 2015, 10, e0127866. [Google Scholar] [CrossRef]
- Gielecińska, A.; Kciuk, M.; Mujwar, S.; Celik, I.; Kołat, D.; Kałuzińska-Kołat, Ż.; Kontek, R. Substances of Natural Origin in Medicine: Plants vs. Cancer. Cells 2023, 12, 986. [Google Scholar] [CrossRef]
- Alrumaihi, F.; Khan, M.A.; Babiker, A.Y.; Alsaweed, M.; Azam, F.; Allemailem, K.S.; Almatroudi, A.A.; Ahamad, S.R.; Alsugoor, M.H.; Alharbi, K.N.; et al. Lipid-Based Nanoparticle Formulation of Diallyl Trisulfide Chemosensitizes the Growth Inhibitory Activity of Doxorubicin in Colorectal Cancer Model: A Novel In Vitro, In Vivo and In Silico Analysis. Molecules 2022, 27, 2192. [Google Scholar] [CrossRef]
- Mattiuzzi, C.; Sanchis-Gomar, F.; Lippi, G. Concise Update on Colorectal Cancer Epidemiology. Ann. Transl. Med. 2019, 7, 609. [Google Scholar] [CrossRef] [PubMed]
- Arnold, M.; Sierra, M.S.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Patterns and Trends in Colorectal Cancer Incidence and Mortality. Gut 2017, 66, 683–691. [Google Scholar] [CrossRef]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Znaor, A.; Eser, S.; Bendahhou, K.; Shelpai, W.; Al Lawati, N.; ELBasmi, A.; Alemayehu, E.M.; Tazi, M.A.; Yakut, C.; Piñeros, M. Stage at Diagnosis of Colorectal Cancer in the Middle East and Northern Africa: A Population-Based Cancer Registry Study. Int. J. Cancer 2024, 155, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, P.; Sharma, R.; Gautam, L.; Vyas, S.; Vyas, S.P. Nanoparticles and Colon Cancer. In Nano Drug Delivery Strategies for the Treatment of Cancers; Awesh, K., Yadav, U., Gupta, R.S., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 191–223. ISBN 9780128197936. [Google Scholar]
- Islam, M.R.; Akash, S.; Rahman, M.M.; Nowrin, F.T.; Akter, T.; Shohag, S.; Rauf, A.; Aljohani, A.S.M.; Simal-Gandara, J. Colon Cancer and Colorectal Cancer: Prevention and Treatment by Potential Natural Products. Chem. Biol. Interact. 2022, 368, 110170. [Google Scholar] [CrossRef] [PubMed]
- Younis, N.K.; Roumieh, R.; Bassil, E.P.; Ghoubaira, J.A.; Kobeissy, F.; Eid, A.H. Nanoparticles: Attractive Tools to Treat Colorectal Cancer. In Seminars in Cancer Biology; Academic Press: New York, NY, USA, 2022; Volume 86, pp. 1–13. [Google Scholar] [CrossRef]
- Gomes, M.; Teixeira, A.L.; Coelho, A.; Araújo, A.; Medeiros, R. The Role of Inflammation in Lung Cancer. In Inflammation and Cancer. Advances in Experimental Medicine and Biology; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1–23. [Google Scholar]
- Lewandowska, A.; Rudzki, G.; Lewandowski, T.; Stryjkowska-Góra, A.; Rudzki, S. Risk Factors for the Diagnosis of Colorectal Cancer. Cancer Control 2022, 29, 10732748211056692. [Google Scholar] [CrossRef]
- Sawicki, T.; Ruszkowska, M.; Danielewicz, A.; Niedźwiedzka, E.; Arłukowicz, T.; Przybyłowicz, K.E. A Review of Colorectal Cancer in Terms of Epidemiology, Risk Factors, Development, Symptoms and Diagnosis. Cancers 2021, 13, 2025. [Google Scholar] [CrossRef]
- Johnson, C.M.; Wei, C.; Ensor, J.E.; Smolenski, D.J.; Amos, C.I.; Levin, B.; Berry, D.A. Meta-Analyses of Colorectal Cancer Risk Factors. Cancer Causes Control 2013, 24, 1207–1222. [Google Scholar] [CrossRef]
- Huang, Y.M.; Wei, P.L.; Ho, C.H.; Yeh, C.C. Cigarette Smoking Associated with Colorectal Cancer Survival: A Nationwide, Population-Based Cohort Study. J. Clin. Med. 2022, 11, 913. [Google Scholar] [CrossRef] [PubMed]
- Rehm, J.; Shield, K.D. Alcohol Use and Cancer in the European Union. Eur. Addict. Res. 2021, 27, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Dahmus, J.D.; Kotler, D.L.; Kastenberg, D.M.; Kistler, C.A. The Gut Microbiome and Colorectal Cancer: A Review of Bacterial Pathogenesis. J. Gastrointest. Oncol. 2018, 9, 769–777. [Google Scholar] [CrossRef]
- Patel, S.G.; Karlitz, J.J.; Yen, T.; Lieu, C.H.; Boland, C.R. The Rising Tide of Early-Onset Colorectal Cancer: A Comprehensive Review of Epidemiology, Clinical Features, Biology, Risk Factors, Prevention, and Early Detection. Lancet Gastroenterol. Hepatol. 2022, 7, 262–274. [Google Scholar] [CrossRef] [PubMed]
- Baraibar, I.; Ros, J.; Saoudi, N.; Salvà, F.; García, A.; Castells, M.R.; Tabernero, J.; Élez, E. Sex and Gender Perspectives in Colorectal Cancer. ESMO Open 2023, 8, 101204. [Google Scholar] [CrossRef]
- Huck, M.B.; Bohl, J.L. Colonic Polyps: Diagnosis and Surveillance. Clin. Colon. Rectal Surg. 2016, 29, 296–305. [Google Scholar] [CrossRef]
- Rubín-García, M.; Martín, V.; Vitelli-Storelli, F.; Moreno, V.; Aragonés, N.; Ardanaz, E.; Alonso-Molero, J.; Jiménez-Moleón, J.J.; Amiano, P.; Fernández-Tardón, G.; et al. Family History of First Degree as a Risk Factor for Colorectal Cancer. Gac. Sanit. 2022, 36, 345–352. [Google Scholar] [CrossRef]
- Luo, C.; Lei, L.; Yu, Y.; Luo, Y. The Perceptions of Patients, Families, Doctors, and Nurses Regarding Malignant Bone Tumor Disclosure in China: A Qualitative Study. J. Transcult. Nurs. 2021, 32, 740–748. [Google Scholar] [CrossRef]
- Parkin, C.J.; Bell, S.W.; Mirbagheri, N. Colorectal Cancer Screening in Australia. Aust. J. Gen. Pract. 2018, 47, 859–863. [Google Scholar] [CrossRef]
- Kolb, J.M.; Ahnen, D.J.; Samadder, N.J. Evidenced-Based Screening Strategies for a Positive Family History. Gastrointest. Endosc. Clin. N. Am. 2020, 30, 597–609. [Google Scholar] [CrossRef]
- Li, J.; Chen, D.; Shen, M. Tumor Microenvironment Shapes Colorectal Cancer Progression, Metastasis, and Treatment Responses. Front. Med. 2022, 9, 869010. [Google Scholar] [CrossRef]
- Raisch, J.; Buc, E.; Bonnet, M.; Sauvanet, P.; Vazeille, E.; de Vallée, A.; Déchelotte, P.; Darcha, C.; Pezet, D.; Bonnet, R.; et al. Colon Cancer-Associated B2 Escherichia Coli Colonize Gut Mucosa and Promote Cell Proliferation. World J. Gastroenterol. 2014, 20, 6560–6572. [Google Scholar] [CrossRef]
- Zheng, Y.; Hua, X.; Win, A.K.; MacInnis, R.J.; Gallinger, S.; Le Marchand, L.; Lindor, N.M.; Baron, J.A.; Hopper, J.L.; Dowty, J.G.; et al. A New Comprehensive Colorectal Cancer Risk Prediction Model Incorporating Family History, Personal Characteristics, and Environmental Factors. Cancer Epidemiol. Biomark. Prev. 2020, 29, 549–557. [Google Scholar] [CrossRef]
- Taylor, D.P.; Burt, R.W.; Williams, M.S.; Haug, P.J.; Cannon–Albright, L.A. Population-Based Family History–Specific Risks for Colorectal Cancer: A Constellation Approach. Gastroenterology 2010, 138, 877–885. [Google Scholar] [CrossRef] [PubMed]
- Lieberman, D. Colon cancer screening and surveillance controversies. Curr. Opin. Gastroenterol. 2009, 25, 422–427. [Google Scholar] [CrossRef]
- Zygulska, A.L.; Pierzchalski, P. Novel Diagnostic Biomarkers in Colorectal Cancer. Int. J. Mol. Sci. 2022, 23, 852. [Google Scholar] [CrossRef] [PubMed]
- Loktionov, A. Biomarkers for detecting colorectal cancer non-invasively: DNA, RNA or proteins. World J. Gastrointest. Oncol. 2020, 12, 124–148. [Google Scholar] [CrossRef] [PubMed]
- Schreuders, E.H.; Grobbee, E.J.; Spaander, M.C.W.; Kuipers, E.J. Advances in Fecal Tests for Colorectal Cancer Screening. Curr. Treat. Options Gastroenterol. 2016, 14, 152–162. [Google Scholar] [CrossRef]
- Kudo, S.; Mori, Y.; Misawa, M.; Takeda, K.; Kudo, T.; Itoh, H. Artificial intelligence and colonoscopy: Current status and future perspectives. Dig. Endosc. 2019, 31, 363–371. [Google Scholar] [CrossRef]
- Wang, Q.; Wei, J.; Chen, Z.; Zhang, T.; Zhong, J.; Zhong, B. Establishment of multiple diagnosis models for colorectal cancer with artificial neural networks. Oncol. Lett. 2019, 17, 3314–3322. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yang, Y.; Wang, Y.; Fan, Q. Detection of the BRAF V600E mutation in colorectal cancer by NIR spectroscopy in conjunction with counter propagation artificial neural network. Molecules 2019, 24, 2238. [Google Scholar] [CrossRef] [PubMed]
- Lui, T.K.L.; Wong, K.K.Y.; Mak, L.L.Y.; Ko, M.K.L.; Tsao, S.K.K.; Leung, W.K. Endoscopic Prediction of Deeply Submucosal Invasive Carcinoma with Use of Artificial Intelligence. Endosc. Int. Open 2019, 07, E514–E520. [Google Scholar] [CrossRef]
- Hashiguchi, Y.; Muro, K.; Saito, Y.; Ito, Y.; Ajioka, Y.; Hamaguchi, T.; Hasegawa, K.; Hotta, K.; Ishida, H.; Ishiguro, M.; et al. Japanese Society for Cancer of the Colon and Rectum (JSCCR) Guidelines 2019 for the Treatment of Colorectal Cancer; Springer: Singapore, 2020; Volume 25, ISBN 0123456789. [Google Scholar]
- Vogel, J.D.; Felder, S.I.; Bhama, A.R.; Hawkins, A.T.; Langenfeld, S.J.; Shaffer, V.O.; Thorsen, A.J.; Weiser, M.R.; Chang, G.J.; Lightner, A.L.; et al. The American Society of Colon and Rectal Surgeons Clinical Practice Guidelines for the Management of Colon Cancer. Dis. Colon. Rectum 2022, 65, 148–177. [Google Scholar] [CrossRef]
- Lauby-Secretan, B.; Vilahur, N.; Straif, K. IARC Handbook of Cancer Prevention Vol. 17—Colorectal Cancer Screening; ASCO Publications: Alexandria, VA, USA, 2018; Volume 4, ISBN 9789283230229. [Google Scholar]
- Sandberg, S.J.; Park, J.M.; Tasselius, V.A.; Angenete, E. Bowel Dysfunction After Colon Cancer Surgery: A Prospective, Longitudinal, Multicenter Study. Dis. Colon. Rectum 2024, 67, 1322–1331. [Google Scholar] [CrossRef]
- Amjad, M.T.; Chidharla, A.; Kasi, A. Cancer Chemotherapy. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Tilsed, C.M.; Fisher, S.A.; Nowak, A.K.; Lake, R.A.; Lesterhuis, W.J. Cancer Chemotherapy: Insights into Cellular and Tumor Microenvironmental Mechanisms of Action. Front. Oncol. 2022, 12, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.C.; Zhang, J.Q.; Yan, T.H.; Miao, M.X.; Cao, Y.M.; Cao, Y.B.; Zhang, L.C.; Li, L. Novel Strategies to Reverse Chemoresistance in Colorectal Cancer. Cancer Med. 2023, 12, 11073–11096. [Google Scholar] [CrossRef] [PubMed]
- Ledet, C.R. Special Considerations in the Postoperative Care of the Cancer Patient. In Perioperative Care of the Cancer Patient; Elsevier: Amsterdam, The Netherlands, 2023; pp. 419–426. [Google Scholar] [CrossRef]
- Willis, V.C.; Roebuck, P.D.M.C.; Ph, D.; Bravata, D.M.; Liu, X.; Arriaga, Y.E.; Dankwa-mullan, M.D.I.; Wu, A.; Ph, D. Clinical Decision Support for High-Risk Stage II Colon Cancer: A Real-World Study of Treatment Concordance and Survival. Dis. Colon Rectum 2020, 10, 1383–1392. [Google Scholar] [CrossRef]
- Katta, B.; Vijayakumar, C.; Dutta, S.; Dubashi, B.; Nelamangala Ramakrishnaiah, V.P. The Incidence and Severity of Patient-Reported Side Effects of Chemotherapy in Routine Clinical Care: A Prospective Observational Study. Cureus 2023, 15, e38301. [Google Scholar] [CrossRef]
- Schuell, B.; Gruenberger, T.; Kornek, G.V.; Dworan, N.; Depisch, D.; Lang, F.; Schneeweiss, B.; Scheithauer, W. Side Effects during Chemotherapy Predict Tumour Response in Advanced Colorectal Cancer. Br. J. Cancer 2005, 93, 744–748. [Google Scholar] [CrossRef]
- Jeon, Y.; Sym, S.J.; Yoo, B.K.; Baek, J. Long-Term Survival, Tolerability, and Safety of First-Line Bevacizumab and FOLFIRI in Combination With Ginsenoside-Modified Nanostructured Lipid Carrier Containing Curcumin in Patients With Unresectable Metastatic Colorectal Cancer. Integr. Cancer Ther. 2022, 21, 4–10. [Google Scholar] [CrossRef]
- Yoshino, T.; Yamanaka, T.; Oki, E.; Kotaka, M.; Manaka, D.; Eto, T.; Hasegawa, J.; Takagane, A.; Nakamura, M.; Kato, T.; et al. Efficacy and Long-Term Peripheral Sensory Neuropathy of 3 vs 6 Months of Oxaliplatin-Based Adjuvant Chemotherapy for Colon Cancer: The ACHIEVE Phase 3 Randomized Clinical Trial. JAMA Oncol. 2019, 5, 1574–1581. [Google Scholar] [CrossRef]
- Gavrilas, L.I.; Cruceriu, D.; Mocan, A.; Loghin, F.; Miere, D.; Balacescu, O. Plant-Derived Bioactive Compounds in Colorectal Cancer: Insights from Combined Regimens with Conventional Chemotherapy to Overcome Drug-Resistance. Biomedicines 2022, 10, 1948. [Google Scholar] [CrossRef]
- Jain, S.M.; Nagainallur Ravichandran, S.; Murali Kumar, M.; Banerjee, A.; Sun-Zhang, A.; Zhang, H.; Pathak, R.; Sun, X.F.; Pathak, S. Understanding the Molecular Mechanism Responsible for Developing Therapeutic Radiation-Induced Radioresistance of Rectal Cancer and Improving the Clinical Outcomes of Radiotherapy—A Review. Cancer Biol. Ther. 2024, 25, 2317999. [Google Scholar] [CrossRef]
- Kouklidis, G.; Nikolopoulos, M.; Ahmed, O.; Eskander, B.; Masters, B. A Retrospective Comparison of Toxicity, Response and Survival of Intensity-Modulated Radiotherapy Versus Three-Dimensional Conformal Radiation Therapy in the Treatment of Rectal Carcinoma. Cureus 2023, 15, e48128. [Google Scholar] [CrossRef]
- Hwang, K.; Yoon, J.H.; Lee, J.H.; Lee, S. Recent advances in monoclonal antibody therapy for colorectal cancers. Biomedicines 2021, 9, 39. [Google Scholar] [CrossRef]
- Liu, B.; Zhou, H.; Tan, L.; Siu, K.T.H.; Guan, X.Y. Exploring treatment options in cancer: Tumor treatment strategies. Signal Transduct. Target. Ther. 2024, 9, 175. [Google Scholar] [CrossRef]
- Françoso, A.; Simioni, P.U. Immunotherapy for the treatment of colorectal tumors: Focus on approved and in-clinical-trial monoclonal antibodies. Drug Devel Ther. 2017, 11, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Delgado, M.; Garcia-Sanz, J.A. Therapeutic Monoclonal Antibodies against Cancer: Present and Future. Cells 2023, 12, 2837. [Google Scholar] [CrossRef]
- Primrose, J.N. Treatment of colorectal metastases: Surgery, cryotherapy, or radiofrequency ablation. Gut 2002, 50, 1–5. [Google Scholar] [CrossRef]
- Jiang, X.; Ji, Z.; Lei, X.; He, Y.; Yuan, F. Cryotherapy for low rectal and anal cancer: Recommendation and indications. Front. Oncol. 2023, 13, 984145. [Google Scholar] [CrossRef]
- Lee, D.; Kwon, S.; Jang, S.Y.; Park, E.; Lee, Y.; Koo, H. Overcoming the obstacles of current photodynamic therapy in tumors using nanoparticle. Bioact. Mater. 2022, 8, 20–34. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, J.A.; Correia, J.H. Photodynamic Therapy for Colorectal Cancer: An Update and a Look to the Future. Int. J. Mol. Sci. 2023, 24, 12204. [Google Scholar] [CrossRef]
- Xue, Y.; Ruan, Y.; Wang, Y.; Xiao, P.; Xu, J. Signaling pathways in liver cancer: Pathogenesis and targeted therapy. Mol. Biomed. 2024, 5, 20. [Google Scholar] [CrossRef]
- Sun, J.; Liu, Y.; Zhao, J.; Lu, B.; Zhou, S.; Lu, W. Plasma proteomic and polygenic profiling improve risk stratification and personalized screening for colorectal cancer. Nat. Commun. 2024, 15, 8873. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Zhang, B.; Li, B.; Wu, H.; Jiang, M. Cold and hot tumors: From molecular mechanisms to targeted therapy. Signal Transduct. Target. Ther. 2024, 9, 274. [Google Scholar] [CrossRef]
- Chalabi, M.; Verschoor, Y.L.; Tan, P.B.; Balduzzi, S.; Lent, A.U.V.; Grootscholten, C.; Dokter, S.; Büller, N.V.; Grotenhuis, B.A.; Kuhlmann, K.; et al. Neoadjuvant Immunotherapy in Locally Advanced Mismatch Repair–Deficient Colon Cancer. N. Engl. J. Med. 2024, 390, 1949–1958. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Tianyu, E.; Zhou, M.; Niu, J.; Wang, J.; Miao, R.; Dong, C.; Gao, H.; Jing, C.; Liang, B. Integrin Avβ6 Mediates the Immune Escape through Regulation of PD-L1 and Serves as a Novel Marker for Immunotherapy of Colon Carcinoma. Am. J. Cancer Res. 2024, 14, 2608–2625. [Google Scholar] [CrossRef]
- Riether, C.; Schürch, C.M.; Flury, C.; Hinterbrandner, M.; Drück, L.; Huguenin, A.L. Tyrosine kinase inhibitor-induced CD70 expression mediates drug resistance in leukemia stem cells by activating Wnt signaling. Sci. Transl. Med. 2015, 7, 298. [Google Scholar] [CrossRef] [PubMed]
- Misale, S.; Yaeger, R.; Hobor, S.; Scala, E.; Janakiraman, M.; Liska, D. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature 2012, 486, 532–538. [Google Scholar] [CrossRef]
- Rivas-Morales, C.; Oranday-Cárdenas, M.A.; Verde-Star, M.J.; García-Hernández, D.G.; Leos-Rivas, C. Actividad Antifúngica. In Investigación en Plantas de Importancia Médica; omnia science: Barcelona, Spain, 2016; pp. 101–128. [Google Scholar] [CrossRef]
- Aiello, P.; Sharghi, M.; Mansourkhani, S.M.; Ardekan, A.P.; Jouybari, L.; Daraei, N.; Peiro, K.; Mohamadian, S.; Rezaei, M.; Heidari, M.; et al. Medicinal Plants in the Prevention and Treatment of Colon Cancer. Oxid. Med. Cell Longev. 2019, 2019, 2075614. [Google Scholar] [CrossRef]
- Nelson, V.K.; Sahoo, N.K.; Sahu, M.; Sudhan, H.H.; Pullaiah, C.P.; Muralikrishna, K.S. In Vitro Anticancer Activity of Eclipta Alba Whole Plant Extract on Colon Cancer Cell HCT-116. BMC Complement. Med. Ther. 2020, 20, 355. [Google Scholar] [CrossRef] [PubMed]
- Ashwini, S.; Ezhilarasan, D.; Anitha, R. Cytotoxic Effect of Caralluma Fimbriata against Human Colon Cancer Cells. Pharmacogn. J. 2017, 9, 204–207. [Google Scholar] [CrossRef]
- Esmeeta, A.; Adhikary, S.; Dharshnaa, V.; Swarnamughi, P.; Ummul Maqsummiya, Z.; Banerjee, A. Plant-derived bioactive compounds in colon cancer treatment: An updated review. Biomed. Pharmacothe 2022, 153, 113384. [Google Scholar] [CrossRef]
- Macharia, J.M.; Mwangi, R.W.; Rozmann, N.; Zsolt, K.; Varjas, T.; Uchechukwu, P.O.; Wagara, I.N.; Raposa, B.L. Medicinal plants with anti-colorectal cancer bioactive compounds: Potential game-changers in colorectal cancer management. Biomed. Pharmacother. 2022, 153, 113383. [Google Scholar] [CrossRef]
- Shiao, W.-C.; Kuo, C.-H.; Tsai, Y.-H.; Hsieh, S.-L.; Kuan, A.-W.; Hong, Y.-H.; Huang, C.-Y. In Vitro Evaluation of Anti-Colon Cancer Potential of Crude Extracts of Fucoidan Obtained from Sargassum glaucescens Pretreated by Compressional-Puffing. Appl. Sci. 2020, 10, 3058. [Google Scholar] [CrossRef]
- Mazewski, C.; Liang, K.; Gonzalez de Mejia, E. Comparison of the Effect of Chemical Composition of Anthocyanin-Rich Plant Extracts on Colon Cancer Cell Proliferation and Their Potential Mechanism of Action Using in Vitro, in Silico, and Biochemical Assays. Food Chem. 2018, 242, 378–388. [Google Scholar] [CrossRef] [PubMed]
- Weidner, C.; Rousseau, M.; Plauth, A.; Wowro, S.J.; Fischer, C.; Abdel-Aziz, H.; Sauer, S. Melissa Officinalis Extract Induces Apoptosis and Inhibits Proliferation in Colon Cancer Cells through Formation of Reactive Oxygen Species. Phytomedicine 2015, 22, 262–270. [Google Scholar] [CrossRef]
- Shanmugam, M.K.; Rane, G.; Kanchi, M.M.; Arfuso, F.; Chinnathambi, A.; Zayed, M.E.; Alharbi, S.A.; Tan, B.K.H.; Kumar, A.P.; Sethi, G. The Multifaceted Role of Curcumin in Cancer Prevention and Treatment. Molecules 2015, 20, 2728–2769. [Google Scholar] [CrossRef]
- Du, G.J.; Zhang, Z.; Wen, X.D.; Yu, C.; Calway, T.; Yuan, C.S.; Wang, C.Z. Epigallocatechin Gallate (EGCG) Is the Most Effective Cancer Chemopreventive Polyphenol in Green Tea. Nutrients 2012, 4, 1679–1691. [Google Scholar] [CrossRef]
- Helms, S. Cancer Prevention and Therapeutics: Panax Ginseng. Altern. Med. Rev. 2004, 9, 259–274. [Google Scholar] [PubMed]
- Pandey, P.; Khan, F.; Alshammari, N.; Saeed, A.; Aqil, F.; Saeed, M. Updates on the Anticancer Potential of Garlic Organosulfur Compounds and Their Nanoformulations: Plant Therapeutics in Cancer Management. Front. Pharmacol. 2023, 14, 1154034. [Google Scholar] [CrossRef] [PubMed]
- Nualsanit, T.; Rojanapanthu, P.; Gritsanapan, W.; Lee, S.-H.; Lawson, D.; Baek, S.J. Damnacanthal, a Noni Component, Exhibits Antitumorigenic Activity in Human Colorectal Cancer Cells. J. Nutr. Biochem. 2012, 23, 915–923. [Google Scholar] [CrossRef]
- Pilarski, R.; Filip, B.; Wietrzyk, J.; Kuraś, M.; Gulewicz, K. Anticancer Activity of the Uncaria Tomentosa (Willd.) DC. Preparations with Different Oxindole Alkaloid Composition. Phytomedicine 2010, 17, 1133–1139. [Google Scholar] [CrossRef] [PubMed]
- Shukla, Y.; Singh, M. Cancer Preventive Properties of Ginger: A Brief Review. Food Chem. Toxicol. 2007, 45, 683–690. [Google Scholar] [CrossRef] [PubMed]
- Polyak, S.J.; Oberlies, N.H.; Pécheur, E.I.; Dahari, H.; Ferenci, P.; Pawlotsky, J.M. Silymarin for HCV Infection. Antivir. Ther. 2013, 18, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Rady, I.; Bloch, M.B.; Chamcheu, R.C.N.; Banang Mbeumi, S.; Anwar, M.R.; Mohamed, H.; Babatunde, A.S.; Kuiate, J.R.; Noubissi, F.K.; El Sayed, K.A.; et al. Anticancer Properties of Graviola (Annona Muricata): A Comprehensive Mechanistic Review. Oxid. Med. Cell Longev. 2018, 2018, 1826170. [Google Scholar] [CrossRef] [PubMed]
- Zitta, K.; Meybohm, P.; Bein, B.; Huang, Y.; Heinrich, C.; Scholz, J.; Steinfath, M.; Albrecht, M. Salicylic Acid Induces Apoptosis in Colon Carcinoma Cells Grown In-Vitro: Influence of Oxygen and Salicylic Acid Concentration. Exp. Cell Res. 2012, 318, 828–834. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, D.; Wang, J.; Wang, Y.; Hu, J.; Zhou, Y.; Zhou, X.; Nie, S.; Xie, M. Aloe Gel Glucomannan Induced Colon Cancer Cell Death via Mitochondrial Damage-Driven PINK1/Parkin Mitophagy Pathway. Carbohydr. Polym. 2022, 295, 119841. [Google Scholar] [CrossRef]
- Forbes-Hernández, T.Y.; Giampieri, F.; Gasparrini, M.; Mazzoni, L.; Quiles, J.L.; Alvarez-Suarez, J.M.; Battino, M. The Effects of Bioactive Compounds from Plant Foods on Mitochondrial Function: A Focus on Apoptotic Mechanisms. Food Chem. Toxicol. 2014, 68, 154–182. [Google Scholar] [CrossRef] [PubMed]
- Arrieta, Ó. Necesidades En La Atención Integral Del Cáncer En México. Gac. Mex. De Oncol. 2023, 22, 53–54. [Google Scholar] [CrossRef]
- Montiel-Jarquín, Á.J.; Santiago-Carrillo, M.A.; García-Galicia, A.; López-Bernal, C.A.; Miranda-Martínez, M.A.; Loria-Castellanos, J. Analysis of the Direct Cost of Medical and Surgical Care for Breast Cancer. Comparative Study between Early and Advanced Stages in the Third Level Medical Facility. Cir. Y Cir. (Engl. Ed.) 2023, 91, 28–33. [Google Scholar] [CrossRef]
- Thronicke, A.; Reinhold, T.; von Trott, P.; Grah, C.; Matthes, B.; Matthes, H.; Schad, F. Cost-Effectiveness of Real-World Administration of Chemotherapy and Add-on Viscum album L. Therapy Compared to Chemotherapy in the Treatment of Stage IV NSCLC Patients. PLoS ONE 2020, 15, e0236426. [Google Scholar] [CrossRef]
- Cado Martínez, S.I.; Santiesteban-López, N.A.; Chávez Medina, J.; Morales Paredes, Y.R. La Medicina Tradicional: Perspectiva Turística y Patrimonial. Dictam. Libre 2023, 33, 125–140. [Google Scholar] [CrossRef]
- Gezici, S.; Şekeroğlu, N. Current Perspectives in the Application of Medicinal Plants Against Cancer: Novel Therapeutic Agents. Anticancer. Agents Med. Chem. 2019, 19, 101–111. [Google Scholar] [CrossRef]
- Bose, S.; Panda, A.K.; Mukherjee, S.; Sa, G. Curcumin and tumor immune-editing: Resurrecting the immune system. Cell Div. 2015, 10, 6–8. [Google Scholar] [CrossRef]
- Sun, L.; Liu, H.; Ye, Y.; Lei, Y.; Islam, R.; Tan, S. Smart nanoparticles for cancer therapy. Signal Transduct. Target. Ther. 2023, 8, 418. [Google Scholar] [CrossRef] [PubMed]
- Narayana, S.; Gowda, B.H.J.; Hani, U.; Shimu, S.S.; Paul, K.; Das, A. Inorganic nanoparticle-based treatment approaches for colorectal cancer: Recent advancements and challenges. J. Nanobiotechnol. 2024, 22, 427. [Google Scholar] [CrossRef]
- Kumari Singh, S.; Solanki, R.; Patel, S. Nano pharmaceutical delivery in combating colorectal cancer. Med. Drug Discov. 2024, 21, 100173. [Google Scholar] [CrossRef]
- Heya, M.S.; García-Coronado, P.L.; Cordero-Díaz, A.; Torres-Hernández, A.D.; Pérez-Narváez, O.A. Biomedical Application of Nanoformulated plant. Int. J. Pharm. Sci. Res. 1 IJPSR 2022, 13, 1–12. [Google Scholar] [CrossRef]
- You, X.; Kang, Y.; Hollett, G.; Chen, X.; Zhao, W.; Gu, Z.; Wu, J. Polymeric Nanoparticles for Colon Cancer Therapy: Overview and Perspectives. J. Mater. Chem. B 2016, 4, 7779–7792. [Google Scholar] [CrossRef] [PubMed]
- Zambrano, L.M.G.; Brandao, D.A.; Rocha, F.R.G.; Marsiglio, R.P.; Longo, I.B.; Primo, F.L.; Tedesco, A.C.; Guimaraes-Stabili, M.R.; Rossa, C. Local Administration of Curcumin-Loaded Nanoparticles Effectively Inhibits Inflammation and Bone Resorption Associated with Experimental Periodontal Disease. Sci. Rep. 2018, 8, 6652. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yang, C.; Zhang, Q.; Wang, C.; Zhou, X.; Zhang, X.; Liu, S. In Vitro Anticancer Effects of Esculetin against Human Leukemia Cell Lines Involves Apoptotic Cell Death, Autophagy, G0/G1 Cell Cycle Arrest and Modulation of Raf/MEK/ERK Signalling Pathway. J. BUON Off. J. Balk. Union. Oncol. 2019, 24, 1686–1691. [Google Scholar]
- Ren, B.; Kwah, M.X.; Liu, C.; Ma, Z.; Shanmugam, M.K.; Ding, L.; Xiang, X.; Ho, P.C.; Wang, L.; Shi, P.; et al. Resveratrol for Cancer Therapy: Challenges and Future Perspectives. Cancer Lett. 2021, 515, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Enin, H.A.A.; Alquthami, A.F.; Alwagdani, A.M.; Yousef, L.M.; Albuqami, M.S.; Alharthi, M.A.; Alsaab, H.O. Utilizing TPGS for Optimizing Quercetin Nanoemulsion for Colon Cancer Cells Inhibition. Colloids Interfaces 2022, 6, 49. [Google Scholar] [CrossRef]
- Mesas, C.; Garcés, V.; Martínez, R.; Ortiz, R.; Doello, K.; Dominguez-Vera, J.M.; Bermúdez, F.; Porres, J.M.; López-Jurado, M.; Melguizo, C.; et al. Colon Cancer Therapy with Calcium Phosphate Nanoparticles Loading Bioactive Compounds from Euphorbia Lathyris: In Vitro and in Vivo Assay. Biomed. Pharmacother. 2022, 155, 113723. [Google Scholar] [CrossRef]
- Mostafa, M.M.; Amin, M.M.; Zakaria, M.Y.; Hussein, M.A.; Shamaa, M.M.; Abd El-Halim, S.M. Chitosan Surface-Modified PLGA Nanoparticles Loaded with Cranberry Powder Extract as a Potential Oral Delivery Platform for Targeting Colon Cancer Cells. Pharmaceutics 2023, 15, 606. [Google Scholar] [CrossRef] [PubMed]
- Gou, M.; Men, K.; Shi, H.; Xiang, M.; Zhang, J.; Song, J.; Long, J.; Wan, Y.; Luo, F.; Zhao, X.; et al. Curcumin-Loaded Biodegradable Polymeric Micelles for Colon Cancer Therapy in Vitro and in Vivo. Nanoscale 2011, 3, 1558–1567. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, T.; Liu, L.; Wang, X.; Wu, P.; Chen, Z.; Ni, C.; Zhang, J.; Hu, F.; Huang, J. Novel Micelle Formulation of Curcumin for Enhancing Antitumor Activity and Inhibiting Colorectal Cancer Stem Cells. Int. J. Nanomed. 2012, 7, 4487–4497. [Google Scholar] [CrossRef]
- Mesas, C.; Martínez, R.; Ortíz, R.; Galisteo, M.; López-Jurado, M.; Cabeza, L.; Perazzoli, G.; Melguizo, C.; Porres, J.M.; Prados, J. Antitumor Effect of the Ethanolic Extract from Seeds of Euphorbia Lathyris in Colorectal Cancer. Nutrients 2021, 13, 566. [Google Scholar] [CrossRef]
- Xiang, D.; Shigdar, S.; Yang, W.; Duan, W.; Li, Q.; Lin, J.; Liu, K.; Li, L. Epithelial Cell Adhesion Molecule Aptamer Functionalized PLGA-Lecithin-Curcumin-PEG Nanoparticles for Targeted Drug Delivery to Human Colorectal Adenocarcinoma Cells. Int. J. Nanomed. 2014, 9, 1083. [Google Scholar] [CrossRef] [PubMed]
- Aboulthana, W.M.; Ibrahim, N.E.; Mohamed, N.; Seif, M.M.; Hassan, A.K.; Mahmoud, A.; El-feky, A.M.; Madboli, A.A. Evaluation of the Biological Efficiency of Silver Nanoparticles Biosynthesized Using Croton tiglium L. Seeds Extract against Azoxymethane Induced Colon Cancer in Rats. Asian Pac. J. Cancer Prev. 2020, 21, 1369–1389. [Google Scholar] [CrossRef] [PubMed]
- Datkhile, K.D.; Patil, S.R.; Durgawale, P.P.; Patil, M.N.; Hinge, D.D.; Jagdale, N.J.; Deshmukh, V.N.; More, A.L. Biogenic Synthesis of Gold Nanoparticles Using Argemone mexicana L. and Their Cytotoxic and Genotoxic Effects on Human Colon Cancer Cell Line (HCT-15). J. Genet. Eng. Biotechnol. 2021, 19, 9. [Google Scholar] [CrossRef]
- Journal, A.I.; Malaikolundhan, H.; Mookkan, G.; Matheswaran, N.; Alsawalha, M.; Priya, V.; Mohan, S.K.; Di, A. Anticarcinogenic Effect of Gold Nanoparticles Synthesized from Albizia Lebbeck on HCT-116 Colon Cancer Cell Lines on HCT-116 Colon Cancer Cell Lines. Artif. Cells Nanomed. Biotechnol. 2020, 48, 1206–1213. [Google Scholar] [CrossRef]
- Morera-Grau, Á.; Patriarca-Amiano, M.E.; Santiago-Díaz, P.; Serrano-MunnCrossed D Sign©, L.; Ielpo, B.; Burdío-Pinilla, F.; Pera-Román, M.; Espuelas-Malón, S.; Iglesias-Coma, M.; Sánchez-Velázquez, P. Atypical Double Colorectal Metastasis: Spleen and Uterus. J. Surg. Case Rep. 2022, 2022, rjab577. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Li, Q.; Mo, J.; Dai, H. Drug-Loaded Polymeric Nanoparticles for Cancer Stem Cell Targeting. Front. Pharmacol. 2017, 8, 51. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Li, B.; Cao, Q.; Liu, T.; Li, J. Targeting Cancer Stem Cells with Polymer Nanoparticles for Gastrointestinal Cancer Treatment. Stem Cell Res. Ther. 2022, 13, 489. [Google Scholar] [CrossRef] [PubMed]
- Kandhari, K.; Agraval, H.; Sharma, A.; Yadav, U.C.S.; Singh, R.P. Flavonoids and Cancer Stem Cells Maintenance and Growth. In Functional Food and Human Health; Rani, V., Yadav, U.C.S., Eds.; Springer: Singapore, 2018; pp. 587–622. [Google Scholar] [CrossRef]
- Lazer, L.M.; Kesavan, Y.; Gor, R.; Ramachandran, I.; Pathak, S.; Narayan, S.; Anbalagan, M.; Ramalingam, S. Targeting Colon Cancer Stem Cells Using Novel Doublecortin like Kinase 1 Antibody Functionalized Folic Acid Conjugated Hesperetin Encapsulated Chitosan Nanoparticles. Colloids Surf. B Biointerfaces 2022, 217, 112612. [Google Scholar] [CrossRef] [PubMed]
- Negrichi, S.; Taleb, S. Genetic, Environmental, and Dietary Risk Factors of Colorectal Cancer: A Case—Control Study in the Algerian East. In Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions, 2nd ed.; Ksibi, M., Ghorbal, A., Chakraborty, S., Chaminé, H.I., Barbieri, M., Guerriero, G., Hentati, O., Negm, A., Lehmann, A., Römbke, J., et al., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 2395–2401. [Google Scholar]
- Jaaks, P.; Coker, E.A.; Vis, D.J.; Edwards, O.; Carpenter, E.F.; Leto, S.M.; Dwane, L.; Sassi, F.; Lightfoot, H.; Barthorpe, S.; et al. Effective Drug Combinations in Breast, Colon and Pancreatic Cancer Cells. Nature 2022, 603, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Darroudi, M.; Gholami, M.; Rezayi, M.; Khazaei, M. An Overview and Bibliometric Analysis on the Colorectal Cancer Therapy by Magnetic Functionalized Nanoparticles for the Responsive and Targeted Drug Delivery. J. Nanobiotechnol. 2021, 19, 399. [Google Scholar] [CrossRef]
- Homayun, B.; Lin, X.; Choi, H.J. Challenges and Recent Progress in Oral Drug Delivery Systems for Biopharmaceuticals. Pharmaceutics 2019, 11, 129. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Xiu, Q.; Huang, Y.; Troyer, Z.; Li, B.; Zheng, L. Plant-Derived Vesicle-Like Nanoparticles as Promising Biotherapeutic Tools: Present and Future. Adv. Mater. 2023, 35, e207826. [Google Scholar] [CrossRef]
- Heya, M.S.; Cordero-Díaz, A.; Galindo-Rodríguez, S.A.; Verde-Star, M.J.; Sánchez-García, E.; Villarreal-Villarreal, J.P.; Guillén-Meléndez, G.A. Overcoming Tumor and Mucosal Barriers through Active-Loaded Nanocarriers: Nanoparticles and Exosomes. Appl. Nanosci. 2022, 13, 4485–4495. [Google Scholar] [CrossRef]
- Knight, F.C.; Gilchuk, P.; Kumar, A.; Becker, K.W.; Sevimli, S.; Jacobson, M.E.; Suryadevara, N.; Wang-Bishop, L.; Boyd, K.L.; Crowe, J.E.; et al. Mucosal Immunization with a PH-Responsive Nanoparticle Vaccine Induces Protective CD8+ Lung-Resident Memory T Cells. ACS Nano 2019, 13, 10939–10960. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhao, Y.; Cui, Y.; Zhao, Q.; Zhang, Q.; Musetti, S.; Kinghorn, K.A.; Wang, S. Overcoming Multiple Gastrointestinal Barriers by Bilayer Modified Hollow Mesoporous Silica Nanocarriers. Acta Biomater. 2018, 65, 405–416. [Google Scholar] [CrossRef] [PubMed]
- Boegh, M.; Nielsen, H.M. Mucus as a Barrier to Drug Delivery—Understanding and Mimicking the Barrier Properties. Basic Clin. Pharmacol. Toxicol. 2015, 116, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Mesas, C.; Quiñonero, F.; Revueltas, F.; Cabeza, L.; Perazzoli, G.; Prados, J. Plant-Mediated Inorganic Nanoparticles for Anti-Tumor Therapy in Colorectal Cancer: A Systematic Review. Appl. Sci. 2023, 13, 10156. [Google Scholar] [CrossRef]
- Scheetz, L.; Park, K.S.; Li, Q.; Lowenstein, P.R.; Castro, M.G.; Schwendeman, A.; Moon, J.J. Engineering Patient-Specific Cancer Immunotherapies. Nat. Biomed. Eng. 2019, 3, 768–782. [Google Scholar] [CrossRef] [PubMed]
- Brar, B.; Ranjan, K.; Palria, A.; Kumar, R.; Ghosh, M.; Sihag, S.; Minakshi, P. Nanotechnology in Colorectal Cancer for Precision Diagnosis and Therapy. Front. Nanotechnol. 2021, 3, 699266. [Google Scholar] [CrossRef]
- Roy, R.; Tiwari, S.P.; Yadav, R.; Sharma, S. Role of Nanoparticles in Colorectal Cancer. J. Pharm. Negat. Results 2023, 14, 2029–2032. [Google Scholar]
- Sousa, A.R.; Oliveira, M.J.; Sarmento, B. Impact of CEA-Targeting Nanoparticles for Drug Delivery in Colorectal Cancer. J. Pharmacol. Exp. Ther. 2019, 370, 657–670. [Google Scholar] [CrossRef]
- Krasteva, N.; Georgieva, M. Promising Therapeutic Strategies for Colorectal Cancer Treatment Based on Nanomaterials. Pharmaceutics 2022, 14, 1213. [Google Scholar] [CrossRef]
- AbouAitah, K.; Stefanek, A.; Higazy, I.M.; Janczewska, M.; Swiderska-Sroda, A.; Chodara, A.; Wojnarowicz, J.; Szałaj, U.; Shahein, S.A.; Aboul-Enein, A.M.; et al. Effective Targeting of Colon Cancer Cells with Piperine Natural Anticancer Prodrug Using Functionalized Clusters of Hydroxyapatite Nanoparticles. Pharmaceutics 2020, 12, 70. [Google Scholar] [CrossRef] [PubMed]
- Spencer, D.S.; Puranik, A.S.; Peppas, N.A. Intelligent Nanoparticles for Advanced Drug Delivery in Cancer Treatment. Bone 2008, 23, 84–92. [Google Scholar] [CrossRef]
- Dai, Q.; Wilhelm, S.; Ding, D.; Syed, A.; Sindhwani, S.; Zhang, Y.; Chen, Y.; MacMillan, P.; Chan, W. Quantifying the Ligand-Coated Nanoparticle Delivery to Cancer Cells in Solid Tumors. ACS Nano 2018, 12, 8423–8435. [Google Scholar] [CrossRef]
Chemotherapy Agents | Drug Structures | Disadvantages |
---|---|---|
Doxorubicin | It is associated with cardiac side effects; the most common drawback is the development of heart failure. | |
Oxaliplatin | Side effect profile of oxaliplatin regimens. | |
Irinotecan | Acquired resistance to irinotecan in patients with advanced CC is still a major clinical issue. | |
Cisplatin | Its toxicity and acquired resistance limit its clinical applicability. | |
5-Fluorouracil (5-FU) | The clinical use of 5-FU is limited due to the development of drug resistance. |
Plant | Metabolite | Chemical Structure | Compound Group | Clinical Study Phase | Reference |
---|---|---|---|---|---|
Curcuma longa | Curcumin | Polyphenol | Phase II and III | [84] | |
Camellia sinensis | Epigallocatechin gallate (EGCG) | Flavonoid | Phase I and II | [85] | |
Panax ginseng | Ginsenosides | Triterpene saponins | Phase I and II | [86] | |
Brassica oleracea | Sulforaphane | Isothiocyanate | Phase II | [87,88] | |
Allium sativum | Allicin | Organosulfur compound | Preclinical, Phase I | [89] | |
Morinda citrifolia | Damnacanthal | Anthraquinones | Preclinical | [90] | |
Uncaria tomentosa | Pentacyclic oxindole alkaloids | Alkaloids | Preclinical | [91] | |
Zingiber officinale | Gingerol | Phenols | Preclinical, Phase I | [92] | |
Silybum marianum | Silymarin | Flavonolignan | Phase I and II | [93] | |
Annona muricata | Acetogenins | Annonaceae | Preclinical | [94] | |
Salix alba | Salicylic acid | Phenols | Preclinical | [95] | |
Aloe vera | Glucomannan | Polysaccharide | Preclinical | [96] |
Types of Nanoparticles | Structural Components | Possible Advantages | Possible Disadvantages | References |
---|---|---|---|---|
Metallic Nanoparticles | Silver, gold, silica, iron oxide, etc. | Highly toxic to cancer cells; high contact surface due to its nanometric size; ease of interaction with cellular systems due to its size and surface charge; moldability of its shape. | Induce apoptosis in healthy cells, non-specific release, etc. | [105] |
Liposomes, Micelles | Phospholipids and cholesterol | Accumulation in tumor cells; ability to incorporate hydrophilic or hydrophobic substances; the phospholipid bilayer facilitates interaction with cell membranes; low toxicity in healthy cells. | Limited physicochemical stability, etc. | [106] |
Polymeric Nanoparticles | Polymers | Capacity to incorporate hydrophilic or hydrophobic substances; controlled release of the active ingredient; facilitating interaction at the cellular level; pH-dependent; capacity to bind ligands to the surface to offer specific delivery of the active ingredient. | Variability in loading kinetics, stability problems during storage, are only spherical in shape, etc. | [102,106,108] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the Österreichische Pharmazeutische Gesellschaft. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Cabanillas Lomelí, M.; Tijerina-Sáenz, A.; García-Hernández, D.G.; Hernández-Salazar, M.; Salas García, R.; González-Llerena, J.L.; Verde-Star, M.J.; Cordero-Díaz, A.; Heya, M.S. Colon Cancer: Overview on Improved Therapeutic Potential of Plant-Based Compounds Using Nanotechnology. Sci. Pharm. 2025, 93, 1. https://doi.org/10.3390/scipharm93010001
López-Cabanillas Lomelí M, Tijerina-Sáenz A, García-Hernández DG, Hernández-Salazar M, Salas García R, González-Llerena JL, Verde-Star MJ, Cordero-Díaz A, Heya MS. Colon Cancer: Overview on Improved Therapeutic Potential of Plant-Based Compounds Using Nanotechnology. Scientia Pharmaceutica. 2025; 93(1):1. https://doi.org/10.3390/scipharm93010001
Chicago/Turabian StyleLópez-Cabanillas Lomelí, Manuel, Alexandra Tijerina-Sáenz, David Gilberto García-Hernández, Marcelo Hernández-Salazar, Rogelio Salas García, José Luis González-Llerena, María Julia Verde-Star, Anthonny Cordero-Díaz, and Michel Stéphane Heya. 2025. "Colon Cancer: Overview on Improved Therapeutic Potential of Plant-Based Compounds Using Nanotechnology" Scientia Pharmaceutica 93, no. 1: 1. https://doi.org/10.3390/scipharm93010001
APA StyleLópez-Cabanillas Lomelí, M., Tijerina-Sáenz, A., García-Hernández, D. G., Hernández-Salazar, M., Salas García, R., González-Llerena, J. L., Verde-Star, M. J., Cordero-Díaz, A., & Heya, M. S. (2025). Colon Cancer: Overview on Improved Therapeutic Potential of Plant-Based Compounds Using Nanotechnology. Scientia Pharmaceutica, 93(1), 1. https://doi.org/10.3390/scipharm93010001