Influence of Running Surface Using Advanced Footwear Technology Spikes on Middle- and Long-Distance Running Performance Measures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Spike Characteristics
2.3. Experimental Design
2.4. Procedure
2.4.1. Experiment 1: Efforts at Self-Perceived 3000 m Race Pace
2.4.2. Experiment 2: Running Economy Protocol at Moderate Intensity
2.5. Measurements
2.6. Statistical Analysis
3. Results
3.1. Efforts at Self-Perceived 3000 m Race Pace
3.2. Running Economy Protocol at Moderate Intensity
4. Discussion
4.1. Differences Between Spike Conditions
4.2. Differences Between Surface Conditions
4.3. Practical Application
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kram, R.; Taylor, C.R. Energetics of running: A new perspective. Nature 1990, 346, 265–267. [Google Scholar] [CrossRef] [PubMed]
- Kerdok, A.E.; Biewener, A.A.; McMahon, T.A.; Weyand, P.G.; Herr, H.M. Energetics and mechanics of human running on surfaces of different stiffnesses. J. Appl. Physiol. 2002, 92, 469–478. [Google Scholar] [CrossRef] [PubMed]
- Tung, K.D.; Franz, J.R.; Kram, R. A Test of the Metabolic Cost of Cushioning Hypothesis during Unshod and Shod Running. Med. Sci. Sports Exerc. 2014, 46, 324–329. [Google Scholar] [CrossRef] [PubMed]
- Hoogkamer, W.; Kipp, S.; Frank, J.H.; Farina, E.M.; Luo, G.; Kram, R. A Comparison of the Energetic Cost of Running in Marathon Racing Shoes. Sports Med. 2018, 48, 1009–1019. [Google Scholar] [CrossRef]
- Bertschy, M.; Rodrigo-Carranza, V.; Wilkie, E.W.C.; Healey, L.A.; Noble, J.; Albert, W.J.; Hoogkamer, W. Self-perceived middle-distance race pace is faster in Advanced Footwear Technology spikes. bioRxiv 2024. [Google Scholar] [CrossRef]
- Rodrigo-Carranza, V.; Muñoz de la Cruz, V.; Hoogkamer, W. Influence of advanced footwear technology spikes on middle- and long-distance running performance measures in trained runners. bioRxiv 2024. [Google Scholar] [CrossRef]
- Needles, B.J.; Grabowski, A.M. Does Running Speed affect the Performance Improvements Experienced by Elite Distance Runners Wearing Advanced Footwear Technology Spikes? J. Appl. Physiol. 2024; in press. [Google Scholar] [CrossRef]
- Moore, I.S. Is There an Economical Running Technique? A Review of Modifiable Biomechanical Factors Affecting Running Economy. Sports Med. 2016, 46, 793–807. [Google Scholar] [CrossRef]
- McKay, A.K.A.; Stellingwerff, T.; Smith, E.S.; Martin, D.T.; Mujika, I.; Goosey-Tolfrey, V.L.; Sheppard, J.; Burke, L.M. Defining Training and Performance Caliber: A Participant Classification Framework. Int. J. Sports Physiol. Perform. 2022, 17, 317–331. [Google Scholar] [CrossRef]
- Rodriguez-Barbero, S.; Gonzalez-Mohino, F.; Gonzalez Rave, J.M.; Rodrigo-Carranza, V.; Juarez Santos-Garcia, D. Reliability and validity of three portable devices for quantifying spatiotemporal parameters in runners of different athletic abilities during treadmill running. Sports Biomech. 2024, 1–16. [Google Scholar] [CrossRef]
- Imbach, F.; Candau, R.; Chailan, R.; Perrey, S. Validity of the Stryd Power Meter in Measuring Running Parameters at Submaximal Speeds. Sports 2020, 8, 103. [Google Scholar] [CrossRef]
- Péronnet, F.; Massicotte, D. Table of nonprotein respiratory quotient: An update. Can J. Sport Sci. 1991, 16, 23–29. [Google Scholar]
- Lindorfer, J.; Kröll, J.; Schwameder, H. Comfort assessment of running footwear: Does assessment type affect inter-session reliability? Eur. J. Sport Sci. 2019, 19, 177–185. [Google Scholar] [CrossRef]
- Cohen, J. Statistical power analysis. Curr. Dir. Psychol. Sci. 1992, 1, 98–101. [Google Scholar] [CrossRef]
- Kram, R. Ergogenic distance running shoes: How do we think they work and how can we understand them better? Footwear Sci. 2022, 14, 139–146. [Google Scholar] [CrossRef]
- Rodrigo Carranza, V. Running footwear matters: Decoding the influence of running shoe characteristics on physiology, biomechanics and running performance (PhD Academy Award). Br. J. Sports Med. 2023, 57, 1581–1582. [Google Scholar] [CrossRef]
- Roy, J.P.; Stefanyshyn, D.J. Shoe midsole longitudinal bending stiffness and running economy, joint energy, and EMG. Med. Sci. Sports Exerc. 2006, 38, 562–569. [Google Scholar] [CrossRef]
- Willwacher, S.; König, M.; Braunstein, B.; Goldmann, J.P.; Brüggemann, G.P. The gearing function of running shoe longitudinal bending stiffness. Gait Posture 2014, 40, 386–390. [Google Scholar] [CrossRef]
- Beck, O.N.; Trejo, L.H.; Schroeder, J.N.; Franz, J.R.; Sawicki, G.S. Shorter muscle fascicle operating lengths increase the metabolic cost of cyclic force production. J. Appl. Physiol. (1985) 2022, 133, 524–533. [Google Scholar] [CrossRef]
- Joubert, D.P.; Oehlert, G.M.; Jones, E.J.; Burns, G.T. Comparative Effects of Advanced Footwear Technology in Track Spikes and Road-Racing Shoes on Running Economy. Int. J. Sports Physiol. Perform. 2024, 19, 705–711. [Google Scholar] [CrossRef]
- Barnes, K.R.; Juzwiak, J. Running Economy of Highly-Trained Distance Runners in Marathon Racing Shoes compared to Track Spikes. Med. Sci. Sports Exerc. 2019, 51, 193. [Google Scholar] [CrossRef]
- Hébert-Losier, K.; Finlayson, S.J.; Driller, M.W.; Dubois, B.; Esculier, J.-F.; Beaven, C.M. Metabolic and performance responses of male runners wearing 3 types of footwear: Nike Vaporfly 4%, Saucony Endorphin racing flats, and their own shoes. J. Sport Health Sci. 2022, 11, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Melero-Lozano, M.Á.; San-Antolín, M.; Vicente-Campos, D.; Chicharro, J.L.; Becerro-de-Bengoa-Vallejo, R.; Losa-Iglesias, M.E.; Rodríguez-Sanz, D.; Calvo-Lobo, C. Influence of Footwear Features on Oxygen Consumption and Running Economy: A Review. Appl. Sci. 2023, 13, 23. [Google Scholar] [CrossRef]
- Rodrigo-Carranza, V.; González-Mohíno, F.; Santos Del Cerro, J.; Santos-Concejero, J.; González-Ravé, J.M. Influence of advanced shoe technology on the top 100 annual performances in men’s marathon from 2015 to 2019. Sci. Rep. 2021, 11, 22458. [Google Scholar] [CrossRef] [PubMed]
- Rodrigo-Carranza, V.; González-Mohíno, F.; Santos-Concejero, J.; González-Ravé, J.M. Impact of advanced footwear technology on elite men’s in the evolution of road race performance. J. Sports Sci. 2022, 40, 2661–2668. [Google Scholar] [CrossRef] [PubMed]
- Joyner, M.J.; Coyle, E.F. Endurance exercise performance: The physiology of champions. J. Physiol. 2008, 586, 35–44. [Google Scholar] [CrossRef]
- Ruiz-Alias, S.A.; Pérez-Castilla, A.; Soto-Hermoso, V.M.; García-Pinillos, F. Influence of the World Athletics Stack Height Regulation on Track Running Performance. J. Strength Cond. Res. 2023, 37, 2260–2266. [Google Scholar] [CrossRef]
- Ruiz-Alias, S.A.; Pérez-Castilla, A.; Soto-Hermoso, V.M.; García-Pinillos, F. The Effect of Using Marathon Shoes or Track Spikes on Neuromuscular Fatigue caused by a Long-distance Track Training Session. Int. J. Sports Med. 2023, 44, 976–982. [Google Scholar] [CrossRef]
- Ortega, J.A.; Healey, L.A.; Swinnen, W.; Hoogkamer, W. Energetics and Biomechanics of Running Footwear with Increased Longitudinal Bending Stiffness: A Narrative Review. Sports Med. 2021, 51, 873–894. [Google Scholar] [CrossRef]
- Hébert-Losier, K.; Knighton, H.; Finlayson, S.J.; Dubois, B.; Esculier, J.-F.; Beaven, C.M. Biomechanics and subjective measures of recreational male runners in three shoes running outdoors: A randomised crossover study. Footwear Sci. 2024, 16, 13–23. [Google Scholar] [CrossRef]
Characteristics | PEBA + Plate | PEBA |
---|---|---|
Carbon plate | Full length | No |
Midsole foam | PEBA | PEBA |
Mass (g) | 163 | 142 |
Stiffness (N/mm) | 155.6 | 152.1 |
Energy loss (kN/mm) | 1.0 | 1.1 |
Energy return (J) | 5.7 | 3.7 |
Resistance (%) | 83.7 | 82.3 |
Midsole thickness (mm) | 24.5 | 19.5 |
Repeated-Measures ANOVA | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Track | Grass | Surface | Spike | Surface × Spike | ||||||
PEBA | PEBA + Plate | PEBA | PEBA + Plate | |||||||
Variables | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | p | η2 | p | η2 | p | η2 |
Performance | ||||||||||
Speed (m/s) | 5.86 ± 0.513 | 5.90 ± 0.52 | 5.70 ± 0.50 | 5.78 ± 0.50 | 0.002 * | 0.516 | 0.049 * | 0.249 | 0.469 | 0.038 |
Spatiotemporal | ||||||||||
Step Frequency (step/min) | 194.16 ± 12.42 | 194.60 ± 13.57 | 193.00 ± 12.59 | 193.30 ± 14.32 | 0.104 | 0.178 | 0.551 | 0.026 | 0.894 | 0.001 |
Contact Time (s) | 0.170 ± 0.017 | 0.165 ± 0.011 | 0.166 ± 0.080 | 0.165 ± 0.097 | 0.536 | 0.028 | 0.18 | 0.125 | 0.322 | 0.070 |
Perception | ||||||||||
Performance (0–100) | 72.90 ± 17.86 | 79.03 ± 17.70 | 71.03 ± 16.33 | 76.90 ± 18.66 | 0.248 | 0.094 | 0.119 | 0.165 | 0.908 | 0.001 |
Comfort (0–100) | 73.33 ± 21.75 | 80.07 ± 17.24 | 74.20 ± 18.18 | 78.90 ± 20.01 | 0.95 | 0.000 | 0.054 | 0.241 | 0.615 | 0.019 |
ANOVA | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Track | Grass | Surface | Spike | Surface × Spike | ||||||
PEBA | PEBA + Plate | PEBA | PEBA + Plate | |||||||
Variables | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | p | η2 | p | η2 | p | η2 |
Metabolic | ||||||||||
Energy Cost (W/kg) | 18.99 ± 2.38 | 19.07 ± 2.24 | 20.01 ± 2.57 | 19.81 ± 2.93 | 0.030 * | 0.391 | 0.534 | 0.040 | 0.435 | 0.062 |
RER | 0.894 ± 0.050 | 0.884 ± 0.051 | 0.926 ± 0.067 | 0.926 ± 0.061 | <0.001 # | 0.719 | 0.041 * | 0.355 | 0.176 | 0.175 |
Cardiovascular | ||||||||||
Heart rate (bpm) | 162.91 ± 7.82 | 163.26 ± 8.74 | 168.48 ± 7.86 | 169.11 ± 7.83 | 0.002 # | 0.616 | 0.175 | 0.176 | 0.522 | 0.042 |
Spatiotemporal | ||||||||||
Step frequency (step/min) | 172.27 ± 5.89 | 170.77 ± 6.23 | 174.54 ± 7.35 | 174.00 ± 6.70 | <0.001 # | 0.688 | 0.002 * | 0.650 | 0.077 | 0.280 |
Contact time (s) | 0.189 ± 0.015 | 0.188 ± 0.013 | 0.188 ± 0.011 | 0.191 ± 0.014 | 0.617 | 0.026 | 0.659 | 0.020 | 0.371 | 0.081 |
Perception | ||||||||||
Performance (0–100) | 70.00 ± 11.61 | 78.25 ± 9.65 | 70.50 ± 10.92 | 76.50 ± 14.15 | 0.735 | 0.013 | <0.001 # | 0.754 | 0.710 | 0.016 |
Comfort (0–100) | 70.25 ± 8.20 | 77.25 ± 14.88 | 69.50 ± 14.03 | 76.75 ± 16.83 | 0.858 | 0.004 | 0.049 * | 0.360 | 0.952 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alda-Blanco, A.; Rodríguez-Barbero, S.; Rodrigo-Carranza, V.; Valero, F.; Chico, P.; González-Mohíno, F. Influence of Running Surface Using Advanced Footwear Technology Spikes on Middle- and Long-Distance Running Performance Measures. Sports 2024, 12, 329. https://doi.org/10.3390/sports12120329
Alda-Blanco A, Rodríguez-Barbero S, Rodrigo-Carranza V, Valero F, Chico P, González-Mohíno F. Influence of Running Surface Using Advanced Footwear Technology Spikes on Middle- and Long-Distance Running Performance Measures. Sports. 2024; 12(12):329. https://doi.org/10.3390/sports12120329
Chicago/Turabian StyleAlda-Blanco, Alejandro, Sergio Rodríguez-Barbero, Víctor Rodrigo-Carranza, Fernando Valero, Patricia Chico, and Fernando González-Mohíno. 2024. "Influence of Running Surface Using Advanced Footwear Technology Spikes on Middle- and Long-Distance Running Performance Measures" Sports 12, no. 12: 329. https://doi.org/10.3390/sports12120329
APA StyleAlda-Blanco, A., Rodríguez-Barbero, S., Rodrigo-Carranza, V., Valero, F., Chico, P., & González-Mohíno, F. (2024). Influence of Running Surface Using Advanced Footwear Technology Spikes on Middle- and Long-Distance Running Performance Measures. Sports, 12(12), 329. https://doi.org/10.3390/sports12120329