Green Infrastructure and Ecological Corridors: A Regional Study Concerning Sardinia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Definition of a Taxonomy to Identify a Regional GI
- the 2008 Land Cover Map elaborated by the Sardinian regional administration converted into a raster map;
- a list of 10 threats identified through an analysis of Standard Data Forms of the Sardinian N2Ss; for each threat we assign a weight and decay distance, assessed on the basis of experts’ judgments and a decay function (Table 1); to this end, five experts (with backgrounds in natural sciences, biology, agricultural sciences, and geology) in biodiversity, environmental impact assessment and appropriate assessment under the Habitats directive were delivered a questionnaire;
- a raster map representing the spatial layout of each threat;
- a vector map that shows accessibility to sources of degradation, conceived as protection that legal institutions provide against threats, where the higher the level of protection, the lower the value of accessibility. We identify three levels of protection: regional and national parks (value = 0.2); N2Ss (value = 0.5); the remaining study area (value = 1);
- a matrix of habitat types starting from land covers, and, for each habitat type, its sensitivity to each threat. Values are identified through an expert-based approach [27] (Table A3 in Appendix A); and,
- a “half-saturation constant”, set at the tool’s default value.
2.2. Identification of Ecological Corridors through Connectivity
2.3. Suitability of Ecological Corridors to Be Included into a Regional Green Infrastructure
- a binary variable (ECGI), concerning land patches, which equals 1 if a patch, located in an EC, is included into the regional GI as per the taxonomy, whose methodology for defining is explained in the Section 2.1, or 0 otherwise; and,
- three explanatory variables (C_Val, N_Val, R_Val) concerning the values of conservation, nature and recreation, that is the features of a land patch which are taken into consideration to decide over its inclusion in the regional GI. Descriptive statistics are shown in Table 2.
3. Results
3.1. Definition of a Taxonomy to Identify the Regional GI
3.2. Identification of Ecological Corridors
3.3. Suitability of Parcels Located in ECs to Be Included into the Regional GI
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
Habitat Code | Habitat Denomination | No. of Standard Data Forms | Priority Habitat | Knowledge (at the Regional Level, Year 2014) |
---|---|---|---|---|
1110 | Sandbanks which are slightly covered by sea water all the time | 42 | No | Poor |
1120 | Posidonia beds (Posidonion oceanicae) | 67 | Yes | Sufficient |
1130 | Estuaries | 3 | No | Poor |
1150 | Coastal lagoons | 48 | Yes | Insufficient |
1160 | Large shallow inlets and bays | 36 | No | Sufficient |
1170 | Reefs | 39 | No | Poor |
1210 | Annual vegetation of drift lines | 57 | No | Insufficient |
1240 | Vegetated sea cliffs of the Mediterranean coasts with endemic Limonium spp. | 53 | No | Good |
1310 | Salicornia and other annuals colonising mud and sand | 27 | No | Sufficient |
1410 | Mediterranean salt meadows (Juncetalia maritimi) | 52 | No | Sufficient |
1420 | Mediterranean and thermo-Atlantic halophilous scrubs (Sarcocornetea fruticosi) | 53 | No | Good |
1430 | Halo-nitrophilous scrubs (Pegano-Salsoletea) | 12 | No | Poor |
1510 | Mediterranean salt steppes (Limonietalia) | 39 | Yes | Insufficient |
2110 | Embryonic shifting dunes | 46 | No | Insufficient |
2120 | Shifting dunes along the shoreline with Ammophila arenaria (white dunes) | 41 | No | Sufficient |
2210 | Crucianellion maritimae fixed beach dunes | 47 | No | Sufficient |
2230 | Malcolmietalia dune grasslands | 41 | No | Insufficient |
2240 | Brachypodietalia dune grasslands with annuals | 24 | No | Poor |
2250 | Coastal dunes with Juniperus spp. | 41 | Yes | Sufficient |
2260 | Cisto-Lavenduletalia dune sclerophyllous scrubs | 9 | No | Poor |
2270 | Wooded dunes with Pinus pinea and/or Pinus pinaster | 24 | Yes | Sufficient |
3120 | Oligotrophic waters containing very few minerals generally on sandy soils of the West Mediterranean with Isoetes spp. | 6 | No | Poor |
3130 | Oligotrophic to mesotrophic standing waters with vegetation of the Littorelletea uniflorae and/or IsoetoNanojuncetea | 16 | No | Insufficient |
3150 | Natural eutrophic lakes with Magnopotamion- or Hydrocharition-type vegetation | 6 | No | Poor |
3170 | Mediterranean temporary ponds | 18 | Yes | Poor |
3280 | Constantly flowing Mediterranean rivers with Paspalo-Agrostidion species and hanging curtains of Salix and Populus alba | 8 | No | Poor |
3290 | Intermittently flowing Mediterranean rivers of the Paspalo-Agrostidion | 5 | No | Poor |
4090 | Endemic oro-Mediterranean heaths with gorse | 3 | No | Sufficient |
5210 | Arborescent matorral with Juniperus spp. | 53 | No | Good |
5230 | Arborescent matorral with Laurus nobilis | 10 | Yes | Insufficient |
5320 | Low formations of Euphorbia close to cliffs | 25 | No | Insufficient |
5330 | Thermo-Mediterranean and pre-desert scrub | 79 | No | Insufficient |
5410 | West Mediterranean clifftop phryganas (Astragalo-Plantaginetum subulatae) | 8 | No | Poor |
5430 | Endemic phryganas of the Euphorbio-Verbascion | 37 | No | Insufficient |
6210 | Semi-natural dry grasslands and scrubland facies on calcareous substrates(Festuco-Brometalia) (important orchid sites) | 3 | Yes | Poor |
6220 | Pseudo-steppe with grasses and annuals of the Thero-Brachypodietea | 68 | Yes | Insufficient |
6310 | Dehesas with evergreen Quercus spp. | 18 | No | Sufficient |
6420 | Mediterranean tall humid herb grasslands of the Molinio-Holoschoenion | 4 | No | Poor |
7220 | Petrifying springs with tufa formation (Cratoneurion) | 1 | Yes | Poor |
8130 | Western Mediterranean and thermophilous scree | 1 | No | Poor |
8210 | Calcareous rocky slopes with chasmophytic vegetation | 11 | No | Insufficient |
8220 | Siliceous rocky slopes with chasmophytic vegetation | 4 | No | Insufficient |
8310 | Caves not open to the public | 17 | No | Sufficient |
8330 | Submerged or partially submerged sea caves | 15 | No | Insufficient |
91E0 | Fluvial forests with Alnus glutinosa and Fraxinus excelsior (Alno-Padion, Alnion incanae, Salicion albae) | 16 | Yes | Insufficient |
9260 | Castanea sativa wood | 1 | No | Insufficient |
92A0 | Salix alba and Populus alba galleries | 13 | No | Sufficient |
92D0 | Southern riparian galleries and thickets (NerioTamaricetea and Securinegion tinctoriae) | 51 | No | Insufficient |
9320 | Olea and Ceratonia forests | 41 | No | Sufficient |
9330 | Quercus suber forests | 22 | No | Sufficient |
9340 | Quercus ilex and Quercus rotundifolia forests | 52 | No | Insufficient |
9380 | Forests of Ilex aquifolium | 6 | No | Sufficient |
9540 | Mediterranean pine forests with endemic Mesogean pines | 8 | No | Poor |
9560 | Endemic forests with Juniperus spp. | 1 | Yes | Poor |
9580 | Mediterranean Taxus baccata woods | 9 | Yes | Sufficient |
Site Code | No. of Negative Threats | Site Code | No. of Negative Threats | Site Code | No. of Negative Threats |
---|---|---|---|---|---|
ITB010001 | 5 | ITB023049 | 2 | ITB041106 | 9 |
ITB010002 | 8 | ITB023050 | 6 | ITB041111 | 4 |
ITB010003 | 23 | ITB030032 | 20 | ITB041112 | 6 |
ITB010004 | 9 | ITB030034 | 11 | ITB042207 | 3 |
ITB010006 | 3 | ITB030035 | 11 | ITB042208 | 1 |
ITB010007 | 9 | ITB030036 | 6 | ITB042209 | 2 |
ITB010008 | 14 | ITB030037 | 8 | ITB042210 | 1 |
ITB010009 | 3 | ITB030038 | 14 | ITB042216 | 15 |
ITB010011 | 26 | ITB031104 | 16 | ITB042218 | 4 |
ITB010042 | 8 | ITB032219 | 20 | ITB042220 | 12 |
ITB010043 | 6 | ITB032228 | 17 | ITB042223 | 9 |
ITB010082 | 8 | ITB032229 | 15 | ITB042225 | 2 |
ITB011102 | 9 | ITB032239 | 3 | ITB042226 | 4 |
ITB011109 | 11 | ITB032240 | 3 | ITB042230 | 10 |
ITB011155 | 21 | ITB034004 | 2 | ITB042231 | 3 |
ITB012211 | 4 | ITB034006 | 6 | ITB042233 | 1 |
ITB012212 | 2 | ITB034007 | 5 | ITB042234 | 10 |
ITB012213 | 1 | ITB040017 | 10 | ITB042236 | 6 |
ITB013011 | 1 | ITB040018 | 16 | ITB042237 | 6 |
ITB013012 | 8 | ITB040019 | 7 | ITB042241 | 4 |
ITB013018 | 3 | ITB040020 | 22 | ITB042242 | 2 |
ITB013019 | 11 | ITB040021 | 12 | ITB042243 | 3 |
ITB013044 | 22 | ITB040022 | 12 | ITB042247 | 10 |
ITB020012 | 9 | ITB040023 | 9 | ITB042250 | 5 |
ITB020013 | 11 | ITB040024 | 7 | ITB042251 | 2 |
ITB020014 | 9 | ITB040025 | 16 | ITB043025 | 4 |
ITB020015 | 5 | ITB040026 | 3 | ITB043026 | 3 |
ITB020040 | 18 | ITB040027 | 19 | ITB043027 | 3 |
ITB021101 | 6 | ITB040028 | 6 | ITB043028 | 4 |
ITB021103 | 8 | ITB040029 | 21 | ITB043032 | 15 |
ITB021107 | 2 | ITB040031 | 3 | ITB043035 | 7 |
ITB021156 | 8 | ITB040051 | 7 | ITB043054 | 10 |
ITB022212 | 13 | ITB040071 | 19 | ITB043055 | 15 |
ITB022214 | 18 | ITB040081 | 3 | ITB044002 | 7 |
ITB022215 | 4 | ITB041105 | 10 | ITB044009 | 7 |
Landcover Type | Habitat Scores | Sens_T01 | Sens_T02 | Sens_T03 | Sens_T04 | Sens_T05 | Sens_T06 | Sens_T07 | Sens_T08 | Sens_T09 | Sens_T10 |
---|---|---|---|---|---|---|---|---|---|---|---|
111 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
112 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
121 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
122 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
123 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
124 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
131 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
132 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
133 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
141 | 1 | 0 | 0 | 0 | 0 | 0 | 0.5 | 0.2 | 0.5 | 1 | 1 |
142 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
143 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
211 | 0.5 | 0 | 0.5 | 0 | 0 | 0 | 0.5 | 0 | 0.5 | 0.5 | 0.5 |
212 | 0.5 | 0 | 0.5 | 0 | 0 | 0 | 0.5 | 0 | 0.5 | 0.5 | 0.5 |
221 | 0.5 | 0 | 0.5 | 0 | 0 | 0 | 0.5 | 0 | 0.5 | 0.5 | 0.5 |
222 | 0.5 | 0 | 0.5 | 0 | 0 | 0 | 0.5 | 0 | 0.5 | 0.5 | 0.5 |
223 | 0.5 | 0 | 0.5 | 0 | 0 | 0 | 0.5 | 0 | 0.5 | 0.5 | 0.5 |
224 | 1 | 1 | 1 | 0.5 | 0 | 1 | 1 | 0.5 | 1 | 1 | 1 |
231 | 1 | 1 | 0.5 | 0 | 0 | 0.5 | 1 | 0.2 | 0.5 | 1 | 1 |
241 | 0.5 | 0 | 0.5 | 0 | 0 | 0 | 0.5 | 0 | 0.5 | 0.5 | 0.5 |
242 | 0.5 | 0 | 0.5 | 0 | 0 | 0 | 0.5 | 0 | 0.5 | 0.5 | 0.5 |
243 | 1 | 0.5 | 1 | 0.5 | 0 | 1 | 1 | 0.2 | 1 | 1 | 1 |
244 | 1 | 0.5 | 0.5 | 1 | 0 | 1 | 1 | 0.2 | 1 | 1 | 1 |
311 | 1 | 1 | 0.5 | 1 | 0 | 1 | 1 | 0.2 | 0.5 | 1 | 1 |
312 | 1 | 1 | 0.5 | 1 | 0 | 1 | 1 | 0.2 | 0.5 | 1 | 1 |
313 | 1 | 1 | 0.5 | 1 | 0 | 1 | 1 | 0.2 | 0.5 | 1 | 1 |
321 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0.5 | 0.5 | 1 | 1 |
322 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0.5 | 1 | 1 | 1 |
323 | 1 | 1 | 1 | 0.5 | 0 | 1 | 1 | 0.5 | 1 | 1 | 1 |
324 | 1 | 1 | 1 | 0.5 | 0 | 1 | 1 | 0.5 | 1 | 1 | 1 |
331 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0.5 | 1 | 1 | 0 |
332 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0.2 | 1 | 1 | 0 |
333 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0.5 | 1 | 1 | 1 |
411 | 1 | 1 | 0 | 0 | 1 | 0.5 | 1 | 0.5 | 1 | 1 | 0 |
421 | 1 | 0.5 | 0 | 0 | 1 | 0.5 | 1 | 0.5 | 1 | 1 | 0 |
422 | 1 | 0.5 | 0 | 0 | 0 | 0 | 1 | 0.2 | 1 | 1 | 0 |
423 | 1 | 0.5 | 0 | 0 | 0 | 0.5 | 1 | 0.2 | 1 | 1 | 0 |
511 | 1 | 0.5 | 0 | 0 | 0 | 0.5 | 1 | 0.2 | 1 | 1 | 0 |
512 | 1 | 0.5 | 0 | 0 | 0 | 0.5 | 1 | 0.2 | 1 | 1 | 0 |
521 | 1 | 0.5 | 0 | 0 | 1 | 0.5 | 1 | 0.2 | 1 | 1 | 0 |
523 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Type | Plan Implementation Code: Articles | A_Her | |
---|---|---|---|
Environmental assets | Coastal strip | 8, 17, 18, 19, 20 | 1 |
Coves, cliffs and small islands | 8, 17, 18 | 0.8 | |
Sand dunes and beaches | 8, 17, 18 | 0.8 | |
Coastal wetlands | 8, 17, 18 | 0.8 | |
Areas above 900 m | 8, 17, 18 | 0.8 | |
Lakes, reservoirs, wetlands and their 300-m buffers | 8, 17, 18 | 1 | |
Rivers, creeks and their 150-m buffers | 8, 17, 18 | 1 | |
Areas of significant importance for wild animals | 17, 18, 38, 39, 40 | 0.2 | |
Areas of significant importance for plant species | 17, 18, 38, 39, 40 | 0.2 | |
Grottos and caves | 8, 17, 18 | 0.8 | |
Monumental trees | 8, 17, 18 | 0.2 | |
Natural monuments (as per regional law 1989/31) | 8, 17, 18 | 0.5 | |
National parks and marine protected areas | 8, 17, 18 | 0.5 | |
Volcanoes | 8, 17, 18 | 0.5 | |
Historic and cultural assets | Listed buildings and areas (as per art.146 of Decree 42/2004) | 8 | 0.8 |
Listed archaeological heritage | 8, 47 | 1 | |
Archaeological areas subject to building restrictions | 8, 47 | 0.5 | |
Areas with prehistoric, historic, cultural remnants | 8, 47, 48, 49, 50 | 1 | |
Historic districts | 8, 47, 51, 52, 53 | 0.8 | |
Traditional Sardinian farmer’s building complexes | 8, 47, 51, 52, 54 | 0.8 |
References and Notes
- European Commission. Communication from the Commission to the European Parliament, the Council, the Economic and Social Committee and the Committee of the Regions. Green Infrastructure (GI). Enhancing Europe’s Natural Capital. 2013. Available online: http://eur-lex.europa.eu/resource.html?uri=cellar:d41348f2-01d5-4abe-b817-4c73e6f1b2df.0014.03/DOC_1&format=PDF (accessed on 15 March 2018).
- Liquete, C.; Kleeschulte, S.; Dige, G.; Maes, J.; Grizzetti, B.; Olah, B.; Zulian, G. Mapping Green Infrastructure based on ecosystem services and ecological networks: A pan-European case study. Environ. Sci. Policy 2015, 54, 268–280. [Google Scholar] [CrossRef]
- Spanò, M.; Gentile, F.; Davies, C.; Lafortezza, R. The DPSIR Framework in support of green infrastructure planning: A case study in Southern Italy. Land Use Policy 2017, 61, 242–250. [Google Scholar] [CrossRef]
- Garmendia, E.; Apostolopoulou, E.; Adams, W.M.; Bormpoudakis, D. Biodiversity and green infrastructure in Europe: Boundary object or ecological trap? Land Use Policy 2016, 56, 315–319. [Google Scholar] [CrossRef]
- McHarg, I.L. Design with Nature; Natural History Press: New York, NY, USA, 1969. [Google Scholar]
- European Commission. The Multifunctionality of Green Infrastructure. Science for Environment Policy. In-Depth Report. 2012. Available online: http://ec.europa.eu/environment/nature/ecosystems/docs/Green_Infrastructure.pdf (accessed on 15 March 2018).
- Ahern, J. From fail-safe to safe-to-fail. Sustainability and resilience in the new urban world. Landsc. Urban Plan. 2011, 100, 341–343. [Google Scholar] [CrossRef]
- Iojă, C.I.; Grădinaru, S.R.; Onose, D.A.; Vânău, G.O.; Tudor, A.C. The potential of school green areas to improve urban green connectivity and multifunctionality. Urban For. Urban Green. 2014, 13, 704–713. [Google Scholar] [CrossRef]
- Madureira, H.; Andresen, T. Planning for multifunctional urban green infrastructures: Promises and challenges. Urban Des. Int. 2014, 19, 38–49. [Google Scholar] [CrossRef]
- Horwood, K. Green infrastructure: Reconciling urban green space and regional economic development: Lessons learnt from experience in England’s north-west region. Local environment. Int. J. Justice Sustain. 2011, 16, 37–41. [Google Scholar] [CrossRef]
- Taylor, P.D.; Fahrig, L.; Henein, K.; Merriam, G. Connectivity is a vital element of landscape structure. Oikos 1993, 68, 571–573. [Google Scholar] [CrossRef]
- Luque, S.; Saura, S.; Fortin, M.J. Landscape connectivity analysis for conservation: Insights from combining new methods with ecological and genetic data. Landsc. Ecol. 2012, 27, 153–157. [Google Scholar] [CrossRef]
- Taylor, P.D.; Fahrig, L.; With, K.A. Landscape Connectivity. A Return to the Basics. In Connectivity Conservation (Conservation Biology Series No. 14); Crooks, K., Sanjayan, M., Eds.; Cambridge University Press: Cambridge, UK, 2006; pp. 29–43. ISBN 9780511754821. [Google Scholar] [CrossRef]
- Mühlner, S.; Kormann, U.; Schmidt-Entling, M.H.; Herzog, F.; Bailey, D. Structural versus functional habitat connectivity measures to explain bird diversity in fragmented orchards. J. Landsc. Ecol. 2010, 3, 52–64. [Google Scholar] [CrossRef]
- Vogt, P.; Ferrari, J.R.; Lookingbill, T.R.; Gardner, R.H.; Riitters, K.H.; Ostapowicz, K. Mapping functional connectivity. Ecol. Indic. 2009, 9, 64–71. [Google Scholar] [CrossRef]
- Pierik, M.E.; Dell’Acqua, M.; Confalonieri, R.; Bocchi, S.; Gomarasca, S. Designing ecological corridors in a fragmented landscape: A fuzzy approach to circuit connectivity analysis. Ecol. Indic. 2016, 67, 807–820. [Google Scholar] [CrossRef]
- Pelorosso, R.; Gobattoni, F.; Geri, F.; Monaco, R.; Leone, A. Evaluation of ecosystem services related to Bio-Energy Landscape Connectivity (BELC) for land use decision making across different planning scales. Ecol. Indic. 2016, 61, 114–129. [Google Scholar] [CrossRef]
- Snäll, T.; Lehtomäki, J.; Arponen, A.; Elith, J.; Moilanen, A. Green infrastructure design based on spatial conservation prioritization and modelling of biodiversity features and ecosystem services. Environ. Manag. 2016, 57, 251–256. [Google Scholar] [CrossRef] [PubMed]
- ISTAT [Italian National Institute of Statistics]. Popolazione Residente al 1° Gennaio. [Resident Population on January 1st]. 2017. Available online: http://dati.istat.it/Index.aspx?DataSetCode=DCIS_POPRES1 (accessed on 15 March 2018).
- Italian Environmental Ministry. SIC, ZSC e ZPS in Italia [SCIs, SACs, and SPAs in Italy]. 2017. Available online: http://www.minambiente.it/pagina/sic-zsc-e-zps-italia (accessed on 15 March 2018).
- Arcidiacono, A.; Ronchi, S.; Salata, S. Managing multiple ecosystem services for landscape conservation: A green infrastructure in Lombardy region. Procedia Eng. 2016, 161, 2297–2303. [Google Scholar] [CrossRef]
- CRITERIA; TEMI. Monitoraggio dello Stato di Conservazione degli Habitat e delle Specie di Importanza Comunitaria Presenti nei Siti della Rete Natura 2000 in Sardegna. Definizione della Rete di Monitoraggio. Volume 2: Piano di Monitoraggio degli Habitat e delle Specie Vegetali [Monitoring the Conservation Status of Habitats and Species of Community Interest within Natura 2000 Sites in Sardinia. Defining a Monitoring System. Volume 2: Monitoring Plan for Habitats and Plant Species], MIMEO; Unpublished work. 2014.
- Priority Habitats are defined in the article No. 1 of Habitats Directive as “…natural habitat types in danger of disappearance, which are present on the territory referred to in article No. 2 and for the conservation of which the Community has particular responsibility in view of the proportion of their natural range which falls within the territory referred to in article No. 2; these priority natural habitat types are marked by an asterisk (*) in Annex I.
- The Natura 2000 Standard Data Forms provide relevant information for each Natura 2000 site using a format approved under the provisions of EC Decision of 11 July 2011; for each Natura 2000 site, the form can be retrieved through the European Environment Agency’s website. Available online: http://natura2000.eea.europa.eu/ (accessed on 15 March 2018).
- CRITERIA; TEMI. Monitoraggio dello Stato di Conservazione degli Habitat e delle Specie di Importanza Comunitaria Presenti nei Siti della Rete Natura 2000 in Sardegna. Elaborazione Rapporto di Sintesi sullo Stato di Conservazione di Habitat e Specie (Linea 4, 4.C.1) [Monitoring the Conservation Status of Habitats and Species of Community Interest within Natura 2000 Sites in Sardinia. Synthesis Report on Conservation Status of Habitats and Species (Deliverable 4.c.1)], MIMEO; Unpublished work. 2014.
- InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs) Is a free-of-Cost-Software Program Licensed under the BSD Open Source License. As Indicated in the InVEST-Related Documentation. “InVEST Is a Tool for Exploring How Changes in Ecosystems Are Likely to Lead to Changes in Benefits That Flow to People”. InVEST Is Developed by the Natural Capital Project, Whose Partners Are: Woods Institute for the Environment and Department of Biology of Stanford University; Institute on the Environment of the University of Minnesota; The Nature Conservancy; and, The World Wildlife Fund (WWF). Available online: http://data.naturalcapitalproject.org/nightly-build/invest-users-guide/html/ (accessed on 15 March 2018).
- Habitat types are appraised upon the authors’ assessment.
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: A Framework for Assessment; Island Press: Washington, DC, USA, 2003; ISBN 1-55963-402-2. [Google Scholar]
- Lankia, T.; Kopperoinen, L.; Pouta, E.; Neuvonen, M. Valuing recreational ecosystem service flow in Finland. J. Outdoor Recreat. Tour. 2015, 10, 14–28. [Google Scholar] [CrossRef]
- Eagles, P.; McLean, D.; Stabler, M. Estimating the tourism volume and value in protected areas in Canada and the United States. George Wright Forum 2000, 17, 62–76. [Google Scholar]
- Sonter, L.J.; Watson, K.B.; Wood, S.A.; Ricketts, T.H. Spatial and temporal dynamics and value of nature-based recreation, estimated via social media. PLoS ONE 2016, 11, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Hausmann, A.; Toivonen, T.; Slotow, R.; Tenkanen, H.; Moilanen, A.; Heikinheimo, V.; Di Minin, E. Social media data can be used to understand tourists’ preferences for nature-based experiences in protected areas. Conserv. Lett. 2017, 11, 1–10. [Google Scholar] [CrossRef]
- Further Information Is. Available online: http://data.naturalcapitalproject.org/nightly-build/invest-users-guide/html/recreation.html (accessed on 15 March 2018).
- Values are appraised upon the authors’ assessment.
- Adriaensen, F.; Chardon, J.P.; De Blust, G.; Swinnen, E.; Villalba, S.; Gulinck, H.; Matthysen, E. The application of ‘least-cost’ modelling as a functional landscape model. Landsc. Urban Plan. 2003, 64, 233–247. [Google Scholar] [CrossRef]
- Beier, P.; Majka, D.R.; Newell, S.L. Uncertainty analysis of least-cost modeling for designing wildlife linkages. Ecol. Appl. 2009, 19, 2067–2077. [Google Scholar] [CrossRef] [PubMed]
- European Environment Agency. Spatial Analysis of Green Infrastructure in Europe; EEA Technical Report 2/2014; Publications Office of the European Union: Luxembourg, 2014; ISBN 978-92-9213-421-1. [Google Scholar]
- Lechner, A.M.; Sprod, D.; Carter, O.; Lefroy, E.C. Characterising landscape connectivity for conservation planning using a dispersal guild approach. Landsc. Ecol. 2017, 32, 99–113. [Google Scholar] [CrossRef]
- Sawyer, S.C.; Epps, C.W.; Brashares, J.S. Placing linkages among fragmented habitats: Do least-cost models reflect how animals use landscapes? J. Appl. Ecol. 2011, 48, 668–678. [Google Scholar] [CrossRef]
- Zeller, K.A.; McGarigal, K.; Whiteley, A.R. Estimating landscape resistance to movement: A review. Landsc. Ecol. 2012, 27, 777–797. [Google Scholar] [CrossRef]
- Boitani, L.; Corsi, F.; Falcucci, A.; Maiorano, L.; Marzetti, I.; Masi, M.; Montemaggiori, A.; Ottaviani, D.; Reggiani, G.; Rondinini, C. Rete Ecologica Nazionale. Un Approccio alla Conservazione dei Vertebrati Italiani. Relazione Finale [National Ecological Network. An Approach to Conservation of Italian Vertebrates. Final Report]; Ministero dell’Ambiente e della Tutela del Territorio e Università di Roma La Sapienza: Rome, Italy, 2002. [Google Scholar]
- Wang, Y.H.; Yang, K.C.; Bridgman, C.L.; Lin, L.K. Habitat suitability modelling to correlate gene flow with landscape connectivity. Landsc. Ecol. 2008, 23, 989–1000. [Google Scholar] [CrossRef]
- Graves, T.; Chandler, R.B.; Royle, J.A.; Beier, P.; Kendall, K.C. Estimating landscape resistance to dispersal. Landsc. Ecol. 2014, 29, 1201–1211. [Google Scholar] [CrossRef]
- AGRISTUDIO; CRITERIA; TEMI. Realizzazione del Sistema di Monitoraggio dello Stato di Conservazione degli Habitat e delle Specie di Interesse Comunitario della Regione Autonoma della Sardegna. Relazione Generale, Allegato 1b: Carta dell’Idoneità Faunistica [Implementation of the Monitoring System Concerning the Conservation Status of Habitats and Species of Community Interest of the Autonomous Region of Sardinia. General Report, Attachment 1b: Habitat Suitability Map], MIMEO; Unpublished work. 2011.
- Land Cover Class Are Classed According to the CORINE Land Cover Taxonomy. The Nomenclature Is Available on the European Environment Agency’s Website. Available online: https://www.eea.europa.eu/publications/COR0-landcover (accessed on 15 March 2018).
- Forman, R.T.T. Land Mosaics. The Ecology of Landscapes and Regions; Cambridge University Press: Cambridge, UK, 1995; ISBN 9780521479806. [Google Scholar]
- Linkage Mapper Is a GIS Tool That Analyzes Habitat Connectivity. Available online: http://www.circuitscape.org/linkagemapper (accessed on 15 March 2018).
- McFadden, D. Modelling the Choice of Residential Location. In Spatial Interaction Theory and Planning Models; Karlqvist, A., Lundqvist, L., Snickars, F., Weibull, J.V., Eds.; North Holland: Amsterdam, The Netherlands, 1978; pp. 75–96, ISBN-10 0444851828. [Google Scholar]
- McFadden, D. Econometric models for probabilistic choice among products. J. Bus. 1980, 53, 13–29. [Google Scholar] [CrossRef]
- Williams, H.C.W.L. On the formation of travel demand models and economic evaluation measures of user benefit. Environ. Plan. A 1977, 9, 285–344. [Google Scholar] [CrossRef]
- McFadden, D. Disaggregate Behavioural Travel Demand’s RUM Side. A 30-Year Retrospective. In Travel Behavior Research: The Leading Edge; Hensher, D., Ed.; Pergamon Press: Oxford, UK, 2000; pp. 17–63, ISBN-10 008043360X. [Google Scholar]
- Train, K. Discrete Choice Methods with Simulation; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- De Dios Ortúzar, J.; Willumsen, L.G. Modelling Transport, 3rd ed.; John Wiley: Hoboken, NJ, USA, 2001; ISBN-10 0471861103. [Google Scholar]
- Ben-Akiva, M.; Lerman, S. Discrete Choice Analysis: Theory and Application to Travel Demand (Transportation Studies); The MIT Press: Cambridge, MA, USA, 1985; ISBN 9780262332576. [Google Scholar]
- Tversky, A. Elimination by aspects: A theory of choice. Psychol. Rev. 1972, 79, 281–299. [Google Scholar] [CrossRef]
- Zoppi, C.; Lai, S. Differentials in the regional operational program expenditure for public services and infrastructure in the coastal cities of Sardinia (Italy) analyzed in the ruling context of the regional landscape plan. Land Use Policy 2013, 30, 286–304. [Google Scholar] [CrossRef]
- Nerlove, M.; Press, S. Univariate and Multivariate Log-Linear and Logistic Models, Report No. R1306-EDA/NIH; RAND Corporation: Santa Monica, CA, USA, 1973. [Google Scholar]
- Greene, W.H. Econometric Analysis; Macmillan: New York, NY, USA, 1993; ISBN-10-0-273-75356-8. [Google Scholar]
- McRae, B.H.; Kavanagh, D.M. Linkage Mapper Connectivity Analysis Software; The Nature Conservancy: Seattle, WA, USA, 2011; Available online: http://www.circuitscape.org/linkagemapper (accessed on 15 March 2018).
- Hosmer, D.W.; Lemeshow, S. Applied Logistic Regression; John Wiley & Sons: New York, NY, USA, 1989; ISBN 978-0471356325. [Google Scholar]
- Meerow, S.; Newell, J.P. Spatial planning for multifunctional green infrastructure: Growing resilience in Detroit. Landsc. Urban Plan. 2017, 159, 62–75. [Google Scholar] [CrossRef]
- Council of Europe. European Landscape Convention. (CETS No. 176). 2000. Available online: https://rm.coe.int/1680080621 (accessed on 15 March 2018).
- Lovell, S.T.; Taylor, J.R. Supplying urban ecosystem services through multifunctional green infrastructure in the United States. Landsc. Ecol. 2013, 28, 1447–1493. [Google Scholar] [CrossRef]
- Landsberg, F.; Ozment, S.; Stickler, M.; Henninger, N.; Treweek, J.; Venn, O.; Mock, G. Ecosystem Services Review for Impact Assessment: Introduction and Guide to Scoping, WRI Working Paper; World Resources Institute: Washington, DC, USA, 2011. [Google Scholar]
- Kovács, E.; Kelemen, K.; Kalóczkai, A.; Margóczi, K.; Pataki, G.; Gébert, J.; Málovics, G.; Balázs, B.; Roboz, A.; Krasznai Kovács, E.; Mihók, B. Understanding the links between ecosystem service trade-offs and conflicts in protected areas. Ecosyst. Serv. 2015, 12, 117–127. [Google Scholar] [CrossRef]
Threat Code | Threat Name | Weight | Decay Distance (km) | Decay Function |
---|---|---|---|---|
T01 | Cultivation | 0.58 | 1.63 | linear |
T02 | Grazing | 0.68 | 0.58 | linear |
T03 | Removal of forest undergrowth | 0.79 | 0.65 | linear |
T04 | Salt works | 0.63 | 0.83 | linear |
T05 | Paths, tracks | 0.53 | 0.55 | linear |
T06 | Roads, motorways | 0.95 | 3.00 | linear |
T07 | Airports | 0.95 | 4.75 | linear |
T08 | Urbanized areas | 0.95 | 3.25 | linear |
T09 | Discharges | 1.00 | 3.50 | linear |
T10 | Fire | 0.95 | 2.05 | linear |
Variable | Mean | St. Dev. |
---|---|---|
ECGI | 0.541 | 0.498 |
C_Val | 0.156 | 0.205 |
N_Val | 0.811 | 0.260 |
R_Val | 0.006 | 0.032 |
Variable | Marginal Effect | Z-Statistic | Hypothesis Test: Marginal Effect = 0 |
---|---|---|---|
Marginal impact on Y = 1 probability, dProb (Y = 1)/dx, Prob (Y = 1) = 0.541 | |||
C_Val | 0.258 | 9.814 | 0.0000 |
N_Val | 0.181 | 8.817 | 0.0000 |
R_Val | 3.351 | 8.062 | 0.0000 |
Log-likelihood goodness-of-fit test. Log-likelihood ratio = 6393.446–Prob. > chi-square = 0.00000 (3 degrees of freedom). Hosmer and Lemeshow [60] goodness-of-fit test. HL = 646.10767–Prob. > chi-square = 0.00000 (8 degrees of freedom) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cannas, I.; Lai, S.; Leone, F.; Zoppi, C. Green Infrastructure and Ecological Corridors: A Regional Study Concerning Sardinia. Sustainability 2018, 10, 1265. https://doi.org/10.3390/su10041265
Cannas I, Lai S, Leone F, Zoppi C. Green Infrastructure and Ecological Corridors: A Regional Study Concerning Sardinia. Sustainability. 2018; 10(4):1265. https://doi.org/10.3390/su10041265
Chicago/Turabian StyleCannas, Ignazio, Sabrina Lai, Federica Leone, and Corrado Zoppi. 2018. "Green Infrastructure and Ecological Corridors: A Regional Study Concerning Sardinia" Sustainability 10, no. 4: 1265. https://doi.org/10.3390/su10041265