Bringing Technology into Social-Ecological Systems Research—Motivations for a Socio-Technical-Ecological Systems Approach
Abstract
:1. Introduction
2. Materials and Method
3. The Anthropocene and Technology
3.1. Sociotechnical Systems Approaches and Ecological Dynamics
3.2. Social-Ecological Systems and Technology
3.3. Connecting Socio-Technical System Studies with Social-Ecological System Studies
4. Outlining the Arguments to Study STES
4.1. The Interface and Mediation Aspect of Technology
4.2. The Ambivalence Aspect–Technology as a Double-Edged Sword
4.3. The Aspect of Agency and Power
4.4. The Scalar Aspect
5. Consequences of an STES Approach for Understanding Technology and for Framing
5.1. A Dynamic Framing of Technology in Social-Ecological Systems
5.2. Challenges for Bridging Between the Fields
5.3. Counterarguments Against Research on STES
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Crutzen, P.J.; Stoermer, E.F. The “Anthropocene”. Glob. Chang. Newslett. 2000, 41, 17–18. [Google Scholar]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, 3. [Google Scholar]
- Picketty, T. Capital in the Twenty-First Century; Belknap Press: Cambridge, MA, USA, 2014. [Google Scholar]
- WEForum. The Global Risks Report 2017, 12th ed.; World Economic Forum: Geneva, Switzerland, 2017. [Google Scholar]
- Leach, M.; Scoones, I.; Stirling, A. Dynamic Sustainabilities: Technology, Environment, Social Justice; Earthscan: London, UK, 2010. [Google Scholar]
- Foxon, T.J.; Reed, M.S.; Stringer, L.C. Governing long-term social–ecological change: What can the adaptive management and transition management approaches learn from each other? Environ. Policy Gov. 2009, 19, 3–20. [Google Scholar] [CrossRef]
- Smith, A.; Stirling, A. The Politics of Social-ecological Resilience and Sustainable Socio-technical Transitions. Ecol. Soc. 2010, 15, 15. [Google Scholar]
- Anderies, J.M. Embedding built environments in social–ecological systems: Resilience-based design principles. Build. Res. Inf. 2014, 42, 130–142. [Google Scholar] [CrossRef]
- McPhearson, T.; Pickett, S.T.A.; Grimm, N.B.; Niemelä, J.; Alberti, M.; Elmqvist, T.; Weber, C.; Haase, D.; Breuste, J.; Qureshi, S. Advancing Urban Ecology toward a Science of Cities. BioScience 2016, 66, 198–212. [Google Scholar] [CrossRef] [Green Version]
- Redman, C.L.; Miller, T.R. The Technosphere and Earth Stewardship. In Earth Stewardship, Ecology and Ethics 2; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar]
- Lebel, L. The politics of scale in environmental assessments. In Bridging Scales and Knowledge Systems. Concepts and Applications in Ecosystem Assessment; Reid, W.V., Berkes, F., Wilbanks, T.J., Capistrano, D., Eds.; Island Press: Washington, DC, USA, 2006. [Google Scholar]
- Stirling, A. From Sustainability, through Diversity to Transformation: Towards More Reflexive Governance of Vulnerability. In Vulnerability in Technological Cultures: New Directions in Research and Governance; Hommels, A., Mesman, J., Bijker, W., Eds.; MIT Press: Cambridge, MA, USA, 2011; pp. 305–332. [Google Scholar]
- Folke, C.; Biggs, R.; Norström, A.V.; Reyers, B.; Rockström, J. Social-ecological resilience and biosphere-based sustainability science. Ecol. Soc. 2016, 21. [Google Scholar] [CrossRef] [Green Version]
- Ostrom, E. A general framework for analyzing sustainability of social-ecological systems. Science 2009, 325, 419–422. [Google Scholar] [CrossRef] [PubMed]
- Danermark, B.; Ekström, M.; Jakobsen, L.; Karlsson, J.C. Explaining Society—Critical Realism in the Social Sciences; Routledge, Taylor and Francis Group: London, UK; New York, NY, USA, 2002. [Google Scholar]
- Ellis, E. The Encyclopedia of Earth. Available online: http://editors.eol.org/eoearth/wiki/Anthropocene (accessed on 13 May 2017).
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; de Vries, W.; de Wit, C.A.; et al. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347. [Google Scholar] [CrossRef]
- Steffen, W.; Broadgate, W.; Deutsch, L.; Gaffney, O.; Ludwig, C. The trajectory of the Anthropocene: The Great Acceleration. Anthr. Rev. 2015, 2, 81–98. [Google Scholar] [CrossRef]
- Brondizio, E. Editorial overview: Confronting the challenges of implementing global sustainability goals. Curr. Opin. Environ. Sustain. 2017. [Google Scholar] [CrossRef]
- Blythe, J.; Nash, K.; Yates, J.; Cumming, G. Feedbacks as a bridging concept for advancing transdisciplinary sustainability research. Curr. Opin. Environ. Sustain. 2017, 26–27, 114–119. [Google Scholar] [CrossRef]
- Lövbrand, E.; Beck, S.; Chilvers, J.; Forsyth, T.; Hedrén, J.; Hulme, M.; Lidskog, R.; Vasileiadou, E. Who speaks for the future of Earth? How critical social science can extend the conversation on the Anthropocene. Glob. Environ. Chang. 2015, 32, 211–218. [Google Scholar] [CrossRef] [Green Version]
- Robbins, P.; Moore, S.A. Ecological anxiety disorder: Diagnosing the politics of the Anthropocene. Cult. Geogr. 2013, 20, 3–19. [Google Scholar] [CrossRef]
- Ellis, E. Love Your Monsters. Postenvironmentalism and the Anthropocene; Schellenberger, M., Nordhaus, T., Eds.; Breakthrough Institute: Oakland, CA, USA, 2011; pp. 37–46. [Google Scholar]
- CSIRO; Globaïa; IGBP; IHDB; Centre, S.R.; SEI. Welcome to the Anthropocene. Available online: http://www.anthropocene.info/anthropocene-timeline.php (accessed on 13 May 2017).
- Braun, B.; Whatmore, S.J. The stuff of politics: An introduction. In Political Matter. Technoscience, Democracy, and Public Life; Braun, B., Whatmore, S.J., Eds.; University of Minnesota Press: London, UK, 2010. [Google Scholar]
- Bijker, W.E.; Hughes, T.P.; Pinch, T. (Eds.) The Social Construction of Technological Systems. New Directions in the Sociology and History of Technology; The MIT Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Hughes, T.P. Networks of Power: Electrification in Western Society, 1880–1930; Johns Hopkins University Press: Baltimore, MA, USA, 1983. [Google Scholar]
- Arthur, B.W. The Nature of Technology. What It Is and How It Evolves; Free Press: New York, NY, USA, 2009. [Google Scholar]
- Andersson, C.; Törnberg, P. Wickedness and the anatomy of complexity. Futures 2018, 95, 118–138. [Google Scholar] [CrossRef]
- van den Bergh, J.C.J.M.; Truffer, B.; Kallis, G. Environmental innovation and societal transitions: Introduction and overview. Environ. Innov. Soc. Transit. 2011, 1, 1–23. [Google Scholar] [CrossRef]
- Anderies, J.M. Understanding the Dynamics of Sustainable Social-Ecological Systems: Human Behavior, Institutions, and Regulatory Feedback Networks. Bull. Math. Biol. 2015, 77, 259–280. [Google Scholar] [CrossRef]
- Gunderson, L.H.; Holling, C. (Eds.) Panarchy: Understanding Transformations in Human and Natural Systems; Island Press: Washington, DC, USA, 2002. [Google Scholar]
- Meadows, D.H. Thinking in Systems: A Primer; Chelsea Green Publishing: White River Junction, VT, USA, 2008. [Google Scholar]
- Feenberg, A. Questioning Technology; Routledge: London, UK; New York, NY, USA, 1999. [Google Scholar]
- Feenberg, A. Critical theory of technology: An overview. Tailoring Biotechnol. 2005, 1, 47–64. [Google Scholar]
- Pinch, T.J.; Bijker, W.E. The social construction of facts and artefacts: Or how the sociology of science and the sociology of technology might benefit each other. Soc. Stud. Sci. 1984, 14, 399–441. [Google Scholar] [CrossRef]
- Waldrop, M.M. Complexity: The Emerging Science at the Edge of Order and Chaos; Penguin: Harmondsworth, UK, 1994. [Google Scholar]
- Gleick, J. Chaos: Making a New Science; Penguin Books: New York, NY, USA, 1987. [Google Scholar]
- Nahuis, R.; Lente, H.V. Where are the politics? Perspectives on democracy and technology. Sci. Technol. Hum. Values 2008, 33, 559–581. [Google Scholar] [CrossRef]
- Bergek, A.; Hekkert, M.; Jacobsson, S.; Markard, J.; Sandén, B.; Truffer, B. Technological innovation systems in contexts: Conceptualizing contextual structures and interaction dynamics. Environ. Innov. Soc. Transit. 2015, 16, 51–64. [Google Scholar] [CrossRef] [Green Version]
- Berkhout, F.; Verbong, G.; Wieczorek, A.J.; Raven, R.; Lebel, L.; Bai, X. Sustainability experiments in Asia: Innovations shaping alternative development pathways? Environ. Sci. Policy 2010, 13, 261–271. [Google Scholar] [CrossRef]
- Coenen, L.; Benneworth, P.; Truffer, B. Toward a spatial perspective on sustainability transitions. Res. Policy 2012, 41, 968–979. [Google Scholar] [CrossRef]
- Avelino, F.; Wittmayer, J.M. Shifting Power Relations in Sustainability Transitions: A Multi-actor Perspective. J. Environ. Policy Plan. 2016, 18, 628–649. [Google Scholar] [CrossRef]
- Binz, C.; Truffer, B. Global Innovation Systems—A conceptual framework for innovation dynamics in transnational contexts. Res. Policy 2017, 46, 1284–1298. [Google Scholar] [CrossRef]
- Smith, A.; Stirling, A. Innovation, Sustainability and Democracy: An Analysis of Grassroots Contributions. J. Self-Gov. Manag. Econ. 2018, 6, 64–97. [Google Scholar]
- Arora, S.; Hofman, N.B.; Koshti, V.; Ciarli, T. Cultivating Compliance: Governance of North Indian Organic Basmati Smallholders in a Global Value Chain. Environ. Plan. A: Econ. Space 2013, 45, 1912–1928. [Google Scholar] [CrossRef] [Green Version]
- Shove, E.; Walker, G. Governing transitions in the sustainability of everyday life. Res. Policy 2010, 39, 471–476. [Google Scholar] [CrossRef]
- Schumpeter, J. Theorie der Wirtschaftlichen Entwicklung. The Theory of Economic Development (1934); Harvard University Press: Cambridge, MA, USA, 1911. [Google Scholar]
- Freeman, C. The Economics of Industrial Innovation; Penguin Books: Harmondsworth, Middlesex, UK, 1974. [Google Scholar]
- Geels, F.W.; Hekkert, M.P.; Jacobsson, S. The dynamics of sustainable innovation journeys. Technol. Anal. Strateg. Manag. 2008, 20, 521–536. [Google Scholar] [CrossRef]
- Marshall, F. Recognizing sustainability frontiers in the peri-urban. J. South Asian Water Stud. 2016, 6, 98–102. [Google Scholar]
- Binder, C.R.; Hinkel, J.; Bots, P.W.G.; Pahl-Wostl, C. Comparison of Frameworks for Analyzing Social-ecological Systems. Ecol. Soc. 2013, 18. [Google Scholar] [CrossRef] [Green Version]
- Berkes, F.; Folke, C. Linking Social and Ecological Systems for Resilience and Sustainability. In Linking Social and Ecological Systems: Management Practices and Social Mechanisms for Building Resilience; Berkes, F., Folke, C., Eds.; Cambridge University Press: Cambridge, UK, 1998; pp. 1–26. [Google Scholar]
- Anderies, J.; Walker, B.; Kinzig, A. Fifteen weddings and a funeral: Case studies and resilience-based management. Ecol. Soc. 2006, 11, 21. [Google Scholar] [CrossRef]
- Levin, S.A. Ecosystems and the Biosphere as Complex Adaptive Systems. Ecosystems 1998, 1, 431–436. [Google Scholar] [CrossRef]
- Galaz, V. Global Environmental Governance, Technology and Politics: The Anthropocene Gap; Edward Elgar: Cheltenham, UK, 2014. [Google Scholar]
- Hamstead, Z.A.; Kremer, P.; Larondelle, N.; McPhearson, T.; Haase, D. Classification of the heterogeneous structure of urban landscapes (STURLA) as an indicator of landscape function applied to surface temperature in New York City. Ecol. Indic. 2016, 70, 574–585. [Google Scholar] [CrossRef]
- Kain, J.-H.; Larondelle, N.; Haase, D.; Kaczorowska, A. Exploring local consequences of two land-use alternatives for the supply of urban ecosystem services in Stockholm year 2050. Ecol. Indic. 2016, 70, 615–629. [Google Scholar] [CrossRef]
- McPhearson, T.; Haase, D.; Kabisch, N.; Gren, Å. Advancing understanding of the complex nature of urban systems. Ecol. Indic. 2016, 70, 566–573. [Google Scholar] [CrossRef]
- Ostrom, E. Governing the Commons. The Evolution of Institutions for Collective Action; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Allen, T.F.H.; Hoekstra, T.W. Toward a Unified Ecology; Columbia University Press: New York, NY, USA, 1992. [Google Scholar]
- Francis, C.A.; Lieblein, G.; Breland, T.A.; Salomonsson, L.; Geber, U.; Sriskandarajah, N.; Langer, V. Transdisciplinary Research for a Sustainable Agriculture and Food Sector. Agron. J. 2008, 100, 771–776. [Google Scholar] [CrossRef]
- Hendrickson, J.R.; Hanson, J.D.; Tanaka, D.L.; Sassenrath, G. Principles of integrated agricultural systems: Introduction to processes and definition. Renew. Agric. Food Syst. 2008, 23, 265–271. [Google Scholar] [CrossRef]
- Crona, B.I.; Daw, T.M.; Swartz, W.; Norström, A.V.; Nyström, M.; Thyresson, M.; Folke, C.; Hentati-Sundberg, J.; Österblom, H.; Deutsch, L.; et al. Masked, diluted and drowned out: How global seafood trade weakens signals from marine ecosystems. Fish Fish. 2015, 17, 1175–1182. [Google Scholar] [CrossRef]
- Troell, M.; Naylor, R.L.; Metian, M.; Beveridge, M.; Tyedmers, P.H.; Folke, C.; Arrow, K.J.; Barrett, S.; Crépin, A.-S.; Ehrlich, P.R.; et al. Does aquaculture add resilience to the global food system? Proc. Natl. Acad. Sci. USA 2014, 111, 13257. [Google Scholar] [CrossRef]
- van der Brugge, R.; van Raak, R. Facing the adaptive management challenge: Insights from transition management. Ecol. Soc. 2007, 12. [Google Scholar] [CrossRef]
- Morin, E. La méthode, Tome 1: La Nature de la Nature; Seuil: Paris, France, 1977. [Google Scholar]
- Feenberg, A. Critical Theory of Technology; Oxford University Press: New York, NY, USA, 1991. [Google Scholar]
- Linares, J. Etica y Mundo Tecnológico; Fondo de Cultura Económica: Mexico City, Mexico, 2008. [Google Scholar]
- Quintanilla, M.A. Tecnología: Un Enfoque Filosófico; Fondo de Cultura Económica: Mexico City, Mexico, 2005. [Google Scholar]
- Arora, S. Defying Control: Aspects of Caring Engagement between Divergent Knowledge Practices; STEPS Centre: Brighton, UK, 2017. [Google Scholar]
- Walker, G.; Shove, E. Ambivalence, Sustainability and the Governance of Socio-Technical Transitions. J. Environ. Policy Plan. 2007, 9, 213–225. [Google Scholar] [CrossRef]
- Misa, T. Controversy and closure in technological change: Constructing “steel”. In Shaping Technology/Building Society: Studies in Sociotechnical Change; Bijker, W.E., Law, J., Eds.; The MIT Press: London, UK, 1992; pp. 109–139. [Google Scholar]
- Moreno, J.A.O.; Cerutti, O.R.M.; Gutiérrez, A.F.F. La Ecotecnología en México; IMAGIA: Morelia, Mexico, 2014. [Google Scholar]
- Smith, A.; Stirling, A. Grassroots Innovation and Innovation Democracy; STEPS Centre: Brighton, UK, 2016. [Google Scholar]
- Lukes, S. Power: A Radical View, 2nd ed.; Palgrave Macmillan: Basingstoke, UK, 2005. [Google Scholar]
- Bijker, W.E.; Pinch, T. Preface to the anniversary edition. In The Social Construction of Technological Systems. New Directions in the Sociology and History of Technology; Bijker, W.E., Hughes, T.P., Pinch, T., Eds.; The MIT Press: Cambridge, MA, USA, 2012; pp. xi–xxxiv. [Google Scholar]
- Ahlborg, H.; Nightingale, A.J. Theorizing power in political ecology: The where of power in resource governance projects. J. Polit. Ecol. 2018, 25, 350–425. [Google Scholar] [CrossRef]
- Ahlborg, H. Towards a conceptualization of power in energy transitions. Environ. Innov. Soc. Transit. 2017, 25, 122–141. [Google Scholar] [CrossRef]
- Hommels, A. Studying obduracy in the city: Toward a productive fusion between technology studies and urban studies. Sci. Technol. Hum. Values 2005, 30, 323–351. [Google Scholar] [CrossRef]
- Bijker, W.E.; Law, J. (Eds.) Shaping Technology/Building Society: Studies in Sociotechnical Change; The MIT Press: London, UK, 1992. [Google Scholar]
- Ahlborg, H.; Boräng, F. Powering institutions for development—Organizational strategies for decentralized electricity provision. Energy Res. Soc. Sci. 2018, 38, 77–86. [Google Scholar] [CrossRef]
- Ahlborg, H.; Sjöstedt, M. Small-scale hydropower in Africa: Socio-technical designs for renewable energy in Tanzanian villages. Energy Res. Soc. Sci. 2015, 5, 20–33. [Google Scholar] [CrossRef] [Green Version]
- Rogers, K.G.; Overeem, I. Doomed to drown? Sediment dynamics in the human-controlled floodplains of the active Bengal Delta. Elem. Sci. Anthr. 2017, 5. [Google Scholar] [CrossRef] [Green Version]
- Folke, C.; Carpenter, S.; Walker, B.; Scheffer, M.; Elmqvist, T.; Gunderson, L.; Holling, C.S. Regime Shifts, Resilience, and Biodiversity in Ecosystem Management. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 557–581. [Google Scholar] [CrossRef]
- Berkes, F.; Colding, J.F.; Folke, C. (Eds.) Navigating Nature’s Dynamics: Building Resilience for Complexity and Change; Cambridge University Press: New York, NY, USA, 2003. [Google Scholar]
- Pooley, S.P.; Mendelsohn, J.A.; Milner-Gulland, E.J. Hunting Down the Chimera of Multiple Disciplinarity in Conservation Science. Conserv. Biol. 2013, 28, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Ahlborg, H.; Nightingale, A.J. Mismatch Between Scales of Knowledge in Nepalese Forestry: Epistemology, Power, and Policy Implications. Ecol. Soc. 2012, 17. [Google Scholar] [CrossRef] [Green Version]
- Manson, S.M. Does scale exist? An epistemological scale continuum for complex human–environment systems. Geoforum 2008, 39, 776–788. [Google Scholar] [CrossRef]
- Levin, S.A. The problem of pattern and scale in ecology: The Robert H. MacArthur Award lecture. Ecology 1992, 73, 1943–1967. [Google Scholar] [CrossRef]
- O’Neill, R.V.; King, A.W. Homage to St.Michael; or, why are there so many books on scale? In Ecological Scale. Theory and Applications; Peterson, D.L., Parker, V.T., Eds.; Columbia University Press: New York, NY, USA, 1998; pp. 3–16. [Google Scholar]
- MA. Multiscale Assessments. Findings of the Sub-global Assessment Working Group of the Millennium Ecosystem Assessment; Island Press: Washington, DC, USA; Covelo, CA, USA; London, UK, 2005. [Google Scholar]
- Stirling, A. Developing ‘Nexus Capabilities’: Towards Transdisciplinary Methodologies; Sussex University: ESRC Nexus Network Workshop: Brighton, UK, 2015. [Google Scholar]
- Geels, F.W. Regime Resistance against Low-Carbon Transitions: Introducing Politics and Power into the Multi-Level Perspective. Theorycult. Soc. 2014, 31, 21–40. [Google Scholar] [CrossRef] [Green Version]
- Markard, J.; Truffer, B. Actor-oriented analysis of innovation systems: Exploring micro–meso level linkages in the case of stationary fuel cells. Technol. Anal. Strateg. Manag. 2008, 20, 443–464. [Google Scholar] [CrossRef]
- Leach, M.; Scoones, I.; Stirling, A. Pathways to Sustainability: An Overview of the STEPS Centre Approach; STEPS Centre: Brighton, UK, 2007. [Google Scholar]
- Loorbach, D. Transition Management for Sustainable Development: A Prescriptive, Complexity-Based Governance Framework. Governance 2010, 23, 161–183. [Google Scholar] [CrossRef]
- Olsson, P.; Folke, C.; Berkes, F. Adaptive comanagement for building resilience of social-ecological systems. Environ. Manag. 2004, 34, 75–90. [Google Scholar] [CrossRef] [PubMed]
- Vofl, J.-P.; Bornemann, B. The Politics of Reflexive Governance: Challenges for Designing Adaptive Management and Transition Management. Ecol. Soc. 2011, 16, 16. [Google Scholar]
- Avelino, F.; Grin, J.; Pel, B.; Jhagroe, S. The politics of sustainability transitions. J. Environ. Policy Plan. 2016, 18, 557–567. [Google Scholar] [CrossRef]
- Meadowcroft, J. Engaging with the politics of sustainability transitions. Environ. Innov. Soc. Transit. 2011, 1, 70–75. [Google Scholar] [CrossRef]
Technological Aspect | Main Arguments for including Technology in SES Analyses |
---|---|
Mediation | Technology mediates human–environment relationships Technology works at the interface and often is the interface Technology can be understood as means to execute purposes, working based on the harnessing of physical (and other) phenomena |
Ambivalence | Technology is dynamic and sociotechnical systems are complex and emergent, imprinted with human values but cannot be reduced to these values. Technology produces ambiguous outcomes, is shaped by and reshapes society in a continuous process of becoming |
Power and Agency | Technologies enhance and limit human capacities to act, but also transform these capacities and our interactions with the world. Technologies lend characteristic qualities to the kind of relationship established, reflecting underlying values and interests. Technologies are shaped by relationships of power and encode and embody the intentions of influential actors, but these intents are contested as other actors use, mold, and reshape technologies through their willful behaviors. Sociotechnical systems gain obduracy and render exercises of power more durable, but also give rise to systemic pressures that emerge from technology–technology interactions, technology–human interactions, and technology–nature interactions. |
Scale | Technologies enable changes to the scalar relations of human–environment interactions in terms of quantities, space, and time. The kinds of relationships established change as we change scales and levels. Technologies enable centralized control, distanced action, and relocating effects to other places and times. |
Key features of an STES approach | |
An STES approach | Starts from a symmetric attention to society-technology-environment. Approaches the nexus as a complex system with dynamic and emergent qualities. Reflects carefully on the epistemological and political consequences of framing of research and works with mixed methods and multiple scales of observation. Assumes there are conceptual misunderstandings and frictions and spends considerable time at the early stages of research framing to identify these and learn each other’s languages. Explores how technology contingently shapes the human–nature relationship and with what consequences; how emergent pressures in complex socio-technical-ecological systems are interlinked and; how intentional and unintentional technical mediation may result in ambiguous outcomes and feedbacks that displace/ relocate but do not remove negative consequences. Seeks to identify strategic interventions and ways of changing the kinds of relationships such that these embody values of reciprocity, care, and well-being for humans and non-humans alike. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahlborg, H.; Ruiz-Mercado, I.; Molander, S.; Masera, O. Bringing Technology into Social-Ecological Systems Research—Motivations for a Socio-Technical-Ecological Systems Approach. Sustainability 2019, 11, 2009. https://doi.org/10.3390/su11072009
Ahlborg H, Ruiz-Mercado I, Molander S, Masera O. Bringing Technology into Social-Ecological Systems Research—Motivations for a Socio-Technical-Ecological Systems Approach. Sustainability. 2019; 11(7):2009. https://doi.org/10.3390/su11072009
Chicago/Turabian StyleAhlborg, Helene, Ilse Ruiz-Mercado, Sverker Molander, and Omar Masera. 2019. "Bringing Technology into Social-Ecological Systems Research—Motivations for a Socio-Technical-Ecological Systems Approach" Sustainability 11, no. 7: 2009. https://doi.org/10.3390/su11072009
APA StyleAhlborg, H., Ruiz-Mercado, I., Molander, S., & Masera, O. (2019). Bringing Technology into Social-Ecological Systems Research—Motivations for a Socio-Technical-Ecological Systems Approach. Sustainability, 11(7), 2009. https://doi.org/10.3390/su11072009