Delineation of Urban Growth Boundaries Using a Patch-Based Cellular Automata Model under Multiple Spatial and Socio-Economic Scenarios
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
3. Methodology
3.1. General Procedure
3.2. Projection of Urban Development Demand
3.3. The Estimation of Urban Development Probability Using a Random Forest Algorithm
3.4. Simulating Urban Growth Using a Patch-Based CA Model
3.5. Calibration of the CA Parameters Using a Genetic Algorithm
3.6. Validation of the CA Model
3.7. UGB Delineation under Different Spatial Scenarios
3.7.1. Scenario Building
3.7.2. UGB Delineation Using Morphological Functions
4. Implementation and Results
4.1. Projection of Urban Demand under Different Scenarios
4.2. Calibration and Validation of the Patch-Based CA Model
4.2.1. Performance of the Random Forest Algorithm
4.2.2. Calibrated Parameters for the Patch-Based CA Model
4.2.3. Validation of the Calibrated CA Model
4.3. Scenario-Based Delineation of UGBs
4.3.1. The Simulated Urban Landscape in 2030 under Different Scenarios
4.3.2. Established UGBs from the Simulated Urban Landscapes
5. Discussion
5.1. Feasibility of the Proposed CA Model
5.2. Flexibility of the Proposed Framework in Building Scenarios for UGB Delineation
5.3. Policy Implications of the UGB Alternatives
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- D’Amour, C.B.; Reitsma, F.; Baiocchi, G.; Barthel, S.; Güneralp, B.; Erb, K.-H.; Haberl, H.; Creutzig, F.; Seto, K.C. Future urban land expansion and implications for global croplands. Proc. Natl. Acad. Sci. USA 2017, 114, 8939–8944. [Google Scholar] [CrossRef] [PubMed]
- Newbold, T.; Hudson, L.N.; Arnell, A.P.; Contu, S.; De Palma, A.; Ferrier, S.; Hill, S.L.; Hoskins, A.J.; Lysenko, I.; Phillips, H.R. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 2016, 353, 288–291. [Google Scholar] [CrossRef] [PubMed]
- Long, Y.; Han, H.; Lai, S.-K.; Mao, Q. Urban growth boundaries of the Beijing Metropolitan Area: Comparison of simulation and artwork. Cities 2013, 31, 337–348. [Google Scholar] [CrossRef]
- Ding, C.R.; Knaap, G.J.; Hopkins, L.D. Managing urban growth with urban growth boundaries: A theoretical analysis. J. Urban Econ. 1999, 46, 53–68. [Google Scholar] [CrossRef]
- Dempsey, J.A.; Plantinga, A.J. How well do urban growth boundaries contain development? Results for Oregon using a difference-in-difference estimator. Reg. Sci. Urban Econ. 2013, 43, 996–1007. [Google Scholar] [CrossRef]
- Hepinstall-Cymerman, J.; Coe, S.; Hutyra, L.R. Urban growth patterns and growth management boundaries in the Central Puget Sound, Washington, 1986–2007. Urban Ecosyst. 2013, 16, 109–129. [Google Scholar] [CrossRef]
- Coiacetto, E. Residential sub-market targeting by developers in Brisbane. Urban Policy Res. 2007, 25, 257–274. [Google Scholar] [CrossRef]
- Cho, C.-J. The Korean growth-management programs: Issues, problems and possible reforms. Land Use Policy 2002, 19, 13–27. [Google Scholar] [CrossRef]
- Gordon, D.; Vipond, S. Gross density and new urbanism: Comparing conventional and new urbanist suburbs in Markham, Ontario. Am. Plan. Assoc. J. Am. Plan. Assoc. 2005, 71, 41. [Google Scholar] [CrossRef]
- Venkataraman, M. Analyzing urban growth boundary effects in the city of Bengaluru. IIM Bangalore Res. Paper 2014, 464. [Google Scholar] [CrossRef]
- He, Q.; Tan, R.; Gao, Y.; Zhang, M.; Xie, P.; Liu, Y. Modeling urban growth boundary based on the evaluation of the extension potential: A case study of Wuhan city in China. Habitat Int. 2018, 72, 57–65. [Google Scholar] [CrossRef]
- Tayyebi, A.; Perry, P.C.; Tayyebi, A.H. Predicting the expansion of an urban boundary using spatial logistic regression and hybrid raster-vector routines with remote sensing and GIS. Int. J. Geogr. Inf. Sci. 2014, 28, 639–659. [Google Scholar] [CrossRef]
- Tayyebi, A.; Pijanowski, B.C.; Pekin, B. Two rule-based Urban Growth Boundary Models applied to the Tehran Metropolitan Area, Iran. Appl. Geogr. 2011, 31, 908–918. [Google Scholar] [CrossRef]
- Tayyebi, A.; Pijanowski, B.C.; Tayyebi, A.H. An urban growth boundary model using neural networks, GIS and radial parameterization: An application to Tehran, Iran. Landsc. Urban Plan. 2011, 100, 35–44. [Google Scholar] [CrossRef]
- Railsback, S.F.; Lytinen, S.L.; Jackson, S.K. Agent-based Simulation Platforms: Review and Development Recommendations. Simulation 2016, 82, 609–623. [Google Scholar] [CrossRef]
- Matthews, R.B.; Gilbert, N.G.; Roach, A.; Polhill, J.G.; Gotts, N.M. Agent-based land-use models: A review of applications. Landsc. Ecol. 2007, 22, 1447–1459. [Google Scholar] [CrossRef]
- Batty, M. Cities and Complexity: Understanding Cities with Cellular Automata, Agent-Based Models, and Fractals; The MIT Press: Cambridge, MA, USA, 2007. [Google Scholar]
- Liang, X.; Liu, X.; Li, X.; Chen, Y.; Tian, H.; Yao, Y. Delineating multi-scenario urban growth boundaries with a CA-based FLUS model and morphological method. Landsc. Urban Plan. 2018, 177, 47–63. [Google Scholar] [CrossRef]
- Wu, C.; Pei, F.; Zhou, Y.; Wang, K.; Xu, L. Delineating Urban Growth Boundary from Perspective of “Negative Planning”: A Case Study of the Central Urban District in Xuzhou. Geogr. Geo-Inf. Sci. 2017, 33, 92–98. [Google Scholar]
- Ma, S.; Li, X.; Cai, Y. Delimiting the urban growth boundaries with a modified ant colony optimization model. Comput. Environ. Urban Syst. 2017, 62, 146–155. [Google Scholar] [CrossRef]
- Moghadam, S.A.; Karimi, M.; Habibi, K. Simulating urban growth in a megalopolitan area using a patch-based cellular automata. Trans. GIS 2018, 22, 249–268. [Google Scholar] [CrossRef]
- Li, X.C.; Gong, P.; Yu, L.; Hu, T.Y. A segment derived patch-based logistic cellular automata for urban growth modeling with heuristic rules. Comput. Environ. Urban Syst. 2017, 65, 140–149. [Google Scholar] [CrossRef]
- Chen, Y.M.; Li, X.; Liu, X.P.; Ai, B. Modeling urban land-use dynamics in a fast developing city using the modified logistic cellular automaton with a patch-based simulation strategy. Int. J. Geogr. Inf. Sci. 2014, 28, 234–255. [Google Scholar] [CrossRef]
- Wang, F.; Marceau, D.J. A Patch-based Cellular Automaton for Simulating Land-use Changes at Fine Spatial Resolution. Trans. GIS 2013, 17, 828–846. [Google Scholar] [CrossRef]
- Meentemeyer, R.K.; Tang, W.W.; Dorning, M.A.; Vogler, J.B.; Cunniffe, N.J.; Shoemaker, D.A. FUTURES: Multilevel Simulations of Emerging Urban-Rural Landscape Structure Using a Stochastic Patch-Growing Algorithm. Ann. Assoc. Am. Geogr. 2013, 103, 785–807. [Google Scholar] [CrossRef]
- Chen, Y.; Li, X.; Liu, X.; Huang, H.; Ma, S. Simulating urban growth boundaries using a patch-based cellular automaton with economic and ecological constraints. Int. J. Geogr. Inf. Sci. 2019, 33, 55–80. [Google Scholar] [CrossRef]
- XIONG, H.-F.; WANG, Y.-H. Spatial variability of soil nutrients in wetland of Liangzi Lake. Plant Nutr. Fertil. Sci. 2005, 5, 002. [Google Scholar]
- Li, X.; Yu, X.; Jiang, L.; Li, W.; Liu, Y.; Hou, X. How important are the wetlands in the middle-lower Yangtze River region: An ecosystem service valuation approach. Ecosyst. Serv. 2014, 10, 54–60. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, C.; Song, W. Review of the evolution of cultivated land protection policies in the period following China’s reform and liberalization. Land Use Policy 2017, 67, 660–669. [Google Scholar] [CrossRef]
- Long, H. Land Use Policy in China: Introduction; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Liu, D.; Tang, W.; Liu, Y.; Zhao, X.; He, J. Optimal rural land use allocation in central China: Linking the effect of spatiotemporal patterns and policy interventions. Appl. Geogr. 2017, 86, 165–182. [Google Scholar] [CrossRef]
- Huang, X.; Li, Y.; Yu, R.; Zhao, X. Reconsidering the controversial land use policy of “linking the decrease in rural construction land with the increase in urban construction land”: A local government perspective. China Rev. 2014, 14, 175–198. [Google Scholar]
- State Council Leading Office of the Second China Land Census. Training Manual of the Second China Land Census; China Agriculture Press: Beijing, China, 2007.
- Yao, Y.; Li, X.; Liu, X.; Liu, P.; Liang, Z.; Zhang, J.; Mai, K. Sensing spatial distribution of urban land use by integrating points-of-interest and Google Word2Vec model. Int. J. Geogr. Inf. Sci. 2017, 31, 825–848. [Google Scholar] [CrossRef]
- Silverman, B.W. Density Estimation for Statistics and Data Analysis; Routledge: Abingdon, UK, 2018. [Google Scholar]
- ESRI, R. ArcGIS Desktop: Release 10; Environmental Systems Research Institute: Redlands, CA, USA, 2011. [Google Scholar]
- Li, Y.; Ma, Q.; Song, Y.; Han, H. Bringing conservation priorities into urban growth simulation: An integrated model and applied case study of Hangzhou, China. Resour. Conserv. Recycl. 2019, 140, 324–337. [Google Scholar] [CrossRef]
- Mellor, A.; Haywood, A.; Stone, C.; Jones, S. The performance of random forests in an operational setting for large area sclerophyll forest classification. Remote Sens. 2013, 5, 2838–2856. [Google Scholar] [CrossRef]
- Kamusoko, C.; Gamba, J. Simulating Urban Growth Using a Random Forest-Cellular Automata (RF-CA) Model. ISPRS Int. J. Geo-Inf. 2015, 4, 447–470. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Gounaridis, D.; Chorianopoulos, I.; Symeonakis, E.; Koukoulas, S. A Random Forest-Cellular Automata modelling approach to explore future land use/cover change in Attica (Greece), under different socio-economic realities and scales. Sci. Total Environ. 2019, 646, 320–335. [Google Scholar] [CrossRef]
- Mas, J.-F.; Soares Filho, B.; Pontius, R.; Farfán Gutiérrez, M.; Rodrigues, H. A suite of tools for ROC analysis of spatial models. ISPRS Int. J. Geo-Inf. 2013, 2, 869–887. [Google Scholar] [CrossRef]
- Liu, X.; Li, X.; Chen, Y.; Tan, Z.; Li, S.; Ai, B. A new landscape index for quantifying urban expansion using multi-temporal remotely sensed data. Landsc. Ecol. 2010, 25, 671–682. [Google Scholar] [CrossRef]
- Soares-Filho, B.S.; Cerqueira, G.C.; Pennachin, C.L. DINAMICA—A stochastic cellular automata model designed to simulate the landscape dynamics in an Amazonian colonization frontier. Ecol. Model. 2002, 154, 217–235. [Google Scholar] [CrossRef]
- Soares-Filho, B.S.; Rodrigues, H.O.; Costa, W. Modeling Environmental Dynamics with Dinamica EGO; Centro de Sensoriamento Remoto; Universidade Federal de Minas Gerais: Belo Horizonte, Minas Gerais, Brazil, 2009; Volume 115. [Google Scholar]
- Yang, J.; Gong, J.; Tang, W.; Liu, C. Patch-based cellular automata model of urban growth simulation: Integrating feedback between quantitative composition and spatial configuration. Comput. Environ. Urban Syst. 2020, 79, 101402. [Google Scholar] [CrossRef]
- Wang, Q. Using genetic algorithms to optimise model parameters. Environ. Model. Softw. 1997, 12, 27–34. [Google Scholar] [CrossRef]
- Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence; MIT Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Mitchell, M. An Introduction to Genetic Algorithms; MIT Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Cantú-Paz, E. A Summary of Research on Parallel Genetic Algorithms; Technical Report 95007; University of Illinois at Urbana-Champaign: Champaign, IL, USA, 19 July 1995. [Google Scholar]
- Konak, A.; Coit, D.W.; Smith, A.E. Multi-objective optimization using genetic algorithms: A tutorial. Reliab. Eng. Syst. Saf. 2006, 91, 992–1007. [Google Scholar] [CrossRef]
- Goldberg, D.E.; Deb, K.; Clark, J.H. Genetic algorithms, noise, and the sizing of populations. Complex Syst. 1992, 6, 333–362. [Google Scholar]
- Chatterjee, S.; Laudato, M.; Lynch, L.A. Genetic algorithms and their statistical applications: An introduction. Comput. Stat. Data Anal. 1996, 22, 633–651. [Google Scholar] [CrossRef]
- Miller, B.L.; Goldberg, D.E. Genetic algorithms, selection schemes, and the varying effects of noise. Evol. Comput. 1996, 4, 113–131. [Google Scholar] [CrossRef]
- Forrest, S. Genetic algorithms. ACM Comput. Surv. 1996, 28, 77–80. [Google Scholar] [CrossRef]
- Keijzer, M.; Merelo, J.J.; Romero, G.; Schoenauer, M. Evolving objects: A general purpose evolutionary computation library. In Artificial Evolution 5th International Conference, Evolution Artificielle, EA 2001, Le Creusot, France, 29–31 October 2001, Selected Papers; Springer: Berlin/Heidelberg, Germany, 2001; pp. 231–242. [Google Scholar]
- Soares-Filho, B.; Rodrigues, H.; Follador, M. A hybrid analytical-heuristic method for calibrating land-use change models. Environ. Model. Softw. 2013, 43, 80–87. [Google Scholar] [CrossRef]
- Ong, Y.S.; Nair, P.B.; Keane, A.J. Evolutionary optimization of computationally expensive problems via surrogate modeling. AIAA J. 2003, 41, 687–696. [Google Scholar] [CrossRef]
- Liu, Y.; Khu, S.-T. In Automatic calibration of numerical models using fast optimisation by fitness approximation. In Proceedings of the 2007 International Joint Conference on Neural Networks, Orlando, FL, USA, 12–17 August 2007; pp. 1073–1078. [Google Scholar]
- Fix, E.; Hodges, J.L., Jr. Discriminatory Analysis-Nonparametric Discrimination: Consistency Properties; California Univ Berkeley: Berkeley, CA, USA, 1951. [Google Scholar]
- Mollineda, R.A.; Ferri, F.J.; Vidal, E. An efficient prototype merging strategy for the condensed 1-NN rule through class-conditional hierarchical clustering. Pattern Recognit. 2002, 35, 2771–2782. [Google Scholar] [CrossRef]
- Vliet, J.V.; Bregt, A.; Brown, D.G.; Delden, H.V.; Heckbert, S.; Verburg, P.H. A review of current calibration and validation practices in land-change modeling. Environ. Model. Softw. 2016, 82, 174–182. [Google Scholar] [CrossRef]
- Costanza, R. Model goodness of fit: A multiple resolution procedure. Ecol. Model. 1989, 47, 199–215. [Google Scholar] [CrossRef]
- Power, C.; Simms, A.; White, R. Hierarchical fuzzy pattern matching for the regional comparison of land use maps. Int. J. Geogr. Inf. Sci. 2001, 15, 77–100. [Google Scholar] [CrossRef] [Green Version]
- Van Vliet, J.; Bregt, A.K.; Hagen-Zanker, A. Revisiting Kappa to account for change in the accuracy assessment of land-use change models. Ecol. Model. 2011, 222, 1367–1375. [Google Scholar] [CrossRef]
- Hagen, A. Fuzzy set approach to assessing similarity of categorical maps. Int. J. Geogr. Inf. Syst. 2003, 17, 235–249. [Google Scholar] [CrossRef] [Green Version]
- Almeida, C.M.; Gleriani, J.M.; Castejon, E.F.; Soares-Filho, B.S. Using neural networks and cellular automata for modelling intra-urban land-use dynamics. Int. J. Geogr. Inf. Sci. 2008, 22, 943–963. [Google Scholar] [CrossRef]
- Banister, J.; Bloom, D.E.; Rosenberg, L. Population aging and economic growth in China. In The Chinese Economy; Palgrave Macmillan: London, UK, 2012; pp. 114–149. [Google Scholar]
- Fong, V.L. Only Hope: Coming of Age under China’s One-Child Policy; Stanford University Press: Palo Alto, CA, USA, 2004. [Google Scholar]
- Hesketh, T.; Zhou, X.; Wang, Y. The end of the one-child policy: Lasting implications for China. JAMA 2015, 314, 2619–2620. [Google Scholar] [CrossRef]
- Zeng, Y.; Hesketh, T. The effects of China’s universal two-child policy. Lancet 2016, 388, 1930–1938. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, X.; Li, X. Calibrating a Land Parcel Cellular Automaton (LP-CA) for urban growth simulation based on ensemble learning. Int. J. Geogr. Inf. Sci. 2017, 31, 2480–2504. [Google Scholar] [CrossRef]
- Narayanan, A. Fast binary dilation/erosion algorithm using kernel subdivision. In Asian Conference on Computer Vision, Hyderabad, India, 13–16 January 2006; Springer: Berlin/Heidelberg, Germany, 2006; pp. 335–342. [Google Scholar]
- Zhou, R.; Zhang, H.; Ye, X.-Y.; Wang, X.-J.; Su, H.-L. The Delimitation of Urban Growth Boundaries Using the CLUE-S Land-Use Change Model: Study on Xinzhuang Town, Changshu City, China. Sustainability 2016, 8, 1182. [Google Scholar] [CrossRef]
- McGarigal, L.; Marks, B. FRAGSTATS: Spatial pattern analysis program for quantifying landscape structure. In General Technical Report PNW-GTR-351; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 1995; p. 122. [Google Scholar]
- White, R.; Engelen, G. Cellular automata and fractal urban form: A cellular modelling approach to the evolution of urban land-use patterns. Environ. Plan. A 1993, 25, 1175–1199. [Google Scholar] [CrossRef]
- Brown, D.G.; Verburg, P.H.; Pontius, R.G., Jr.; Lange, M.D. Opportunities to improve impact, integration, and evaluation of land change models. Curr. Opin. Environ. Sustain. 2013, 5, 452–457. [Google Scholar] [CrossRef]
- Cho, S.-H.; Poudyal, N.; Lambert, D.M. Estimating spatially varying effects of urban growth boundaries on land development and land value. Land Use Policy 2008, 25, 320–329. [Google Scholar] [CrossRef]
Population Growth Scenario | Fitted Extrapolation Function | Goodness-Of-Fit (R2) | Population in 2030 |
---|---|---|---|
Low | y = 5,313.62x + 9,598,543.39 | 0.97 | 1,188,105.41 |
Moderate | y = 10,292.59x + 19,587,739.78 | 0.93 | 1,306,217.92 |
Fast | y = 15,796.83x + 30,526,304.24 | 0.99 | 1,541,260.66 |
Population Growth Scenario | Per Capita Urban Demand (The Reference Year) | 55.49 m2 (2004) | 96.23 m2 (2009) | 139.35 m2 (2016) |
---|---|---|---|---|
Low | Projected total urban demands (km2) | 65.92 | 114.33 | 165.56 |
Moderate | 72.48 | 125.69 | 182.02 | |
High | 85.52 | 148.31 | 214.77 |
Urban Growth Process | Organic | Spontaneous | ||
---|---|---|---|---|
Urban Expansion Pattern | Infilling and Edge-Expansion | Outlying | ||
urban development Period | 2004–2009 | Percentage | 0.66 | 0.34 |
Mean | 11.73 | 2.13 | ||
Variance | 66.92 | 3.12 | ||
2009–2016 | Percentage | 0.61 | 0.39 | |
Mean | 7.54 | 7.63 | ||
Variance | 45.24 | 26.16 | ||
2004–2016 | Percentage | 0.76 | 0.24 | |
Mean | 25.58 | 4.84 | ||
Variance | 196.56 | 19.99 |
Parameters | Initial Value | Range | Calibrated Value | ||
---|---|---|---|---|---|
Organic proportion | 0.69 | (0, 1) | 0.78 | ||
Patch size and shape | Organic growth | Mean | 16.56 | (7.54, 25.58) | 14.61 |
Variance | 120.90 | (45. 24, 196.56) | 120.89 | ||
Isometry | 1.00 | (0, 2) | 0.57 | ||
Spontaneous growth | Mean | 4.88 | (2.13, 7.63) | 2.47 | |
Variance | 19.99 | (3.12, 26.169) | 7.25 | ||
Isometry | 1.00 | (0, 2) | 0.30 |
Scenario | Area of New Urban Development (km2) | Pruning Threshold of Urbanization Frequency |
---|---|---|
Sc1 | 104.76 | 58 |
Sc2 | 135.63 | 47 |
Sc3 | 120.32 | 44 |
Sc4 | 156.16 | 40 |
Sc5 | 154.13 | 57 |
Sc6 | 203.81 | 50 |
Landscape Metrics | Sc1 | Sc2 | Sc3 | Sc4 | Sc5 | Sc6 | Definition |
---|---|---|---|---|---|---|---|
NP | 293.00 | 551.00 | 483.00 | 870.00 | 639.00 | 1541.00 | Number of urban patches |
CONTIG | 0.20 | 0.13 | 0.23 | 0.18 | 0.26 | 0.18 | Indication of the spatial contiguity of cells within an urban patch |
ENN | 237.07 | 235.04 | 207.05 | 224.57 | 176.67 | 205.19 | Quantification of patch isolation degree based on the Euclidean nearest-neighbor distances between urban patches |
COHESION | 79.03 | 72.68 | 85.99 | 80.85 | 91.12 | 86.25 | Measurement of the spatial connectedness of all the urban patches |
AI | 40.49 | 33.66 | 49.71 | 43.72 | 59.29 | 51.77 | Measurement of the adjacencies or aggregation between the urban patches |
Scenario | Expected | Simulated | Difference | ||
---|---|---|---|---|---|
Compact | Spontaneous | Compact | Spontaneous | ||
Slow | 165.56 | 132.43 | 129.69 | 33.13 | 35.88 |
Moderate | 182.02 | 148.14 | 142.69 | 33.88 | 39.33 |
Fast | 214.77 | 180.28 | 168.87 | 34.50 | 45.90 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Gong, J.; Tang, W.; Shen, Y.; Liu, C.; Gao, J. Delineation of Urban Growth Boundaries Using a Patch-Based Cellular Automata Model under Multiple Spatial and Socio-Economic Scenarios. Sustainability 2019, 11, 6159. https://doi.org/10.3390/su11216159
Yang J, Gong J, Tang W, Shen Y, Liu C, Gao J. Delineation of Urban Growth Boundaries Using a Patch-Based Cellular Automata Model under Multiple Spatial and Socio-Economic Scenarios. Sustainability. 2019; 11(21):6159. https://doi.org/10.3390/su11216159
Chicago/Turabian StyleYang, Jianxin, Jian Gong, Wenwu Tang, Yang Shen, Chunyan Liu, and Jing Gao. 2019. "Delineation of Urban Growth Boundaries Using a Patch-Based Cellular Automata Model under Multiple Spatial and Socio-Economic Scenarios" Sustainability 11, no. 21: 6159. https://doi.org/10.3390/su11216159