1. Introduction
The building and construction industry is one of the largest contributors of greenhouse gas emissions and is responsible for 36% of the global energy consumption [
1]. It has become increasingly crucial to reduce the environmental impact associated with the building sector, including using alternative construction materials to reduce the carbon footprint of buildings. The use of wood in buildings as alternative materials can help mitigate climate change since wood-based structural materials have a lower carbon footprint than their non-wood counterparts, such as steel and concrete. Moreover, trees sequester carbon from the atmosphere, and wood products can keep that carbon stored away from the atmosphere for their lifetimes [
2,
3]. In recent years, the environmental performances of mass timber have been evaluated extensively in the U.S. [
4,
5,
6], which calls for further examination of the potential of wider application of mass timber in buildings in other countries.
As the most populated country globally, China has experienced rapid urbanization for decades, and the building sector contributed a significant amount of greenhouse gas emissions [
7,
8]. Most of the buildings in China use traditional building materials that are usually energy-intensive. For instance, concrete and steel account for over 60% of the total carbon emission among all building components [
9], but regardless of their contribution to the carbon footprint of buildings, they remain the two most commonly used materials in China.
The Population Division (UNPD) of the Department of Economic and Social Affairs at the United Nations (UN DESA) has predicted that 80% of China’s population will be living in urban areas by 2050, an increase from ~36% in 2000 [
10]. Guo et al. [
7] suggested that under the current urbanization plan in China, it is likely that the building sector will continue to contribute a significant amount of energy consumption and CO
2 release. A recent study suggested that China’s new building constructions may likely turn to a slower rate after 2020 and the focus of the construction industry will be the maintenance and renovation of existing buildings, as well as the end-of-life (EoL) management of demolished old buildings [
11]. Nonetheless, as China expressed determination to reduce carbon emission in the near future, it has become increasingly important for emission-intensive industries to adopt changes and seek options that can help reduce their carbon footprint.
In 2015, China submitted a document to the United Nations Framework Convention on Climate Change (UNFCCC) specifically expressing the intent to control emissions from the building and transportation sectors through various measures, including plans to accelerate the share of low-carbon communities and green buildings in new constructions [
12]. For the building sector, all possible mitigation measures throughout a building’s life cycle need to be considered to achieve emission reduction, including substituting concrete and steel with wood products.
Cross-laminated timber (CLT), along with many other mass timber products, is being recognized as an environmentally sustainable alternative to concrete and steel. Recent works in the U.S. have shown that buildings that incorporate mass timber, particularly CLT, achieve lower environmental impacts compared to their functionally equivalent concrete or steel counterparts [
13,
14,
15,
16]. Studies outside of the U.S. also suggested the benefits of using mass timber materials from an environmental perspective [
17,
18,
19]. It is important to note that one of the advantages of using mass timber over other timber products in construction is that mass timber can be used as a structural component in tall buildings. This characteristic can be particularly important for urban areas that have a demand for tall buildings due to higher population density. In China, studies have also suggested that using wood products to replace concrete and steel in the construction industry can significantly reduce carbon emissions [
20]. However, research that primarily focuses on CLT or mass timber materials is required for these products to gain public acceptance and market shares on a wider scale.
In recent years, CLT has started to gain some recognition in China. The National Forestry and Grassland Bureau has released a design and technical standard for the use of CLT in mid- to high-rise buildings. The CLT standard, known as LY/T3039-2018, was officially implemented in 2019 and provides a foundation for applying CLT in new constructions. Nonetheless, issues such as regulation, marketing, public acceptance, assembly, and production cost remain great challenges for the use of prefabricated materials such as CLT in the construction industry [
21,
22]. Furthermore, studies that investigate the role of alternative materials in reducing the carbon footprint of building constructions often lack data specifically appropriate for China cases [
23]. At the current stage, the few existing CLT buildings in China are predominately used for demonstration purposes [
24], and although some studies associated with the environmental aspects of CLT and CLT buildings have been conducted in China in the last several years [
7,
25,
26], research on the production process and application of CLT, as well as a comparative analysis of whole-building performance, is still at an early stage.
Although 10 million residential multi-family buildings are built in China each year, only a negligible number of buildings use wood as the primary material. Most of these houses use imported materials and are often built due to special demands [
27]. Promoting the wider use of CLT in China’s construction industry requires tremendous support from the government and policy makers, but the implementation of such policy and regulations are relatively slow [
20].
This case study used current data appropriate to China’s manufacturing and building processes to conduct a comparative life cycle assessment for a timber building and a concrete building in China. The purpose of this study was to investigate the environmental impacts of CLT as a building material and provide a comprehensive comparison between timber building and concrete building. Quantifying the emission mitigation potentials of using CLT in new buildings can help accelerate associated policy development and provide valuable references for developing more sustainable constructions at the regional and national levels.
3. Results
This section provides an overview of the building material comparison between the two buildings, as well as a detailed life cycle impact analysis.
3.1. Comparison of Building Materials
A comparison of the building materials used in the timber and the concrete building is shown in
Table 4. The floor component in the timber building is mainly assembled with CLT panels but requires additional gypsum concrete on top of the slab. Both buildings use fiberglass batt insulation as part of the wall assembly for added thermal performance and soundproofing. The requirement of metal stud and rebar is significantly higher in the concrete building than that of the timber building; for instance, 25,700 kg of rebar is required in the concrete building’s foundation, while only 5197 kg of rebar is required in the timber building. While both buildings require fiberglass insulation and gypsum boards in the walls, the amount required is lower in the timber building.
3.2. Impact Analysis
Table 5 and
Table 6 present the actual impacts of the buildings and the differences between the timber and concrete buildings for each impact category. The concrete building was used as the baseline for comparison.
Figure 2 illustrates the differences in percentage between the timber and concrete buildings using the concrete building as the baseline (i.e., 100%).
While the timber building showed a reduction in total GWP and many impact categories, the concrete building demonstrated lower impacts in categories such as ozone depletion, acidification, smog, and fossil fuel depletion. It should be noted that the acidification and smog potential of the timber building were particularly high, which may be attributed to the longer transportation distances of raw materials. For example, the CLT manufacturing process in China showed higher impacts compared to the U.S. CLT manufacturing due to the fact that lumber was imported from Europe and the required transportation was an important driver of higher impacts in these categories.
Most of the impacts were associated with modules A1–A3, which included resource extraction, transportation, and material production. The overall performance in module A4 mainly depended on the transportation distances of building materials and the mode of transportation. Concrete is usually produced locally and is generally more accessible to buyers. This gives concrete some advantages in terms of transportation impacts. In contrast, because there are very few CLT manufacturers in China, CLT needs to be transported further away from the building site. In this study, CLT was assumed to be purchased from a manufacturer in the Southeastern region in China, over 2000 km from the building site. Nonetheless, because the overall mass of the materials used in the timber building is lighter than that of the concrete building, the timber building performed better in terms of GWP regardless of the further transportation distance.
3.3. Contribution Analysis
A contribution analysis was performed to investigate the impacts associated with each building material and assembly. Knowing the impacts posted by individual materials or assemblies can help optimize the production process of construction materials.
3.3.1. Building Assemblies
A contribution analysis was conducted using the GWP (kg CO
2 eq.) to examine the impact of each building assembly and material. Overall, the GWP of the timber building was 25% lower than that of the concrete building (
Table 7). In modules A1–A3, the floor component of the timber building had a 26% higher global warming impact than the concrete building, but its foundation and wall components had significantly lower GWP. This might be attributed to the lower requirement of materials in the timber building. For instance, the concrete and rebar requirements for the foundation were also lower for the timber building. The floor component was more material-intensive than other components in the timber building, which made it account for a higher percentage of impacts. Despite the longer transportation distance for CLT, the overall GWP in module A4 was 24% lower in the timber building because of a lower total material mass. All assemblies in the timber building showed lower GWP in module A5, which can be attributed to its lower mass that helped to reduce the fuel consumption in heavy machinery.
Figure 3 provides the contribution to the total GWP of each building assembly (A1–A5). While the floor assembly was the largest GWP contributor in the timber building (i.e., 42%), the wall assembly contributed the highest global warming impact in the concrete building.
3.3.2. Building Materials
Table 8 shows the global warming impacts of the buildings by materials. In modules A1-A3, all materials used in the timber building showed a reduction in GWP compared to the same materials used in the concrete building. The largest reduction in GWP was shown by concrete, with a 91% lower impact in the timber building. This was expected since the timber building replaced most of the concrete with CLT. It is important to note that the GWP of CLT in modules A1–A3 was slightly higher than that of concrete, which may be associated with the higher impacts of raw material transportation from overseas. Nonetheless, the overall GWP of the timber building was 24% lower.
Figure 4 illustrates the contribution of each material relative to the total building. CLT was the primary material used in the timber building, accounting for 53% of the total GWP contribution. Gypsum concrete and metal stud each accounted for 6% of the total GWP contribution. Since the building assessed in this case study is an eight-story, mid-rise building, extensive gypsum boards were not required for the walls, therefore reducing the overall GWP of the timber building. For the concrete building, although concrete was the primary material, gypsum boards and metal studs contributed a combined 30% of GWP.
3.4. Carbon Storage
The carbon storage in wood products was calculated assuming the carbon content equals half of the mass of wood [
41]. Although the end-of-life stages were not within the system boundary for this study, this information can be used in end-of-life scenarios.
Table 9 lists the amounts of carbon stored, fossil emission, biogenic carbon associated with the timber building, and the amount of CO
2 that is sequestered if the same quantity of biomass used for CLT production is regenerated in the forest. Biogenic carbon emission was calculated based on several key sources, including unallocated lumber which was not used in the final CLT panels, carbon contents in the co-products, and emission generated from biofuel combustion. As shown in
Table 9, more carbon is stored in the building than is released (fossil based) during production (embodied carbon). Biogenic carbon emission was not counted toward global warming contribution under the carbon neutrality assumption, which assumes that biogenic carbon emission from wood products is balanced by plant regeneration in sustainably managed forests. Under a sustainable forest management scenario, trees harvested to produce CLT are assumed to be replanted. If the amount of CO
2 sequestered by the newly generated trees (i.e., 1243 t CO
2 eq.) is added to the CO
2 stored in the CLT in the timber building, the total level of CO
2 can compensate for the emissions released during material production.
4. Discussion
The results of this study suggest that the mass timber building has a lower global warming impact than the concrete building in all life cycle stages evaluated in this study (modules A1–A5), despite the longer traveling distance required for the raw materials used to produce CLT. This is the result of the lower amount of materials required in the timber building for each m2 of floor area to achieve the same functionality. However, the actual materials required can vary significantly depending on the purpose, location, and design of the buildings.
CLT contributed the highest global warming impact among all materials used in the timber building in module A4. This could be attributed to the longer traveling distance required to transport CLT to the building site, given that there are very few CLT manufacturing facilities in China. As part of the effort to restore forest coverage and ecological balance, China has launched a series of forest management programs since 1998 that led to a significant decrease in commercial harvesting [
42]. Because of these strict restrictions, many Chinese manufacturers have relied on imported lumber and China has become a significant consumer in the global wood product trade market. The transportation distances of lumber and CLT considered in several U.S. case studies are a lot shorter than those presented in this study. On average, the evaluated transportation distance of lumber from sawmills to the CLT manufacturing facility is approximately 250 km by truck in the U.S. [
5,
43], whereas the distance evaluated in this study was over 20,000 km and involved multiple modes of transport (e.g., truck, train, and ship) because the lumber was sourced from Europe.
Longer transportation distances of the raw material can post significant environmental and economic burdens and undermine the potential of using wood products. However, using locally sourced wood would require changes in forest management policies. In recent years, China’s forest coverage has increased due to afforestation and logging regulation efforts. Forest lands accounted for 22.2% of the total land area in 2015, compared to 20.4% in 2008 [
7]. An increase in secondary forest lands may motivate policy makers to implement new forest management strategies that allow more commercial logging activities. With changes in forest management policies, along with the promotion of low-carbon alternative building materials, mass timber may play a role in reducing the environmental impact of the construction sector in China.
As a wood product, mass timber has the ability to store carbon and delay emissions to the atmosphere. As shown in
Table 9, CLT in the timber building can store 1114 t CO
2 eq., which is more than the amount of CO
2 eq. released during its production stage (i.e., 780 t CO
2 eq.). Around 437 t CO
2 eq. was considered biogenic, which was assumed to not contribute to global warming since emission released from wood products is assumed to be balanced by carbon sequestration from new generations of trees. This logic is based on the assumption that the woods are harvested from sustainable sources. Under sustainable forest management scenarios, this carbon storage can help offset the greenhouse gas emitted during the building’s life cycle stages [
3]. In this case, 1243 t CO
2 eq. can be sequestered in the trees planted to replace the ones harvested for producing the CLT panels used in the timber building.
The U.S. recently adopted the latest 2021 International Building Code (IBC) and allowed mass timber to be used in buildings up to 18 stories high, which created more opportunities for tall wood buildings in the construction sector. Due to higher population density in urban settings, high-rise residential buildings are very common in China, and allowing the use of mass timber in taller buildings will help make mass timber a more competitive option as an alternative building material. However, given that research on mass timber buildings is still at a relatively early stage in China, more extensive work may be required before the changes in the building code can be adopted in China.
It should be noted that although all data used for the LCA model were considered appropriate for China, region-specific data within the country may be required to improve the accuracy of the model. For instance, road conditions and access to building materials can vary significantly depending on the region. Furthermore, the use phase and end-of-life phase of buildings were not included in this study. The inclusion of these life cycle phases would provide a more complete picture of the potential impacts of using mass timber in the building sector.
5. Conclusions
The timber building achieved better environmental performance in several impact categories. A 25% reduction in GWP was achieved in the timber building compared to the baseline concrete building. The timber building did not perform as well in some impact categories, such as AP and SFP, which could be associated with the longer transportation distance required for CLT. This study applied data appropriate for Chinese buildings and identified key aspects associated with using mass timber as a building material. The environmental performance of timber buildings can be further improved by local sourcing, enhanced logistics, and manufacturing optimizations. The use of mass timber will require public awareness and policies that encourage the adoption of alternative building materials.
The two buildings evaluated in this case study are both eight-story residential buildings, and thus future research should be conducted under different geographical regions and with various building types. Nonetheless, the components described in this study (e.g., CLT manufacturing, building design, and energy consumption) are applicable for other types of buildings. Data and outcomes associated with this study can be applied in future studies for investigating the impacts of using mass timber in various building types appropriate for China.