Optimization of Urban Distribution Centres: A Multi-Stage Dynamic Location Approach
Abstract
:1. Introduction
2. Literature Review
3. Model Formulation
3.1. Problem Statement
3.2. Symbols and Variables
3.3. Service Reliability Calculation for Distribution Centres
3.4. The Location Model of Stage
3.5. Transformation of Multi-Objective Model
3.6. Dynamic Location Model of the Urban Distribution Centres
4. Model Solution
4.1. Solution Idea
4.2. Transforming the Dynamic Location into the Shortest Path
4.3. Shortest Path Algorithm
5. Case Description and Data Acquisition
6. Results and Discussion
6.1. Optimal Dynamic Location and Comparison with Static Solution
- If the location points remained unchanged, the transfer cost was 0.
- If the location points change, transfer costs are related to the fixed cost of the changed location point. Specifically, the transfer cost from phase one to phase two was equal to 0.5 times the fixed cost of the location point in stage two, the transfer cost from phase two to phase three was equal to 0.8 times the fixed cost of the location point in stage three, and the transfer cost from phase three to phase four was equal to 1.2 times the fixed cost of the location point in stage four.
- If the fixed capacity of the location point was exceeded in any stage, the transfer cost was equal to the excess tonnage multiplied by two times the operating cost of the site. The transfer cost between different stages was calculated, as shown in Table 5.
6.2. Optimal Location and Cost Analysis Given Different Objectives
6.3. Discussion of the Results
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
TIAN | BEI | GU | ZHANG | CHENG | QING | QIN | ZUN | TANGH | TANGS | LANG | LAI | AN | BAO | CANG | GUAN | SHE | HAN | NAN | HENG | GAO | SHI | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TIAN | 0 | 136 | 529 | 353 | 364 | 241 | 264 | 143 | 135 | 124 | 83 | 257 | 150 | 176 | 120 | 384 | 549 | 460 | 311 | 415 | 256 | 391 | 345 |
BEI | 136 | 0 | 393 | 228 | 221 | 232 | 290 | 182 | 235 | 183 | 58 | 252 | 150 | 147 | 228 | 443 | 619 | 456 | 347 | 399 | 292 | 331 | 285 |
GU | 529 | 393 | 0 | 174 | 290 | 493 | 693 | 484 | 585 | 535 | 456 | 399 | 543 | 540 | 622 | 836 | 921 | 849 | 740 | 792 | 685 | 696 | 650 |
ZHANG | 353 | 228 | 174 | 0 | 388 | 518 | 513 | 341 | 462 | 412 | 296 | 224 | 379 | 376 | 532 | 689 | 747 | 647 | 599 | 590 | 538 | 522 | 476 |
CHENG | 364 | 221 | 290 | 388 | 0 | 203 | 403 | 194 | 295 | 254 | 296 | 371 | 387 | 384 | 396 | 660 | 825 | 736 | 587 | 691 | 532 | 568 | 522 |
QING | 241 | 232 | 493 | 518 | 203 | 0 | 121 | 107 | 173 | 131 | 259 | 489 | 379 | 382 | 355 | 662 | 851 | 707 | 552 | 650 | 497 | 563 | 517 |
QIN | 264 | 290 | 693 | 513 | 403 | 121 | 0 | 184 | 149 | 122 | 334 | 545 | 440 | 437 | 364 | 628 | 793 | 703 | 555 | 659 | 500 | 635 | 589 |
ZUN | 143 | 182 | 484 | 341 | 194 | 107 | 184 | 0 | 94 | 68 | 262 | 379 | 272 | 269 | 319 | 550 | 801 | 638 | 454 | 581 | 399 | 513 | 467 |
TANGH | 135 | 235 | 585 | 462 | 295 | 173 | 149 | 94 | 0 | 50 | 156 | 431 | 385 | 382 | 232 | 542 | 768 | 607 | 446 | 550 | 391 | 566 | 520 |
TANGS | 124 | 183 | 535 | 412 | 254 | 131 | 122 | 68 | 50 | 0 | 194 | 373 | 318 | 297 | 224 | 488 | 653 | 563 | 415 | 519 | 360 | 495 | 449 |
LANG | 83 | 58 | 456 | 296 | 296 | 259 | 334 | 262 | 156 | 194 | 0 | 231 | 124 | 141 | 170 | 396 | 546 | 449 | 300 | 404 | 245 | 325 | 279 |
LAI | 257 | 252 | 399 | 224 | 371 | 489 | 545 | 379 | 431 | 373 | 231 | 0 | 186 | 144 | 300 | 447 | 472 | 395 | 347 | 338 | 289 | 270 | 224 |
AN | 150 | 150 | 543 | 379 | 387 | 379 | 440 | 272 | 385 | 318 | 124 | 186 | 0 | 42 | 151 | 355 | 428 | 351 | 259 | 294 | 204 | 226 | 180 |
BAO | 176 | 147 | 540 | 376 | 384 | 382 | 437 | 269 | 382 | 297 | 141 | 144 | 42 | 0 | 156 | 313 | 386 | 311 | 217 | 246 | 162 | 182 | 130 |
CANG | 120 | 228 | 622 | 532 | 396 | 355 | 364 | 319 | 232 | 224 | 170 | 300 | 151 | 156 | 0 | 264 | 429 | 340 | 191 | 295 | 136 | 271 | 225 |
GUAN | 384 | 443 | 836 | 689 | 660 | 662 | 628 | 550 | 542 | 488 | 396 | 447 | 355 | 313 | 264 | 0 | 172 | 75 | 94 | 129 | 142 | 198 | 223 |
SHE | 549 | 619 | 921 | 747 | 825 | 851 | 793 | 801 | 768 | 653 | 546 | 472 | 428 | 386 | 429 | 172 | 0 | 97 | 238 | 134 | 301 | 202 | 315 |
HAN | 460 | 456 | 849 | 647 | 736 | 707 | 703 | 638 | 607 | 563 | 449 | 395 | 351 | 311 | 340 | 75 | 97 | 0 | 151 | 65 | 204 | 129 | 181 |
NAN | 311 | 347 | 740 | 599 | 587 | 552 | 555 | 454 | 446 | 415 | 300 | 347 | 259 | 217 | 191 | 94 | 238 | 151 | 0 | 104 | 48 | 89 | 119 |
415 | 399 | 792 | 590 | 691 | 650 | 659 | 581 | 550 | 519 | 404 | 338 | 294 | 246 | 295 | 129 | 134 | 65 | 104 | 0 | 159 | 64 | 116 | |
HENG | 256 | 292 | 685 | 538 | 532 | 497 | 500 | 399 | 391 | 360 | 245 | 289 | 204 | 162 | 136 | 142 | 301 | 204 | 48 | 159 | 0 | 129 | 138 |
GAO | 391 | 331 | 696 | 522 | 568 | 563 | 635 | 513 | 566 | 495 | 325 | 270 | 226 | 182 | 271 | 198 | 202 | 129 | 89 | 64 | 129 | 0 | 52 |
SHI | 345 | 285 | 650 | 476 | 522 | 517 | 589 | 467 | 520 | 449 | 279 | 224 | 180 | 130 | 225 | 223 | 315 | 181 | 119 | 116 | 138 | 52 | 0 |
References
- Tao, W.Z.H. Research on the Urban 2B/2C Cold Chain Logistics Joint Distribution Model and Its Pricing Game Problem; Beijing Jiaotong University: Beijing, China, 2017. [Google Scholar]
- Chen, C.T. A fuzzy approach to select the location of the distribution center. Fuzzy Sets Syst. 2001, 118, 65–73. [Google Scholar] [CrossRef]
- Lee, H.S. A Fuzzy Multi-Criteria Decision Making Model for the Selection of the Distribution Center. In Lecture Notes in Computer Science, Proceedings of the Advances in Natural Computation First International Conference ICNC 2005, Changsha, China, 27–29 August 2005; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3612, pp. 1290–1299. [Google Scholar]
- Sopha, B.M.; Asih, A.M.S.; Pradana, F.D.; Gunawan, H.E.; Karuniawati, Y. Urban distribution center location. Int. J. Eng. Bus. Manag. 2016, 8, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Musolino, G.; Rindone, C.; Polimeni, A.; Vitetta, A. Planning urban distribution center location with variable restocking demand scenarios: General methodology and testing in a medium-size town. Transp. Policy 2018, 80, 157–166. [Google Scholar] [CrossRef]
- Wang, B.W.; Xiong, H.T.; Jiang, C.R. A multicriteria decision making approach based on fuzzy theory and credibility mechanism for logistics center location selection. Sci. World J. 2014, 2014, 347619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Grifoll, M.; Estrada, M.; Zheng, P.; Feng, H. Optimization on Emergency Materials Dispatching Considering the Characteristics of Integrated Emergency Response for Large-Scale Marine Oil Spills. J. Mar. Sci. Eng. 2019, 7, 214. [Google Scholar] [CrossRef] [Green Version]
- Ye, X.; Chen, B.; Lee, K.; Storesund, R.; Li, P.; Kang, Q.; Zhang, B. An emergency response system by dynamic simulation and enhanced particle swarm optimization and application for a marine oil spill accident. J. Clean. Prod. 2021, 297, 126591. [Google Scholar] [CrossRef]
- Yan, L.; Grifoll, M.; Zheng, P. Model and Algorithm of Two-Stage Distribution Location Routing with Hard Time Window for City Cold-Chain Logistics. Appl. Sci. 2020, 10, 2564. [Google Scholar] [CrossRef] [Green Version]
- Shao, C.; Wang, H.; Yu, M. Multi-Objective Optimization of Customer-Centered Intermodal Freight Routing Problem Based on the Combination of DRSA and NSGA-III. Sustainability 2022, 14, 2985. [Google Scholar] [CrossRef]
- Bayir, B.; Charles, A.; Sekhari, A.; Ouzrout, Y. Issues and Challenges in Short Food Supply Chains: A Systematic Literature Review. Sustainability 2022, 14, 3029. [Google Scholar] [CrossRef]
- Weber, A. Theory of the Location of Industries; CSISS: Santa Barbara, CA, USA, 1909; Available online: https://escholar-ship.org/uc/Item/1k3927t6 (accessed on 5 March 2019).
- Hakimi, S.L. Optimum Locations of Switch-ing Centers and the Absolute Centers and Medians of a Graph. Oper. Res. 1964, 12, 450–459. [Google Scholar] [CrossRef]
- Vahidnia, M.H.; Alesheikh, A.A.; Alimohammadi, A. Hospital site selection using fuzzy AHP and its derivatives. J. Environ. Manag. 2009, 90, 3048–3056. [Google Scholar] [CrossRef] [PubMed]
- Pizzolato, N.D.; Barcelos, F.B.; Lorena, L.A.N. School location methodology in urban areas of developing countries. Int. Trans. Oper. Res. 2010, 11, 667–681. [Google Scholar] [CrossRef]
- Batta, R.; Lejeune, M.; Prasad, S. Public facility location using dispersion, population, and equity criteria. Eur. J. Oper. Res. 2014, 234, 819–829. [Google Scholar] [CrossRef]
- Roig-Tierno, N.; Baviera-Puig, A.; Buitrago-Vera, J.; Mas-Verdu, F. The retail site location decision process using GIS and the analytical hierarchy process. Appl. Geogr. 2013, 40, 191–198. [Google Scholar] [CrossRef]
- Hammad, A.W.A.; Akbarnezhad, A.; Rey, D. Sustainable urban facility location: Minimising noise pollution and network congestion. Transp. Res. E Logist. Transp. Rev. 2017, 107, 38–59. [Google Scholar] [CrossRef]
- Chen, L.; Olhager, J.; Tang, O. Manufacturing facility location and sustainability: A literature review and research agenda. Int. J. Prod. Econ. 2014, 149, 154–163. [Google Scholar] [CrossRef] [Green Version]
- Alberto, P. The logistics of industrial location decisions: An application of the analytic hierarchy process methodology. Int. J. Logist. Res. Appl. 2000, 3, 273–289. [Google Scholar] [CrossRef]
- Kwiesielewicz, M.; Uden, E.V. Inconsistent and contradictory judgements in pairwise comparison method in the AHP. Comput. Oper. Res. 2004, 31, 713–719. [Google Scholar] [CrossRef]
- Chen, Z.H.B.; Huang, X.Z.H. Improved grey relational evaluation method for location selection of logistics distribution center. Stat. Decis. 2015, 3, 52–55. [Google Scholar]
- Dai, Y.Z.; Ma, X.L. Comprehensive Evaluation on Address Selection of Distributing Center. J. Shijiazhuang Railw. Inst. 2004, 17, 93–96. [Google Scholar]
- Owen, S.H.; Daskin, M.S. Strategic facility location: A review. Eur. J. Oper. Res. 1998, 111, 423–447. [Google Scholar] [CrossRef]
- Emirhuseyinoglu, G.; Ekici, A. Dynamic facility location with supplier selection under quantity discount. Comput. Ind. Eng. 2019, 134, 64–74. [Google Scholar] [CrossRef]
- Li, S.; Wei, Z.; Huang, A. Location Selection of Urban Distribution Center with a Mathematical Modeling Approach Based on the Total Cost. IEEE Access 2018, 6, 61833–61842. [Google Scholar] [CrossRef]
- Regmi, M.B.; Hanaoka, S. Location analysis of logistics centres in Laos. Int. J. Logist. Res. Appl. 2013, 3, 227–242. [Google Scholar] [CrossRef]
- Yang, Z.Z.; Moodie, D.R. Locating urban logistics terminals and shopping centres in a Chinese city. Int. J. Logist. Res. Appl. 2011, 3, 165–177. [Google Scholar] [CrossRef]
- Ballou, R.H. Dynamic Warehouse Location Analysis. J. Mark. Res. 1968, 5, 271–276. [Google Scholar] [CrossRef]
- Sweeney, D.J.; Tatham, R.L. An Improved Long-Run Model for Multiple Warehouse Location. Manag. Sci. 1976, 22, 748–758. [Google Scholar] [CrossRef] [Green Version]
- Wesolowsky, G.O. Dynamic Facility Location. Manag. Sci. 1973, 19, 1241–1248. [Google Scholar] [CrossRef]
- Farahani, R.Z.; Drezner, Z.; Asgari, N. Single facility location and relocation problem with time dependent weights and discrete planning horizon. Ann. Oper. Res. 2009, 167, 353–368. [Google Scholar] [CrossRef]
- Tapiero, C.S. Transportation-Location-Allocation Problems over Time. J. Reg. Sci. 1971, 11, 377–384. [Google Scholar] [CrossRef]
- Canel, C.; Khumawala, B.M.; Law, J.; Loh, A. An Algorithm for the Capacitated, Multi-Commodity Multi-Period Facility Location Problem. Comput. Oper. Res. 2001, 28, 411–427. [Google Scholar] [CrossRef]
- Melo, M.T.; Nickel, S.; Gama, F.S. Dynamic multi-commodity capacitated facility location: A mathematical modeling framework for strategic supply chain planning. Comput. Oper. Res. 2005, 33, 181–208. [Google Scholar] [CrossRef]
- Dias, J.; Captivo, M.E.; Clímaco, J. Capacitated dynamic location problems with opening, closure and reopening of facilities. IMA J. Manag. Math. 2006, 17, 317–348. [Google Scholar] [CrossRef]
- Zhou, A.L.; Li, X.H.; Ma, H.J. Research on a multiple-period dynamic location model of enterprise logistics centers. J. Syst. Eng. 2011, 26, 360–366. [Google Scholar]
- Thomas, M.U. Supply chain reliability for contingency operation. In Proceedings of the Annual Reliability and Maintainability Symposium, Seattle, WA, USA, 28–31 January 2002; IEEE: Piscataway, NJ, USA, 2002; pp. 61–67. [Google Scholar]
- Wang, N.; Lu, J.C.; Kvam, P. Reliability modeling in spatially distributed logistics systems. IEEE Trans. Reliab. 2006, 55, 525–534. [Google Scholar] [CrossRef]
- Snyder, L.V. Supply Chain Robustness and Reliability: Modeling and Algorithms; Northwestern University: Evanston, IL, USA, 2003. [Google Scholar]
- Xu, J.P.; Li, J. The Theory and Method of Multi-Objective Decision; Tsinghua University Press: Beijing, China, 2005. [Google Scholar]
- Zhang, J.; Guo, L.J.; Zhou, S.; Lin, T. Operational Research Model and Its Application; Tsinghua University Press: Beijing, China, 2012. [Google Scholar]
- Wu, Z.X. Research on the Optimization of RQ Third Party Cold Chain Logistics Network; Liaoning Technical University: Fuxin, China, 2015. [Google Scholar]
- Wang, F.; Dai, J. Research on the Application of TDABC in the Cost Management of Third Party Logistics Enterprises. Value Eng. 2020, 39, 107–109. [Google Scholar]
- Wang, X.; Cao, W. Research on optimization of distribution route for cold chain logistics cooperative distribution of fresh e-commerce based on price discount. J. Phys. Conf. Ser. 2021, 1732, 012041. [Google Scholar] [CrossRef]
- Farahani, R.Z.; Szeto, W.Y.; Ghadimi, S. The single facility location problem with time-dependent weights and relocation cost over a continuous time horizon. J. Oper. Res. Soc. 2017, 66, 265–277. [Google Scholar] [CrossRef]
- Kumar, B.V.; Ramaiah, V. Enhancement of dynamic stability by optimal location and capacity of UPFC: A hybrid approach. Energy 2019, 190, 116464. [Google Scholar] [CrossRef]
- Segura, E.; Carmona-Benitez, R.B.; Lozano, A. Dynamic Location of Distribution Centres, a Real Case Study. Transp. Res. Procedia 2014, 3, 547–554. [Google Scholar] [CrossRef] [Green Version]
- Schmid, V.; Doerner, K.F. Ambulance location and relocation problems with time-dependent travel times. Eur. J. Oper. Res. 2010, 207, 1293–1303. [Google Scholar] [CrossRef] [Green Version]
- Majumder, S.; Kar, M.B.; Kar, S.; Pal, T. Uncertain programming models for multi-objective shortest path problem with uncertain parameters. Soft Comput. 2020, 24, 8975–8996. [Google Scholar] [CrossRef]
- Laumanns, M.; Thiele, L.; Zitzler, E. An efficient, adaptive parameter variation scheme for metaheuristics based on the epsilon-constraint method. Eur. J. Oper. Res. 2006, 169, 932–942. [Google Scholar] [CrossRef]
- Visée, M.; Teghem, J.; Pirlot, M.; Ulungu, E.L. Two-phases method and branch and bound procedures to solve the bi–objective knapsack problem. J. Glob. Optim. 1988, 12, 139–155. [Google Scholar] [CrossRef]
Symbols and Variables | Meaning |
---|---|
Index of supply points | |
Index of potential distribution centres | |
Index of demand points | |
Index of planning cycles | |
Set of demand points of the goods | |
Set of supply points of the goods | |
Set of the alternative distribution centres | |
Set of planning cycles | |
The distance between the supply point and the distribution centre | |
The distance between the distribution centre and demand point | |
The transportation cost per unit from the supply point of goods to the distribution centre | |
The transportation cost per unit from the distribution centre to the demand point | |
The fixed cost of distribution centre | |
The number of rental distribution centres | |
Infinite positive number | |
The maximum capacity of the distribution centre | |
The demand quantity of demand point in stage | |
Transit operating cost per unit product of distribution centre in stage | |
The number of deliveries in each stage | |
Quantity of goods supplied from the supply point to the distribution centre in stage | |
If the distribution centre is selected in stage , equals to 1; otherwise, it is 0 | |
Quantity of goods supplied from the distribution centre to the demand point in stage |
Site | Fixed Cost | Unit Operating Cost | Site | Fixed Cost | Unit Operating Cost |
---|---|---|---|---|---|
BEI | 207,000 | 125 | BAO | 121,500 | 65 |
GU | 52,800 | 45 | AN | 40,500 | 25 |
ZHANG | 64,800 | 45 | GUAN | 33,750 | 18 |
CHENG | 81,000 | 53 | CANG | 67,500 | 35 |
QING | 42,000 | 18 | SHE | 36,000 | 25 |
QIN | 70,200 | 81 | HAN | 54,000 | 30 |
ZUN | 90,000 | 48 | NAN | 33,750 | 18 |
TANGH | 54,000 | 35 | 78,750 | 45 | |
LANG | 142,500 | 72 | GAO | 45,000 | 24 |
TANGS | 135,000 | 75 | HENG | 67,500 | 35 |
LAI | 45,000 | 26 | SHI | 123,750 | 65 |
Site | |||||||||||
BEI | GU | ZHANG | CHENG | QING | QIN | ZUN | TANGH | LANG | TANGS | LAI | |
stage 1 | 6 | 4 | 2 | 7 | 7 | 4 | 6 | 2 | 2 | 3 | 6 |
stage 2 | 10 | 4 | 8 | 7 | 2 | 7 | 5 | 3 | 7 | 8 | 6 |
stage 3 | 4 | 3 | 3 | 2 | 5 | 6 | 5 | 6 | 2 | 7 | 5 |
stage 4 | 8 | 4 | 8 | 7 | 2 | 7 | 5 | 5 | 7 | 8 | 6 |
Site | |||||||||||
BAO | AN | GUAN | CANG | SHE | HAN | NAN | GAO | HENG | SHE | ||
stage 1 | 4 | 8 | 5 | 2 | 4 | 6 | 6 | 5 | 3 | 5 | 6 |
stage 2 | 6 | 7 | 3 | 7 | 2 | 7 | 4 | 6 | 5 | 7 | 8 |
stage 3 | 5 | 7 | 7 | 8 | 5 | 6 | 8 | 5 | 5 | 6 | 8 |
stage 4 | 3 | 7 | 3 | 2 | 3 | 2 | 3 | 2 | 6 | 1 | 8 |
Site | Cost | |||
---|---|---|---|---|
Stage One | Stage Two | Stage Three | Stage Four | |
ZUN, AN, CANG | 6460 | 7934 | 7251 | 6916 |
TANGH, LANG, CANG | 6496 | 7561 | 7257 | 6689 |
TANGH, AN, CANG | 6579 | 7924 | 7124 | 6850 |
TANGH, LANG, AN | 6667 | 7800 | 7579 | 6578 |
ZUN, AN, GANG | TANGH, LANG, CANG | TANGH, AN, CANG | TANGH, LANG, AN | ||
---|---|---|---|---|---|
Transfer cost from stage one to stage two | ZUN, AN, CANG | 0 | 65.5 | 180 | 65.5 |
TANGH, LANG, CANG | 43.5 | 0 | 13.5 | 13.5 | |
TANGH, AN, CANG | 30 | 47.5 | 0 | 47.5 | |
TANGH, LANG, AN | 52.5 | 22.5 | 22.5 | 0 | |
Transfer cost from stage two to stage three | ZUN, AN, CANG | 0 | 104.8 | 28.8 | 104.8 |
TANGH, LANG, CANG | 69.6 | 0 | 21.6 | 21.6 | |
TANGH, AN, CANG | 48.1 | 76 | 0 | 76 | |
TANGH, LANG, AN | 84 | 36 | 36 | 0 | |
Transfer cost from stage three to stage four | ZUN, AN, CANG | 0 | 157.2 | 43.2 | 157.2 |
TANGH, LANG, CANG | 104.4 | 0 | 32.4 | 32.4 | |
TANGH, AN, CANG | 72 | 114 | 0 | 114 | |
TANGH, LANG, AN | 126.2 | 54 | 54 | 0 |
6460 | 6596 | 6579 | 6667 | |
7934 | 7626 | 7942 | 7866 | |
7977 | 7561 | 7938 | 7814 | |
7964 | 7608 | 7924 | 7848 | |
7986 | 7583 | 7947 | 7800 | |
7251 | 7362 | 7153 | 7684 | |
7321 | 7257 | 7146 | 7601 | |
7299 | 7333 | 7124 | 7656 | |
7335 | 7293 | 7160 | 7579 | |
6916 | 6846 | 6893 | 6735 | |
7021 | 6689 | 6882 | 6610 | |
6988 | 6803 | 6850 | 6692 | |
7000 | 6725 | 6886 | 6578 | |
0 | 0 | 0 | 0 |
Objective Function | Transportation Cost | Operating Cost | Fixed Cost | Total Cost | |
---|---|---|---|---|---|
stage 1 | shortest distance | 5249 | 595 | 690 | 6534 |
minimum cost | 5599 | 371 | 396 | 6366 | |
stage 2 | shortest distance | 6055 | 818 | 731 | 7604 |
minimum cost | 6195 | 707 | 560 | 7462 | |
stage 3 | shortest distance | 5756 | 752 | 775 | 7283 |
minimum cost | 6229 | 433 | 364 | 7026 | |
stage 4 | shortest distance | 5022 | 844 | 822 | 6688 |
minimum cost | 5254 | 661 | 565 | 6480 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, L.; Grifoll, M.; Feng, H.; Zheng, P.; Zhou, C. Optimization of Urban Distribution Centres: A Multi-Stage Dynamic Location Approach. Sustainability 2022, 14, 4135. https://doi.org/10.3390/su14074135
Yan L, Grifoll M, Feng H, Zheng P, Zhou C. Optimization of Urban Distribution Centres: A Multi-Stage Dynamic Location Approach. Sustainability. 2022; 14(7):4135. https://doi.org/10.3390/su14074135
Chicago/Turabian StyleYan, Liying, Manel Grifoll, Hongxiang Feng, Pengjun Zheng, and Chunliang Zhou. 2022. "Optimization of Urban Distribution Centres: A Multi-Stage Dynamic Location Approach" Sustainability 14, no. 7: 4135. https://doi.org/10.3390/su14074135