Food Waste and Circular Economy: Challenges and Opportunities
Abstract
:1. Introduction
2. Methodology
3. Results
3.1. Descriptive Analysis
3.2. Analysis Bibliographic Coupling
4. Discussion
- Theme 1: Anaerobic Digestion of Food Waste for the creation of a circular economy
- Theme 2: Food Waste Systems and Life Cycle Assessment in the Circular Economy
- Theme 3: Bio-Based circular economy approaches
- Theme 4: Consumer’s behavior, attitudes towards circular economy
- Theme 5: Food Supply Chain and Food Waste in the Circular Economy
- Theme 6: Material flow analysis and sustainability
- Theme 7: Challenges, policies and practices to achieve circularity
- Theme 8: Circular economy and patterns of consumption
5. Limitations of the Study
6. Conclusions and Way Forward
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Country | Waste Treatment Recycling in Percentage | Composition of Food Organic Waste in Percentage |
---|---|---|
Liechtenstein | 64.6 | 37.6 |
Singapore | 61.0 | 10.5 |
Korea. Rep. | 58.0 | 30.0 |
Iceland | 55.8 | 10.0 |
Germany | 47.8 | 30.0 |
San Marino | 45.1 | 5.4 |
Australia | 42.1 | 48.4 |
French Polynesia | 39.0 | 47.0 |
Vanuatu | 37.0 | 73.4 |
Samoa | 36.0 | 42.6 |
Northern Mariana Islands | 36.0 | 43.6 |
United States | 34.6 | 14.9 |
Belgium | 34.3 | 14.2 |
Hong Kong SAR. China | 34.0 | 35.0 |
Ireland | 33.0 | 16.6 |
Sweden | 32.4 | 23.3 |
Switzerland | 32.0 | 29.0 |
Marshall Islands | 30.8 | 8.0 |
Luxembourg | 28.4 | 30.0 |
Finland | 28.1 | 35.9 |
South Africa | 28.0 | 1.6 |
Philippines | 28.0 | 52.3 |
Denmark | 27.3 | 12.8 |
United Kingdom | 27.3 | 16.7 |
Poland | 26.4 | 37.3 |
Norway | 26.2 | 15.5 |
Hungary | 25.9 | 22.5 |
Italy | 25.9 | 34.4 |
Austria | 25.7 | 31.4 |
Czech Republic | 25.5 | 62.3 |
Israel | 25.0 | 34.0 |
Benin | 25.0 | 52.1 |
Estonia | 24.7 | 36.7 |
Netherlands | 24.6 | 35.0 |
Vietnam | 23.0 | 61.9 |
Lithuania | 22.9 | 40.4 |
France | 22.3 | 32.0 |
Latvia | 21.2 | 46.7 |
Cayman Islands | 21.0 | 10.9 |
Canada | 20.6 | 24.0 |
Macao SAR. China | 20.0 | 3.1 |
United Arab Emirates | 20.0 | 39.0 |
Thailand | 19.1 | 65.5 |
Bulgaria | 19.0 | 24.4 |
Greece | 19.0 | 40.0 |
Guam | 17.9 | 27.3 |
Malaysia | 17.5 | 46.0 |
Colombia | 17.2 | 59.6 |
Spain | 16.8 | 49.0 |
Croatia | 16.3 | 30.9 |
Portugal | 16.2 | 36.5 |
Belarus | 16.0 | 30.0 |
Zimbabwe | 16.0 | 36.0 |
Moldova | 15.3 | 55.0 |
Tuvalu | 15.0 | 43.6 |
Saudi Arabia | 15.0 | 45.5 |
Puerto Rico | 14.0 | 13.1 |
Cyprus | 13.3 | 41.5 |
Ecuador | 12.9 | 58.7 |
Sri Lanka | 12.8 | 62.0 |
Egypt. Arab Rep. | 12.5 | 56.0 |
Bolivia | 12.1 | 5.5 |
Burkina Faso | 12.0 | 21.0 |
Lao PDR | 10.0 | 16.9 |
Cuba | 9.5 | 68.9 |
Barbados | 9.0 | 18.3 |
Dominican Republic | 8.2 | 51.0 |
Mauritania | 8.0 | 4.8 |
Pakistan | 8.0 | 30.0 |
Lebanon | 8.0 | 52.5 |
Uruguay | 8.0 | 53.5 |
Algeria | 8.0 | 54.4 |
Kenya | 8.0 | 57.0 |
Bahrain | 8.0 | 59.1 |
Morocco | 8.0 | 60.0 |
Yemen. Rep. | 8.0 | 65.0 |
Slovak Republic | 7.6 | 42.0 |
Jordan | 7.0 | 50.0 |
Indonesia | 7.0 | 53.8 |
Malta | 6.7 | 52.0 |
Argentina | 6.0 | 38.7 |
Uganda | 6.0 | 74.5 |
Romania | 5.7 | 56.3 |
Fiji | 5.5 | 33.2 |
Montenegro | 5.4 | 33.8 |
Mexico | 5.0 | 52.4 |
Guinea | 5.0 | 58.0 |
Iran. Islamic Rep. | 5.0 | 72.9 |
Japan | 4.9 | 36.0 |
Russian Federation | 4.5 | 28.4 |
Niger | 4.0 | 38.0 |
Peru | 4.0 | 50.4 |
Tunisia | 4.0 | 68.0 |
Ukraine | 3.2 | 37.0 |
Qatar | 3.0 | 57.0 |
Kazakhstan | 2.9 | 30.0 |
Syrian Arab Republic | 2.5 | 57.0 |
Bermuda | 2.0 | 17.0 |
Papua New Guinea | 2.0 | 31.0 |
Togo | 2.0 | 38.0 |
Brazil | 1.4 | 51.4 |
Costa Rica | 1.3 | 58.0 |
Botswana | 1.0 | 8.1 |
Mozambique | 1.0 | 60.0 |
Bhutan | 0.9 | 58.0 |
Serbia | 0.8 | 37.6 |
Guyana | 0.5 | 50.1 |
West Bank and Gaza | 0.5 | 59.1 |
Cameroon | 0.4 | 83.4 |
Chile | 0.4 | 53.3 |
Macedonia. FYR | 0.2 | 29.3 |
Year of Citations | ||||||||
---|---|---|---|---|---|---|---|---|
Journal | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | Total Citations Per Journal |
Journal of Cleaner Production | 35 | 113 | 34 | 45 | 118 | 171 | 15 | 531 |
Sustainability (Switzerland) | 249 | 112 | 2 | 19 | 31 | 14 | 427 | |
Science of the Total Environment | 76 | 262 | 8 | 346 | ||||
Waste Management | 57 | 19 | 147 | 47 | 46 | 10 | 326 | |
Resources, Conservation and Recycling | 7 | 35 | 102 | 73 | 18 | 235 | ||
Journal of Environmental Management | 46 | 90 | 136 | |||||
Bioresource Technology | 71 | 20 | 91 | |||||
Energies | 46 | 20 | 2 | 68 | ||||
Biotechnology for Biofuels | 56 | 56 | ||||||
Environmental Science and Pollution Research | 46 | 7 | 2 | 55 | ||||
Water Research | 46 | 46 | ||||||
International Journal of Life Cycle Assessment | 44 | 1 | 45 | |||||
Journal of Enterprise Information Management | 15 | 28 | 43 | |||||
Recent Patents on Food, Nutrition and Agriculture | 42 | 42 | ||||||
GCB Bioenergy | 35 | 35 | ||||||
The Science of the total environment | 33 | 33 | ||||||
Waste Management and Research | 25 | 2 | 1 | 28 | ||||
Fuel | 24 | 24 | ||||||
Resources, Conservation and Recycling: X | 24 | 24 | ||||||
Business Strategy and the Environment | 22 | 22 | ||||||
Land | 18 | 18 | ||||||
Waste and Biomass Valorization | 14 | 2 | 16 | |||||
Food and Bioproducts Processing | 15 | 15 | ||||||
International Journal of Environmental Research and Public Health | 13 | 13 | ||||||
Rural Society | 13 | 13 | ||||||
Journal of Material Cycles and Waste Management | 12 | 12 | ||||||
Industrial Marketing Management | 11 | 11 | ||||||
Agronomy | 10 | 10 | ||||||
Food Chemistry | 10 | 10 | ||||||
Proceedings of Institution of Civil Engineers: Energy | 10 | 10 | ||||||
Economics and Policy of Energy and the Environment | 9 | 9 | ||||||
Frontiers in Chemistry | 7 | 7 | ||||||
Journal of Hazardous Materials | 7 | 7 | ||||||
Chemosphere | 6 | 6 | ||||||
Scientific Reports | 6 | 6 | ||||||
Tourism Review | 5 | 5 | ||||||
Rivista di Studi sulla Sostenibilita | 4 | 4 | ||||||
Sustainable Production and Consumption | 4 | 4 | ||||||
Technological Forecasting and Social Change | 4 | 4 | ||||||
Frontiers of Environmental Science and Engineering | 3 | 3 | ||||||
Ecological Economics | 2 | 2 | ||||||
Energy | 2 | 2 | ||||||
Management of Environmental Quality: An International Journal | 2 | 2 | ||||||
Procedia Environmental Science, Engineering and Management | 2 | 2 | ||||||
Biomass and Bioenergy | 1 | 1 | ||||||
Environmental Quality Management | 1 | 1 | ||||||
Future Foods | 1 | 1 | ||||||
International Journal of Food Design | 1 | 1 | ||||||
Journal of Ecological Engineering | 1 | 1 | ||||||
Environmental Science and Policy | 0 | |||||||
Environmental Technology and Innovation | 0 | |||||||
Food Technology | 0 | |||||||
Foods | 0 | |||||||
Industria Textila | 0 | |||||||
International Journal of Automation Technology | 0 | |||||||
Journal of Environmental Chemical Engineering | 0 | |||||||
Journal of Material Culture | 0 | |||||||
Microorganisms | 0 | |||||||
Processes | 0 | |||||||
Quality—Access to Success | 0 | |||||||
Resources Policy | 0 | |||||||
Total Citations Per Year | 35 | 532 | 232 | 395 | 674 | 783 | 158 | 2809 |
References
- FAO. Global Food Losses and Food Waste: Extent, Causes and Prevention; FAO: Rome, Italy, 2011. [Google Scholar]
- FAO. Global Agriculture towards 2050; FAO: Rome, Italy, 2021. [Google Scholar]
- Beretta, C.; Stoessel, F.; Baier, U.; Hellweg, S. Quantifying food losses and the potential for reduction in Switzerland. Waste Manag. 2013, 33, 764–773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- How South Korea Became an Example of How to Recycle Food Waste. Available online: https://earth.org/food-waste-south-korea/#:~:text=In%20the%20past%20few%20years,using%20biodegradable%20bags%20was%20introduced (accessed on 1 July 2022).
- Sellitto, M.A.; Hermann, F.F. Influence of Green Practices on Organizational Competitiveness: A Study of the Electrical and Electronics Industry. Eng. Manag. J. 2019, 31, 98–112. [Google Scholar] [CrossRef]
- Circularity Gap Report 2021. Available online: https://www.circularity-gap.world/2021#downloads (accessed on 24 December 2021).
- Boulding, K.E. The Economics of the Coming Spaceship Earth. In Environmental Quality in a Growing Economy: Essays from the Sixth RFF Forum; Jarrett, H., Ed.; Hopkins: Baltimore, MD, USA, 1968. [Google Scholar]
- Commission, E. Towards a Circular Economy: A Zero Waste Programme for Europe; European Commission: Brussels, Belgium, 2014. [Google Scholar]
- UNEP. The Role of Business in Moving from Linear to Circular Economies; UN Environment Programme: Nairobi, Kenya, 2021. [Google Scholar]
- Geissdoerfer, M.; Savaget, P.; Bocken, N.M.P.; Hultink, E.J. The Circular Economy–A new sustainability paradigm? J. Clean. Prod. 2017, 143, 757–768. [Google Scholar] [CrossRef] [Green Version]
- Chizaryfard, A.; Trucco, P.; Nuur, C. The transformation to a circular economy: Framing an evolutionary view. J. Evol. Econ. 2021, 31, 475–504. [Google Scholar] [CrossRef]
- UN. UN Sustainable Development Goals Report; UN: New York, NY, USA, 2021. [Google Scholar]
- Jurgilevich, A.; Birge, T.; Kentala-Lehtonen, J.; Korhonen-Kurki, K.; Pietikäinen, J.; Saikku, L.; Schösler, H. Transition towards Circular Economy in the Food System. Sustainability 2016, 8, 69. [Google Scholar] [CrossRef] [Green Version]
- Mondéjar-Jiménez, J.-A.; Ferrari, G.; Secondi, L.; Principato, L. From the table to waste: An exploratory study on behaviour towards food waste of Spanish and Italian youths. J. Clean. Prod. 2016, 138, 8–18. [Google Scholar] [CrossRef]
- Borrello, M.; Caracciolo, F.; Lombardi, A.; Pascucci, S.; Cembalo, L. Consumers’ Perspective on Circular Economy Strategy for Reducing Food Waste. Sustainability 2017, 9, 141. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Basu, S.; Shetti, N.P.; Aminabhavi, T.M. Waste-to-energy nexus for circular economy and environmental protection: Recent trends in hydrogen energy. Sci. Total Environ. 2020, 713, 136633. [Google Scholar] [CrossRef]
- Slorach, P.C.; Jeswani, H.K.; Cuéllar-Franca, R.; Azapagic, A. Environmental sustainability of anaerobic digestion of household food waste. J. Environ. Manag. 2019, 236, 798–814. [Google Scholar] [CrossRef]
- Cristóbal, J.; Caldeira, C.; Corrado, S.; Sala, S. Techno-economic and profitability analysis of food waste biorefineries at European level. Bioresour. Technol. 2018, 259, 244–252. [Google Scholar] [CrossRef]
- Principato, L.; Ruini, L.; Guidi, M.; Secondi, L. Adopting the circular economy approach on food loss and waste: The case of Italian pasta production. Resour. Conserv. Recycl. 2019, 144, 82–89. [Google Scholar] [CrossRef]
- Teigiserova, D.A.; Hamelin, L.; Thomsen, M. Towards transparent valorization of food surplus, waste and loss: Clarifying definitions, food waste hierarchy, and role in the circular economy. Sci. Total Environ. 2020, 706, 136033. [Google Scholar] [CrossRef]
- Stoknes, K.; Scholwin, F.; Krzesiński, W.; Wojciechowska, E.; Jasińska, A. Efficiency of a novel “Food to waste to food” system including anaerobic digestion of food waste and cultivation of vegetables on digestate in a bubble-insulated greenhouse. Waste Manag. 2016, 56, 466–476. [Google Scholar] [CrossRef]
- Slorach, P.C.; Jeswani, H.K.; Cuéllar-Franca, R.; Azapagic, A. Environmental and economic implications of recovering resources from food waste in a circular economy. Sci. Total Environ. 2019, 693, 133516. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, Y.; Tolba, A.; Elashkar, E.; Xia, F. AIRank: Author Impact Ranking through Positions in Collaboration Networks. Complexity 2018, 2018, 1–16. [Google Scholar] [CrossRef]
- Parmar, A.; Ganesh, R.; Mishra, A.K. The top 100 cited articles on Obsessive Compulsive Disorder (OCD): A citation analysis. Asian J. Psychiatr. 2019, 42, 34–41. [Google Scholar] [CrossRef]
- Al-Addous, M.; Saidan, M.N.; Bdour, M.; Alnaief, M. Evaluation of Biogas Production from the Co-Digestion of Municipal Food Waste and Wastewater Sludge at Refugee Camps Using an Automated Methane Potential Test System. Energies 2019, 12, 32. [Google Scholar] [CrossRef] [Green Version]
- Albizzati, P.F.; Tonini, D.; Astrup, T.F. High-value products from food waste: An environmental and socio-economic assessment. Sci. Total Environ. 2021, 755, 142466. [Google Scholar] [CrossRef]
- Boccia, F.; Di Donato, P.; Covino, D.; Poli, A. Food waste and bio-economy: A scenario for the Italian tomato market. J. Clean. Prod. 2019, 227, 424–433. [Google Scholar] [CrossRef]
- Barbi, S.; Macavei, L.I.; Fuso, A.; Luparelli, A.V.; Caligiani, A.; Ferrari, A.M.; Maistrello, L.; Montorsi, M. Valorization of seasonal agri-food leftovers through insects. Sci. Total Environ. 2020, 709, 136209. [Google Scholar] [CrossRef]
- Aschemann-Witzel, J.; Stangherlin, I.D.C. Upcycled by-product use in agri-food systems from a consumer perspective: A review of what we know, and what is missing. Technol. Forecast. Soc. Chang. 2021, 168, 120749. [Google Scholar] [CrossRef]
- Allegue, L.D.; Puyol, D.; Melero, J.A. Food waste valorization by purple phototrophic bacteria and anaerobic digestion after thermal hydrolysis. Biomass Bioenergy 2020, 142, 105803. [Google Scholar] [CrossRef]
- Alias, C.; Bulgari, D.; Bilo, F.; Borgese, L.; Gianoncelli, A.; Ribaudo, G.; Gobbi, E.; Alessandri, I. Food Waste-Assisted Metal Extraction from Printed Circuit Boards: The Aspergillus niger Route. Microorganisms 2021, 9, 895. [Google Scholar] [CrossRef] [PubMed]
- Buss, D. Closing the Loop on Food Waste. Food Technol. 2019, 73, 20–29. [Google Scholar]
- Bhakta Sharma, H.; Panigrahi, S.; Dubey, B.K. Food waste hydrothermal carbonization: Study on the effects of reaction severities, pelletization and framework development using approaches of the circular economy. Bioresour. Technol. 2021, 333, 125187. [Google Scholar] [CrossRef]
- Carpus, E.; Dorogan, A.; Stroe, C. Textile packaging waste in the context of implementing the concept of circular economy. Ind. Text. 2020, 71, 499–503. [Google Scholar] [CrossRef]
- Badgett, A.; Milbrandt, A. Food waste disposal and utilization in the United States: A spatial cost benefit analysis. J. Clean. Prod. 2021, 314, 128057. [Google Scholar] [CrossRef]
- Campagnaro, C.; Ceraolo, S. Fighting food waste towards a new social food chain: The Egg of Columbus workshop. Int. J. Food Design 2017, 2, 103–116. [Google Scholar] [CrossRef]
- Borrello, M.; Lombardi, A.; Pascucci, S.; Cembalo, L. The Seven Challenges for Transitioning into a Bio-based Circular Economy in the Agri-food Sector. Recent Pat. Food Nutr. Agric. 2016, 8, 39–47. [Google Scholar] [CrossRef]
- Coderoni, S.; Perito, M.A. Approaches for reducing wastes in the agricultural sector. An analysis of Millennials’ willingness to buy food with upcycled ingredients. Waste Manag. 2021, 126, 283–290. [Google Scholar] [CrossRef]
- Cecchi, F.; Cavinato, C. Smart Approaches to Food Waste Final Disposal. Int. J. Environ. Res. Public Health 2019, 16, 2860. [Google Scholar] [CrossRef] [Green Version]
- Brenes-Peralta, L.; Jiménez-Morales, M.F.; Campos-Rodríguez, R.; De Menna, F.; Vittuari, M. Decision-Making Process in the Circular Economy: A Case Study on University Food Waste-to-Energy Actions in Latin America. Energies 2020, 13, 2291. [Google Scholar] [CrossRef]
- Chang, C.-C.; Chen, Y.-H.; Lin, Y.-S.; Hung, Z.-S.; Yuan, M.-H.; Chang, C.-Y.; Li, Y.-S.; Shie, J.-L.; Chen, Y.-H.; Wang, Y.-C.; et al. A Pilot Plant Study on the Autoclaving of Food Wastes for Resource Recovery and Reutilization. Sustainability 2018, 10, 3566. [Google Scholar] [CrossRef] [Green Version]
- Carmona-Cabello, M.; Sáez-Bastante, J.; Pinzi, S.; Dorado, M.P. Optimization of solid food waste oil biodiesel by ultrasound-assisted transesterification. Fuel 2019, 255, 115817. [Google Scholar] [CrossRef]
- Coderoni, S.; Perito, M.A. Sustainable consumption in the circular economy. An analysis of consumers’ purchase intentions for waste-to-value food. J. Clean. Prod. 2020, 252, 119870. [Google Scholar] [CrossRef]
- Chen, H.; Osman, A.I.; Mangwandi, C.; Rooney, D. Upcycling food waste digestate for energy and heavy metal remediation applications. Resour. Conserv. Recycl. X 2019, 3, 100015. [Google Scholar] [CrossRef]
- Ciccullo, F.; Cagliano, R.; Bartezzaghi, G.; Perego, A. Implementing the circular economy paradigm in the agri-food supply chain: The role of food waste prevention technologies. Resour. Conserv. Recycl. 2021, 164, 105114. [Google Scholar] [CrossRef]
- Cristóbal, J.; Castellani, V.; Manfredi, S.; Sala, S. Prioritizing and optimizing sustainable measures for food waste prevention and management. Waste Manag. 2018, 72, 3–16. [Google Scholar] [CrossRef]
- Dora, M.; Wesana, J.; Gellynck, X.; Seth, N.; Dey, B.; De Steur, H. Importance of sustainable operations in food loss: Evidence from the Belgian food processing industry. Ann. Op. Res. 2020, 290, 47–72. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Zhao, Y.; Qiu, X.; Zhu, X.; Liu, X.; Yin, J.; Shen, D.; Feng, H. Economics analysis of food waste treatment in China and its influencing factors. Front. Environ. Sci. Eng. 2020, 15, 33. [Google Scholar] [CrossRef]
- De Sadeleer, I.; Brattebø, H.; Callewaert, P. Waste prevention, energy recovery or recycling-Directions for household food waste management in light of circular economy policy. Resour. Conserv. Recycl. 2020, 160, 104908. [Google Scholar] [CrossRef]
- De Souza Silva, A.P.; Rosalen, P.L.; de Camargo, A.C.; Lazarini, J.G.; Rocha, G.; Shahidi, F.; Franchin, M.; de Alencar, S.M. Inajá oil processing by-product: A novel source of bioactive catechins and procyanidins from a Brazilian native fruit. Food Res. Int. 2021, 144, 110353. [Google Scholar] [CrossRef] [PubMed]
- Czekala, W.; Janczak, D.; Cieślik, M.; Mazurkiewicz, J.; Pulka, J. Food Waste Management Using Hermetia Illucens Insect. J. Ecol. Eng. 2020, 21, 214–216. [Google Scholar] [CrossRef]
- Fassio, F.; Minotti, B. Circular Economy for Food Policy: The Case of the RePoPP Project in The City of Turin (Italy). Sustainability 2019, 11, 6078. [Google Scholar] [CrossRef] [Green Version]
- Cheong, J.C.; Lee, J.T.E.; Lim, J.W.; Song, S.; Tan, J.K.N.; Chiam, Z.Y.; Yap, K.Y.; Lim, E.Y.; Zhang, J.; Tan, H.T.W.; et al. Closing the food waste loop: Food waste anaerobic digestate as fertilizer for the cultivation of the leafy vegetable, xiao bai cai (Brassica rapa). Sci. Total Environ. 2020, 715, 136789. [Google Scholar] [CrossRef] [PubMed]
- Edwards, J.; Othman, M.; Crossin, E.; Burn, S. Life cycle inventory and mass-balance of municipal food waste management systems: Decision support methods beyond the waste hierarchy. Waste Manag. 2017, 69, 577–591. [Google Scholar] [CrossRef]
- Erälinna, L.; Szymoniuk, B. Managing a Circular Food System in Sustainable Urban Farming. Experimental Research at the Turku University Campus (Finland). Sustainability 2021, 13, 6231. [Google Scholar] [CrossRef]
- Ebeneezar, S.; Dhanasekaran, L.P.; Tejpal, C.S.; Nikarthil Sidhick, J.; Rahuman, S.; Selvam, C.; Sayooj, P.; Pananghat, V. Nutritional evaluation, bioconversion performance and phylogenetic assessment of black soldier fly (Hermetia illucens, Linn. 1758) larvae valorized from food waste. Environ. Technol. Innov. 2021, 23, 101783. [Google Scholar] [CrossRef]
- Holmberg, T.; Ideland, M. The circular economy of food waste: Transforming waste to energy through ‘make-up’ work. J. Mater. Cult. 2021, 26, 344–361. [Google Scholar] [CrossRef]
- Dora, M.; Biswas, S.; Choudhary, S.; Nayak, R.; Irani, Z. A system-wide interdisciplinary conceptual framework for food loss and waste mitigation strategies in the supply chain. Ind. Market. Manag. 2021, 93, 492–508. [Google Scholar] [CrossRef]
- Fujii, H.; Kondo, Y. Decomposition analysis of food waste management with explicit consideration of priority of alternative management options and its application to the Japanese food industry from 2008 to 2015. J. Clean. Prod. 2018, 188, 568–574. [Google Scholar] [CrossRef]
- Hamam, M.; Chinnici, G.; Di Vita, G.; Pappalardo, G.; Pecorino, B.; Maesano, G.; D’Amico, M. Circular Economy Models in Agro-Food Systems: A Review. Sustainability 2021, 13, 3453. [Google Scholar] [CrossRef]
- Gligorescu, A.; Fischer, C.H.; Larsen, P.F.; Nørgaard, J.V.; Heckman, L.-H.L. Production and Optimization of Hermetia illucens (L.) Larvae Reared on Food Waste and Utilized as Feed Ingredient. Sustainability 2020, 12, 9864. [Google Scholar] [CrossRef]
- Kakadellis, S.; Woods, J.; Harris, Z.M. Friend or foe: Stakeholder attitudes towards biodegradable plastic packaging in food waste anaerobic digestion. Resour. Conserv. Recycl. 2021, 169, 105529. [Google Scholar] [CrossRef]
- Esteban-Gutiérrez, M.; Garcia-Aguirre, J.; Irizar, I.; Aymerich, E. From sewage sludge and agri-food waste to VFA: Individual acid production potential and up-scaling. Waste Manag. 2018, 77, 203–212. [Google Scholar] [CrossRef]
- Garske, B.; Heyl, K.; Ekardt, F.; Weber, L.M.; Gradzka, W. Challenges of Food Waste Governance: An Assessment of European Legislation on Food Waste and Recommendations for Improvement by Economic Instruments. Land 2020, 9, 231. [Google Scholar] [CrossRef]
- Ji, L.; Liu, C.; Huang, L.; Huang, G. The evolution of Resources Conservation and Recycling over the past 30 years: A bibliometric overview. Resour. Conserv. Recycl. 2018, 134, 34–43. [Google Scholar] [CrossRef]
- Hussain, Z.; Mishra, J.; Vanacore, E. Waste to energy and circular economy: The case of anaerobic digestion. J. Enterp. Inf. Manag. 2020, 33, 817–838. [Google Scholar] [CrossRef]
- Kazancoglu, Y.; Ekinci, E.; Mangla, S.K.; Sezer, M.D.; Kayikci, Y. Performance evaluation of reverse logistics in food supply chains in a circular economy using system dynamics. Bus. Strateg. Environ. 2021, 30, 71–91. [Google Scholar] [CrossRef]
- Fuldauer, L.I.; Parker, B.M.; Yaman, R.; Borrion, A. Managing anaerobic digestate from food waste in the urban environment: Evaluating the feasibility from an interdisciplinary perspective. J. Clean. Prod. 2018, 185, 929–940. [Google Scholar] [CrossRef]
- Gómez-Sagasti, M.T.; Anza, M.; Hidalgo, J.; Artetxe, U.; Garbisu, C.; Becerril, J.M. Recent Trends in Sustainable Remediation of Pb-Contaminated Shooting Range Soils: Rethinking Waste Management within a Circular Economy. Processes 2021, 9, 572. [Google Scholar] [CrossRef]
- Marino, A.; Pariso, P. Comparing European countries’ performances in the transition towards the Circular Economy. Sci. Total Environ. 2020, 729, 138142. [Google Scholar] [CrossRef]
- Jagtap, S.; Garcia-Garcia, G.; Duong, L.; Swainson, M.; Martindale, W. Codesign of Food System and Circular Economy Approaches for the Development of Livestock Feeds from Insect Larvae. Foods 2021, 10, 1701. [Google Scholar] [CrossRef]
- Leipold, S.; Weldner, K.; Hohl, M. Do we need a ‘circular society’? Competing narratives of the circular economy in the French food sector. Ecol. Econo. 2021, 187, 107086. [Google Scholar] [CrossRef]
- Hoo, P.Y.; Hashim, H.; Ho, W.S. Towards circular economy: Economic feasibility of waste to biomethane injection through proposed feed-in tariff. J. Clean. Prod. 2020, 270, 122160. [Google Scholar] [CrossRef]
- Guerra-Oliveira, P.; Belorio, M.; Gómez, M. Waste Bread as Main Ingredient for Cookie Elaboration. Foods 2021, 10, 1759. [Google Scholar] [CrossRef]
- Neves, C.M.S.S.; Figueiredo, M.; Reis, P.M.; Sousa, A.C.A.; Cristóvão, A.C.; Fiadeiro, M.B.; Rebelo, L.P.N.; Coutinho, J.A.P.; Esperança, J.M.S.S.; Freire, M.G. Simultaneous Separation of Antioxidants and Carbohydrates From Food Wastes Using Aqueous Biphasic Systems Formed by Cholinium-Derived Ionic Liquids. Front. Chem. 2019, 7, 459. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.T.E.; Ok, Y.S.; Song, S.; Dissanayake, P.D.; Tian, H.; Tio, Z.K.; Cui, R.; Lim, E.Y.; Jong, M.-C.; Hoy, S.H.; et al. Biochar utilisation in the anaerobic digestion of food waste for the creation of a circular economy via biogas upgrading and digestate treatment. Bioresour. Technol. 2021, 333, 125190. [Google Scholar] [CrossRef]
- Moggi, S.; Dameri, R.P. Circular business model evolution: Stakeholder matters for a self-sufficient ecosystem. Bus. Strateg. Environ. 2021, 30, 2830–2842. [Google Scholar] [CrossRef]
- Irani, Z.; Sharif, A. Food security across the enterprise: A puzzle, problem or mess for a circular economy? J. Enterpr. Inf. Manag. 2018, 31, 2–9. [Google Scholar] [CrossRef] [Green Version]
- Haupt, M.; Zschokke, M. How can LCA support the circular economy?—63rd discussion forum on life cycle assessment, Zurich, Switzerland, November 30, 2016. Int. J. Life Cycl. Assess. 2017, 22, 832–837. [Google Scholar] [CrossRef]
- Oyelola, O.; Ajiboshin, I.; Okewole, J. Effective solid waste management in the circular economy: The case study of Lagos State, Nigeria. Proc. Environ. Sci. Eng. Manag. 2017, 4, 143–148. [Google Scholar]
- Ncube, A.; Fiorentino, G.; Colella, M.; Ulgiati, S. Upgrading wineries to biorefineries within a Circular Economy perspective: An Italian case study. Sci. Total Environ. 2021, 775, 145809. [Google Scholar] [CrossRef] [PubMed]
- Sousa, P.M.; Moreira, M.J.; de Moura, A.P.; Lima, R.C.; Cunha, L.M. Consumer Perception of the Circular Economy Concept Applied to the Food Domain: An Exploratory Approach. Sustainability 2021, 13, 11340. [Google Scholar] [CrossRef]
- Keng, Z.X.; Chong, S.; Ng, C.G.; Ridzuan, N.I.; Hanson, S.; Pan, G.-T.; Lau, P.L.; Supramaniam, C.V.; Singh, A.; Chin, C.F.; et al. Community-scale composting for food waste: A life-cycle assessment-supported case study. J. Clean. Prod. 2020, 261, 121220. [Google Scholar] [CrossRef]
- Hoehn, D.; Margallo, M.; Laso, J.; García-Herrero, I.; Bala, A.; Fullana-i-Palmer, P.; Irabien, A.; Aldaco, R. Energy Embedded in Food Loss Management and in the Production of Uneaten Food: Seeking a Sustainable Pathway. Energies 2019, 12, 767. [Google Scholar] [CrossRef] [Green Version]
- Procentese, A.; Raganati, F.; Olivieri, G.; Russo, M.E.; Rehmann, L.; Marzocchella, A. Deep Eutectic Solvents pretreatment of agro-industrial food waste. Biotechnol. Biofuels 2018, 11, 37. [Google Scholar] [CrossRef]
- Przybylski, R.; Bazinet, L.; Firdaous, L.; Kouach, M.; Goossens, J.-F.; Dhulster, P.; Nedjar, N. Harnessing slaughterhouse by-products: From wastes to high-added value natural food preservative. Food Chem. 2020, 304, 125448. [Google Scholar] [CrossRef]
- Spartano, S.; Grasso, S. Consumers’ Perspectives on Eggs from Insect-Fed Hens: A UK Focus Group Study. Foods 2021, 10, 420. [Google Scholar] [CrossRef]
- Khatami, K.; Atasoy, M.; Ludtke, M.; Baresel, C.; Eyice, Ö.; Cetecioglu, Z. Bioconversion of food waste to volatile fatty acids: Impact of microbial community, pH and retention time. Chemosphere 2021, 275, 129981. [Google Scholar] [CrossRef]
- Johansson, N. Why is biogas production and not food donation the Swedish political priority for food waste management? Environ. Sci. Policy 2021, 126, 60–64. [Google Scholar] [CrossRef]
- Russo, I.; Confente, I.; Scarpi, D.; Hazen, B.T. From trash to treasure: The impact of consumer perception of bio-waste products in closed-loop supply chains. J. Clean. Prod. 2019, 218, 966–974. [Google Scholar] [CrossRef]
- Sadhukhan, J.; Dugmore, T.I.J.; Matharu, A.; Martinez-Hernandez, E.; Aburto, J.; Rahman, P.K.S.M.; Lynch, J. Perspectives on “Game Changer” Global Challenges for Sustainable 21st Century: Plant-Based Diet, Unavoidable Food Waste Biorefining, and Circular Economy. Sustainability 2020, 12, 1976. [Google Scholar] [CrossRef] [Green Version]
- Usmani, Z.; Sharma, M.; Awasthi, A.K.; Sharma, G.D.; Cysneiros, D.; Nayak, S.C.; Thakur, V.K.; Naidu, R.; Pandey, A.; Gupta, V.K. Minimizing hazardous impact of food waste in a circular economy–Advances in resource recovery through green strategies. J. Hazard. Mater. 2021, 416, 126154. [Google Scholar] [CrossRef]
- Kliopova, I.; Staniškis, J.K.; Stunžėnas, E.; Jurovickaja, E. Bio-nutrient recycling with a novel integrated biodegradable waste management system for catering companies. J. Clean. Prod. 2019, 209, 116–125. [Google Scholar] [CrossRef]
- Shirvanimoghaddam, K.; Motamed, B.; Ramakrishna, S.; Naebe, M. Death by waste: Fashion and textile circular economy case. Sci. Total Environ. 2020, 718, 137317. [Google Scholar] [CrossRef]
- Yakovleva, N.; Chiwona, A.G.; Manning, D.A.C.; Heidrich, O. Circular economy and six approaches to improve potassium life cycle for global crop production. Resour. Policy 2021, 74, 102426. [Google Scholar] [CrossRef]
- Moretto, G.; Russo, I.; Bolzonella, D.; Pavan, P.; Majone, M.; Valentino, F. An urban biorefinery for food waste and biological sludge conversion into polyhydroxyalkanoates and biogas. Water Res. 2020, 170, 115371. [Google Scholar] [CrossRef]
- Kowalski, Z.; Kulczycka, J.; Makara, A.; Harazin, P. Quantification of material recovery from meat waste incineration–An approach to an updated food waste hierarchy. J. Hazard. Mater. 2021, 416, 126021. [Google Scholar] [CrossRef]
- Trento, L.R.; Pereira, G.M.; Jabbour, C.J.C.; Ndubisi, N.O.; Mani, V.; Hingley, M.; Borchardt, M.; Gustavo, J.U.; de Souza, M. Industry-retail symbiosis: What we should know to reduce perishable processed food disposal for a wider circular economy. J. Clean. Prod. 2021, 318, 128622. [Google Scholar] [CrossRef]
- Song, S.; Ee, A.W.L.; Tan, J.K.N.; Cheong, J.C.; Chiam, Z.; Arora, S.; Lam, W.N.; Tan, H.T.W. Upcycling food waste using black soldier fly larvae: Effects of further composting on frass quality, fertilising effect and its global warming potential. J. Clean. Prod. 2021, 288, 125664. [Google Scholar] [CrossRef]
- Moure Abelenda, A.; Semple, K.T.; Lag-Brotons, A.J.; Herbert, B.M.J.; Aggidis, G.; Aiouache, F. Effects of Wood Ash-Based Alkaline Treatment on Nitrogen, Carbon, and Phosphorus Availability in Food Waste and Agro-Industrial Waste Digestates. Waste Biomass Valorization 2021, 12, 3355–3370. [Google Scholar] [CrossRef]
- La Scalia, G.; Saeli, M.; Miglietta, P.P.; Micale, R. Coffee biowaste valorization within circular economy: An evaluation method of spent coffee grounds potentials for mortar production. Int. J. Life Cycl. Assess. 2021, 26, 1805–1815. [Google Scholar] [CrossRef]
- Umeda, Y.; Kitagawa, K.; Hirose, Y.; Akaho, K.; Sakai, Y.; Ohta, M. Potential Impacts of the European Union’s Circular Economy Policy on Japanese Manufacturers. Int. J. Autom. Technol. 2020, 14, 857–866. [Google Scholar] [CrossRef]
- Weber, C.T.; Trierweiler, L.F.; Trierweiler, J.O. Food waste biorefinery advocating circular economy: Bioethanol and distilled beverage from sweet potato. J. Clean. Prod. 2020, 268, 121788. [Google Scholar] [CrossRef]
- Pap, S.; Kirk, C.; Bremner, B.; Turk Sekulic, M.; Gibb, S.W.; Maletic, S.; Taggart, M.A. Synthesis optimisation and characterisation of chitosan-calcite adsorbent from fishery-food waste for phosphorus removal. Environ. Sci. Pollut. Res. 2020, 27, 9790–9802. [Google Scholar] [CrossRef] [Green Version]
- Laso, J.; García-Herrero, I.; Margallo, M.; Vázquez-Rowe, I.; Fullana, P.; Bala, A.; Gazulla, C.; Irabien, Á.; Aldaco, R. Finding an economic and environmental balance in value chains based on circular economy thinking: An eco-efficiency methodology applied to the fish canning industry. Resour. Conserv. Recycl. 2018, 133, 428–437. [Google Scholar] [CrossRef]
- Zilia, F.; Bacenetti, J.; Sugni, M.; Matarazzo, A.; Orsi, L. From Waste to Product: Circular Economy Applications from Sea Urchin. Sustainability 2021, 13, 5427. [Google Scholar] [CrossRef]
- Paul, S.; Dutta, A.; Defersha, F.; Dubey, B. Municipal Food Waste to Biomethane and Biofertilizer: A Circular Economy Concept. Waste Biomass Valorization 2018, 9, 601–611. [Google Scholar] [CrossRef]
- Laso, J.; Margallo, M.; García-Herrero, I.; Fullana, P.; Bala, A.; Gazulla, C.; Polettini, A.; Kahhat, R.; Vázquez-Rowe, I.; Irabien, A.; et al. Combined application of Life Cycle Assessment and linear programming to evaluate food waste-to-food strategies: Seeking for answers in the nexus approach. Waste Manag. 2018, 80, 186–197. [Google Scholar] [CrossRef]
- Pérez-Camacho, M.N.; Curry, R.; Cromie, T. Life cycle environmental impacts of substituting food wastes for traditional anaerobic digestion feedstocks. Waste Manag. 2018, 73, 140–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matrapazi, V.K.; Zabaniotou, A. Experimental and feasibility study of spent coffee grounds upscaling via pyrolysis towards proposing an eco-social innovation circular economy solution. Sci. Total Environ. 2020, 718, 137316. [Google Scholar] [CrossRef] [PubMed]
- Oldfield, T.L.; White, E.; Holden, N.M. An environmental analysis of options for utilising wasted food and food residue. J. Environ. Manag. 2016, 183 3, 826–835. [Google Scholar] [CrossRef]
- Provin, A.P.; Dutra, A.R.d.A.; de Sousa e Silva Gouveia, I.C.A.; Cubas, E.A.L.V. Circular economy for fashion industry: Use of waste from the food industry for the production of biotextiles. Technol. Forecast. Soc. Chang. 2021, 169, 120858. [Google Scholar] [CrossRef]
- Patel, S.; Dora, M.; Hahladakis, J.N.; Iacovidou, E. Opportunities, challenges and trade-offs with decreasing avoidable food waste in the UK. Waste Manag. Res. 2021, 39, 473–488. [Google Scholar] [CrossRef] [PubMed]
- Rolewicz-Kalińska, A.; Lelicińska-Serafin, K.; Manczarski, P. The Circular Economy and Organic Fraction of Municipal Solid Waste Recycling Strategies. Energies 2020, 13, 4366. [Google Scholar] [CrossRef]
- Schmidt Rivera, X.C.; Gallego-Schmid, A.; Najdanovic-Visak, V.; Azapagic, A. Life cycle environmental sustainability of valorisation routes for spent coffee grounds: From waste to resources. Resour. Conserv. Recycl. 2020, 157, 104751. [Google Scholar] [CrossRef]
- Secondi, L.; Principato, L.; Ruini, L.; Guidi, M. Reusing Food Waste in Food Manufacturing Companies: The Case of the Tomato-Sauce Supply Chain. Sustainability 2019, 11, 2154. [Google Scholar] [CrossRef] [Green Version]
- Siddiqui, Z.; Hagare, D.; Jayasena, V.; Swick, R.; Rahman, M.M.; Boyle, N.; Ghodrat, M. Recycling of food waste to produce chicken feed and liquid fertiliser. Waste Manag. 2021, 131, 386–393. [Google Scholar] [CrossRef]
- Slorach, P.C.; Jeswani, H.K.; Cuéllar-Franca, R.; Azapagic, A. Environmental sustainability in the food-energy-water-health nexus: A new methodology and an application to food waste in a circular economy. Waste Manag. 2020, 113, 359–368. [Google Scholar] [CrossRef]
- Tedesco, D.; Conti, C.; Lovarelli, D.; Biazzi, E.; Bacenetti, J. Bioconversion of fruit and vegetable waste into earthworms as a new protein source: The environmental impact of earthworm meal production. Sci. Total Environ. 2019, 683, 690–698. [Google Scholar] [CrossRef]
- Tonini, D.; Wandl, A.; Meister, K.; Unceta, P.M.; Taelman, S.E.; Sanjuan-Delmás, D.; Dewulf, J.; Huygens, D. Quantitative sustainability assessment of household food waste management in the Amsterdam Metropolitan Area. Resour. Conserv. Recycl. 2020, 160, 104854. [Google Scholar] [CrossRef]
- Tampio, E.A.; Blasco, L.; Vainio, M.M.; Kahala, M.M.; Rasi, S.E. Volatile fatty acids (VFAs) and methane from food waste and cow slurry: Comparison of biogas and VFA fermentation processes. GCB Bioenergy 2019, 11, 72–84. [Google Scholar] [CrossRef]
- Wohner, B.; Gabriel, V.H.; Krenn, B.; Krauter, V.; Tacker, M. Environmental and economic assessment of food-packaging systems with a focus on food waste. Case study on tomato ketchup. Sci. Total Environ. 2020, 738, 139846. [Google Scholar] [CrossRef]
- Udugama, I.A.; Petersen, L.A.H.; Falco, F.C.; Junicke, H.; Mitic, A.; Alsina, X.F.; Mansouri, S.S.; Gernaey, K.V. Resource recovery from waste streams in a water-energy-food nexus perspective: Toward more sustainable food processing. Food Bioprod. Proc. 2020, 119, 133–147. [Google Scholar] [CrossRef]
- Yeo, J.; Chopra, S.S.; Zhang, L.; An, A.K. Life cycle assessment (LCA) of food waste treatment in Hong Kong: On-site fermentation methodology. J. Environ. Manag. 2019, 240, 343–351. [Google Scholar] [CrossRef]
- Uwineza, C.; Mahboubi, A.; Atmowidjojo, A.; Ramadhani, A.; Wainaina, S.; Millati, R.; Wikandari, R.; Niklasson, C.; Taherzadeh, M.J. Cultivation of edible filamentous fungus Aspergillus oryzae on volatile fatty acids derived from anaerobic digestion of food waste and cow manure. Bioresour. Technol. 2021, 337, 125410. [Google Scholar] [CrossRef]
- Valentino, F.; Munarin, G.; Biasiolo, M.; Cavinato, C.; Bolzonella, D.; Pavan, P. Enhancing volatile fatty acids (VFA) production from food waste in a two-phases pilot-scale anaerobic digestion process. J. Environ. Chem. Eng. 2021, 9, 106062. [Google Scholar] [CrossRef]
- Wilinska-Lisowska, A.; Ossowska, M.; Czerwionka, K. The Influence of Co-Fermentation of Agri-Food Waste with Primary Sludge on Biogas Production and Composition of the Liquid Fraction of Digestate. Energies 2021, 14, 1907. [Google Scholar] [CrossRef]
- Woodard, R.; Rossouw, A. An Evaluation of Interventions for Improving Pro-Environmental Waste Behaviour in Social Housing. Sustainability 2021, 13, 7272. [Google Scholar] [CrossRef]
- Woon, K.S.; Phuang, Z.X.; Lin, Z.; Lee, C.T. A novel food waste management framework combining optical sorting system and anaerobic digestion: A case study in Malaysia. Energy 2021, 232, 121094. [Google Scholar] [CrossRef]
- Adelodun, B.; Kim, S.H.; Choi, K.-S. Assessment of food waste generation and composition among Korean households using novel sampling and statistical approaches. Waste Manag. 2021, 122, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Agapios, A.; Andreas, V.; Marinos, S.; Katerina, M.; Antonis, Z.A. Waste aroma profile in the framework of food waste management through household composting. J. Clean. Prod. 2020, 257, 120340. [Google Scholar] [CrossRef]
- Borrello, M.; Pascucci, S.; Caracciolo, F.; Lombardi, A.; Cembalo, L. Consumers are willing to participate in circular business models: A practice theory perspective to food provisioning. J. Clean. Prod. 2020, 259, 121013. [Google Scholar] [CrossRef]
- Amicarelli, V.; Rana, R.; Lombardi, M.; Bux, C. Material flow analysis and sustainability of the Italian meat industry. J. Clean. Prod. 2021, 299, 126902. [Google Scholar] [CrossRef]
- Aramyan, L.H.; Beekman, G.; Galama, J.; van der Haar, S.; Visscher, M.; Zeinstra, G.G. Moving from Niche to Norm: Lessons from Food Waste Initiatives. Sustainability 2021, 13, 7667. [Google Scholar] [CrossRef]
- Cooper, S.J.G.; Giesekam, J.; Hammond, G.P.; Norman, J.B.; Owen, A.; Rogers, J.G.; Scott, K. Thermodynamic insights and assessment of the ‘circular economy’. J. Clean. Prod. 2017, 162, 1356–1367. [Google Scholar] [CrossRef] [Green Version]
- Andreopoulou, Z. Internet of Things and food circular economy: A new tool for Sustainable Development Goals. Int. Things Food Circ. Econ. New Tool Sustain. Dev. Goals 2017, 2, 43–49. [Google Scholar] [CrossRef]
- Bas-Bellver, C.; Barrera, C.; Betoret, N.; Seguí, L. Turning Agri-Food Cooperative Vegetable Residues into Functional Powdered Ingredients for the Food Industry. Sustainability 2020, 12, 1284. [Google Scholar] [CrossRef] [Green Version]
- Fogarassy, C.; Nagy-Pércsi, K.; Ajibade, S.; Gyuricza, C.; Ymeri, P. Relations between Circular Economic “Principles” and Organic Food Purchasing Behavior in Hungary. Agronomy 2020, 10, 616. [Google Scholar] [CrossRef]
- Batista, L.; Dora, M.; Garza-Reyes, J.A.; Kumar, V. Improving the sustainability of food supply chains through circular economy practices–A qualitative mapping approach. Manag. Environ. Q. Int. J. 2021. ahead-of-print. [Google Scholar] [CrossRef]
- Camilleri, M.A. Sustainable Production and Consumption of Food. Mise-en-Place Circular Economy Policies and Waste Management Practices in Tourism Cities. Sustainability 2021, 13, 9986. [Google Scholar] [CrossRef]
- Marrucci, L.; Marchi, M.; Daddi, T. Improving the carbon footprint of food and packaging waste management in a supermarket of the Italian retail sector. Waste Manag. 2020, 105, 594–603. [Google Scholar] [CrossRef]
- Gretzel, U.; Murphy, J.; Pesonen, J.; Blanton, C. Food waste in tourist households: A perspective article. Tour. Rev. 2019. ahead-of-print. [Google Scholar] [CrossRef]
- Ezeudu, O.; Agunwamba, J.; Ezeudu, T.; Ugochukwu, U.; Ezeasor, I. Natural leaf-type as food packaging material for traditional food in Nigeria: Sustainability aspects and theoretical circular economy solutions. Environ. Sci. Pollut. Res. 2021, 28, 8833–8843. [Google Scholar] [CrossRef]
- Miliute-Plepiene, J.; Plepys, A. Does food sorting prevents and improves sorting of household waste? A case in Sweden. J. Clean. Prod. 2015, 101, 182–192. [Google Scholar] [CrossRef]
- Gruia, R.; Florescu, G.-I.; Gaceu, L.; Oprea, O.B.; Ţane, N. Reducing Environmental Risk by Applying a Polyvalent Model of Waste Management in the Restaurant Industry. Sustainability 2021, 13, 5852. [Google Scholar] [CrossRef]
- Loizia, P.; Neofytou, N.; Zorpas, A. The concept of circular economy strategy in food waste management for the optimization of energy production through anaerobic digestion. Environ. Sci. Pollut. Res. 2019, 26, 14766–14773. [Google Scholar] [CrossRef]
- Mylan, J.; Holmes, H.; Paddock, J. Re-Introducing Consumption to the ‘Circular Economy’: A Sociotechnical Analysis of Domestic Food Provisioning. Sustainability 2016, 8, 794. [Google Scholar] [CrossRef] [Green Version]
- Hebrok, M.; Heidenstrøm, N. Contextualising food waste prevention-Decisive moments within everyday practices. J. Clean. Prod. 2019, 210, 1435–1448. [Google Scholar] [CrossRef]
- Manca, M.L.; Casula, E.; Marongiu, F.; Bacchetta, G.; Sarais, G.; Zaru, M.; Escribano-Ferrer, E.; Peris, J.E.; Usach, I.; Fais, S.; et al. From waste to health: Sustainable exploitation of grape pomace seed extract to manufacture antioxidant, regenerative and prebiotic nanovesicles within circular economy. Sci. Rep. 2020, 10, 14184. [Google Scholar] [CrossRef]
- Rijal, S.; Lin, H.-Y. A convenient method to determine recycling boundary for low-value materials in household waste: A case study of compostable food waste in Taichung City. J. Clean. Prod. 2021, 280, 124349. [Google Scholar] [CrossRef]
- Kuisma, M.; Kahiluoto, H. Biotic resource loss beyond food waste: Agriculture leaks worst. Resour. Conserv. Recycl. 2017, 124, 129–140. [Google Scholar] [CrossRef]
- McCarthy, B.; Kapetanaki, A.B.; Wang, P. Circular agri-food approaches: Will consumers buy novel products made from vegetable waste? Rural. Soc. 2019, 28, 91–107. [Google Scholar] [CrossRef]
- Stephan, A.; Muñoz, S.; Healey, G.; Alcorn, J. Analysing material and embodied environmental flows of an Australian university—Towards a more circular economy. Resour. Conserv. Recycl. 2020, 155, 104632. [Google Scholar] [CrossRef]
- Lang, L.; Wang, Y.; Chen, X.; Zhang, Z.; Yang, N.; Xue, B.; Han, W. Awareness of food waste recycling in restaurants: Evidence from China. Resour. Conserv. Recycl. 2020, 161, 104949. [Google Scholar] [CrossRef]
- Ng, K.S.; Yang, A.; Yakovleva, N. Sustainable waste management through synergistic utilisation of commercial and domestic organic waste for efficient resource recovery and valorisation in the UK. J. Clean. Prod. 2019, 227, 248–262. [Google Scholar] [CrossRef]
- Zeller, V.; Towa, E.; Degrez, M.; Achten, W. Urban waste flows and their potential for a circular economy model at city-region level. Waste Manag. 2019, 83, 83–94. [Google Scholar] [CrossRef]
- Rashid, M.I.; Shahzad, K. Food waste recycling for compost production and its economic and environmental assessment as circular economy indicators of solid waste management. J. Clean. Prod. 2021, 317, 128467. [Google Scholar] [CrossRef]
- Mu’azu, N.D.; Blaisi, N.I.; Naji, A.A.; Abdel-Magid, I.M.; AlQahtany, A. Food waste management current practices and sustainable future approaches: A Saudi Arabian perspectives. J. Mater. Cycl. Waste Manag. 2019, 21, 678–690. [Google Scholar] [CrossRef]
- Vinck, K.; Scheelen, L.; Du Bois, E. Design opportunities for organic waste recycling in urban restaurants. Waste Manag. Res. 2019, 37, 40–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarti, S.; Corsini, F.; Gusmerotti, N.; Frey, M. Food sharing: Making sense between new business models and responsible social initiatives for food waste prevention. Econ. Policy Energy Environ. 2017, 2017, 123–134. [Google Scholar] [CrossRef]
- Teigiserova, D.A.; Hamelin, L.; Thomsen, M. Review of high-value food waste and food residues biorefineries with focus on unavoidable wastes from processing. Resour. Conserv. Recycl. 2019, 149, 413–426. [Google Scholar] [CrossRef]
- Kirchherr, J.; Urban, F. Technology transfer and cooperation for low carbon energy technology: Analysing 30 years of scholarship and proposing a research agenda. Energy Policy 2018, 119, 600–609. [Google Scholar] [CrossRef]
Title | Citations (N) | Key Findings | Ref. |
---|---|---|---|
Transition towards circular economy in the food system | 204 | A circular economy sustainability resolution should include supportive local food supply chains, pricing the actual expense of resource utilization, and making policy processes to stimulate the reduction and recovery of critical raw materials. | [13] |
From the table to waste: An exploratory study on behavior towards food waste of Spanish and Italian youths | 113 | Behavioral models are applicable for explaining youths’ behavior towards food waste. Marketing and sales tactics adversely affect conservative food waste behavior. | [14] |
Consumers’ perspective on circular economy strategy for reducing food waste | 112 | Italian households reacted positively to this study and were willing to participate in closed loops to reduce food waste actively. | [15] |
Waste-to-energy nexus for circular economy and environmental protection: Recent trends in hydrogen energy | 89 | This paper reviewed bio-hydrogen production from waste materials and analyzed its economic aspects. | [16] |
Environmental Sustainability of anaerobic digestion of household food waste | 71 | Electricity from anaerobic digestion (AD) of food waste has 43% lower global warming potential than the UK grid. However, it has a higher global warming potential than solar PV and wind electricity. | [17] |
Techno-economic and profitability analysis of food waste biorefineries at European level | 71 | A techno-economic and profitability analysis of a food waste biorefinery was studied. Four relevant products were analyzed: potato, tomato, citrus, and olives. Food waste from product processing was quantified at the European level. The value-added product market price was identified as a critical element for profitability. A market analysis is necessary prior to the biorefinery implementation. | [18] |
Adopting the circular economy approach on food loss and waste: The case of Italian pasta production | 64 | The pasta supply chain was analyzed as an example of a circular economy. 1kg of pasta produces about 1.98 kg of food loss and waste throughout its entire lifecycle. Approximately 94% of Food loss and waste per kg of produced pasta is reused in alternative sectors. | [19] |
Towards transparent valorization of food surplus, waste and loss: Clarifying definitions, food waste hierarchy, and role in the circular economy | 59 | They created six categories distinguishing edibility and level of avoidance. Also, they expanded the waste hierarchy through material recycling and nutrient recovery. | [20] |
Efficiency of a novel “Food to waste to food” system including anaerobic digestion of food waste and cultivation of vegetables on digestate in a bubble-insulated greenhouse | 57 | They proposed digeponics as a novel approach for processing organic waste into new food and demonstrated a new closed low-energy greenhouse system. The system was 80% energy demand reduction compared to conventional greenhouses. | [21] |
Environmental and economic implications of recovering resources from food waste in a circular economy | 57 | They investigated and compared the anaerobic digestion, in-vessel composting, incineration, and landfill systems. | [22] |
Authors | Total of Citations | Number of Publications |
---|---|---|
Jurgilevich A. | 204 | 1 |
Slorach P.C. | 151 | 3 |
Mondéjar-Jiménez J.-A. | 113 | 1 |
Borrello M. | 112 | 1 |
Teigiserova D.A. | 97 | 2 |
Sharma S. | 89 | 1 |
Cristóbal J. | 71 | 1 |
Principato L. | 64 | 1 |
Stoknes K. | 57 | 1 |
Procentese A. | 56 | 1 |
1014 | 13 |
Cluster 1 (n = 34) | Cluster 2 (n = 29) | Cluster 3 (n = 17) | Cluster 4 (n = 16) | Cluster 5 (n = 15) |
---|---|---|---|---|
Al-Addous et al. (2019) [25] | Albizzati et al. (2021) [26] | Boccia et al. (2019) [27] | Barbi et al. (2020) [28] | Aschemann-Witzel et al. (2021) [29] |
Allegue et al. (2020) [30] | Alias et al. (2021) [31] | Buss (2019) [32] | Borrello et al. (2017) [15] | Bhakta Sharmaet al. (2021) [33] |
Cǎrpuş et al. (2020) [34] | Badgett et al. (2021) [35] | Campagnaro et al. (2017) [36] | Borrello et al. (2016) [37] | Coderoni et al. (2021) [38] |
Cecchi et al. (2019) [39] | Brenes-Peralta et al. (2020) [40] | Chang et al. (2018) [41] | Carmona-Cabello et al. (2019) [42] | Coderoni et al. (2020) [43] |
Chen H. et al. (2019) [44] | Cristóbal et al. (2018) [18] | Ciccullo et al. (2021) [45] | Cristóbal et al. (2018) [46] | Dora et al. (2020) [47] |
Chen T. et al. (2020) [48] | de Sadeleer et al. (2020) [49] | de Souza et al. (2021) [50] | Czekala et al. (2020) [51] | Fassio et al. (2019) [52] |
Cheong et al., (2020) [53] | Edwards et al. (2017) [54] | Erälinna et al. (2021) [55] | Ebeneezar et al. (2021) [56] | Holmberg & Ideland (2021) [57] |
Dora et al. (2021) [58] | Fujii et al. (2018) [59] | Hamam et al. (2021) [60] | Gligorescu et al. (2020) [61] | Kakadellis et al. (2021) [62] |
Esteban-Gutiérrez et al. (2018) [63] | Garske et al. (2020) [64] | Ji L. et al. (2018) [65] | Hussain et al. (2020) [66] | Kazancoglu et al. (2021) [67] |
Fuldauer et al. (2018) [68] | Gómez-Sagasti et al. (2021) [69] | Marino & Pariso (2020) [70] | Jagtap et al. (2021) [71] | Leipold et al. (2021) [72] |
Hoo et al. (2020) [73] | Guerra-Oliveira et al. (2021) [69,74] | Neves et al. (2019) [75] | Lee et al. (2021) [76] | Moggi et al. (2021) [77] |
Irani et al. (2018) [78] | Haupt et al. (2017) [79] | Oyelola et al. (2017) [80] | Ncube et al. (2021) [81] | Sousa (2021) [82] |
Keng et al. (2020) [83] | Hoehn et al. (2019) [84] | Procentese et al. (2018) [85] | Przybylski et al. (2020) [86] | Spartano et al. (2021) [87] |
Khatami et al. (2021) [88] | Johansson (2021) [89] | Russo et al. (2019) [90] | Sadhukhan et al. (2020) [91] | Usmani et al. (2021) [92] |
Kliopova et al. (2019) [93] | Jurgilevich et al. (2016) [13] | Shirvanimoghaddam et al. (2020) [94] | Sharma (2020) [16] | Yakovleva et al. (2021) [95] |
Moretto et al. (2020) [96] | Kowalski et al. (2021) [97] | Trento et al. (2021) [98] | Song et al. (2021) [99] | |
Moure et al. (2021) [100] | La Scalia et al. (2021) [101] | Umeda et al. (2020) [102] | Weber et al. (2020) [103] | |
Pap et al. (2020) [104] | Laso et al. (2018) [105] | Zilia et al. (2021) [106] | ||
Paul et al. (2018) [107] | Laso et al. (2018) [108] | |||
Pérez-Camacho et al. (2018) [109] | Matrapazi et al. (2020) [110] | |||
Principato et al. (2019) [19] | Oldfield et al. (2016) [111] | |||
Provin et al. (2021) [112] | Patel et al. (2021) [113] | |||
Rolewicz-Kalińska et al. (2020) [114] | Schmidt Rivera et al. (2020) [115] | |||
Secondi et al. (2019) [116] | Slorach et al. (2019) [17] | |||
Siddiqui et al. (2021) [117] | Slorach et al. (2019) [22] | |||
Slorach et al. (2020) [118] | Tedesco et al. (2019) [119] | |||
Stoknes et al. (2016) [21] | Tonini et al. (2020) [120] | |||
Tampio et al. (2019) [121] | Wohner et al. (2020) [122] | |||
Udugama et al. (2020) [123] | Yeo et al. (2019) [124] | |||
Uwineza et al. (2021) [125] | ||||
Valentino et al. (2021) [126] | ||||
Wilinska-Lisowska et al. (2021) [127] | ||||
Woodard et al. (2021) [128] | ||||
Woon et al. (2021) [129] | ||||
Cluster 6 (n = 14) | Cluster 7 (n = 11) | Cluster 8 (n = 9) | ||
Adelodun et al. (2021) [130] | Agapios et al. (2020) [131] | Borrello et al. (2020) [132] | ||
Amicarelli et al. (2021) [133] | Aramyan et al. (2021) [134] | Cooper et al. (2017) [135] | ||
Andreopoulou (2017) [136] | Bas-Bellver et al. (2020) [137] | Fogarassy et al. (2020) [138] | ||
Batista et al. (2021) [139] | Camilleri (2021) [140] | Marrucci et al. (2020) [141] | ||
Gretzel et al. (2019) [142] | Ezeudu et al. (2021) [143] | Miliute-Plepiene & Plepys (2015) [144] | ||
Gruia et al. (2021) [145] | Loizia et al. (2019) [146] | Mylan et al. (2016) [147] | ||
Hebrok et al. (2019) [148] | Manca et al. (2020) [149] | Rijal et al. (2021) [150] | ||
Kuisma et al. (2017) [151] | McCarthy et al. (2019) [152] | Stephan et al. (2020) [153] | ||
Lang et al. (2020) [154] | Ng et al. (2019) [155] | Zeller et al. (2019) [156] | ||
Mondéjar-Jiménez et al. (2016) [14] | Rashid et al. (2021) [157] | |||
Mu’azu et al. (2019) [158] | Vinck et al. (2019) [159] | |||
Sarti et al. (2017) [160] | ||||
Teigiserova et al. (2020) [20] | ||||
Teigiserova et al. (2019) [161] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamasiga, P.; Miri, T.; Onyeaka, H.; Hart, A. Food Waste and Circular Economy: Challenges and Opportunities. Sustainability 2022, 14, 9896. https://doi.org/10.3390/su14169896
Tamasiga P, Miri T, Onyeaka H, Hart A. Food Waste and Circular Economy: Challenges and Opportunities. Sustainability. 2022; 14(16):9896. https://doi.org/10.3390/su14169896
Chicago/Turabian StyleTamasiga, Phemelo, Taghi Miri, Helen Onyeaka, and Abarasi Hart. 2022. "Food Waste and Circular Economy: Challenges and Opportunities" Sustainability 14, no. 16: 9896. https://doi.org/10.3390/su14169896
APA StyleTamasiga, P., Miri, T., Onyeaka, H., & Hart, A. (2022). Food Waste and Circular Economy: Challenges and Opportunities. Sustainability, 14(16), 9896. https://doi.org/10.3390/su14169896