Progress in Ecosystem Health Research and Future Prospects
Abstract
:1. Introduction
2. A Brief Introduction to Ecosystem Health
2.1. The Development History of the Ecosystem Health Concept
2.2. Ecosystem Health from Different Ecological Perspectives
3. Materials and Methods
3.1. Data Selection
3.2. Methods of Analysis
3.2.1. CiteSpace
3.2.2. Statistics of the Empirical Papers
4. Results
4.1. Overview of General Articles
4.1.1. Annual Variations in Publications
4.1.2. Geographic Differences in the Publications
4.1.3. Keywords and Cluster Analysis
4.1.4. Keywords of the Citation Bursts
- (1)
- Ecosystem health management based on anthropocentrism (1989–1999)
- (2)
- Single ecosystem health diagnoses based on biocentrism (2000–2014)
- (3)
- Exploration of human–earth interactions based on ecocentrism (2015–2022)
4.2. Systemic Review of Empirical Research
4.2.1. Measures of Evaluating Ecosystem Health
Methods | Contents | Core Elements | Ecosystem Type of Case Location | Author (Year) |
---|---|---|---|---|
Biological indicator method | Plankton (phytoplankton and zooplankton) | (1) Structural indicators: the interconnections between the components of an ecosystem (2) Functional indicators: the overall activity of the ecosystem | Aquatic (marine) | Kim et al. (2019) [45] |
Macroinvertebrates | Aquatic (river) | Kabore et al. (2016) [49] | ||
Fish | Aquatic (river) | Wu et al. (2014) [96] | ||
Ants | Terrestrial (mountain) | Bharti et al. (2016) [62] | ||
Index system method | VOR model | (1) Vigor: the primary productivity or metabolism of an ecosystem (2) Organization: diversity and connectivity of ecosystems (3) Resilience: the ability of an ecosystem to withstand or recover from damage | Terrestrial (grassland) | Li et al. (2013) [97] |
Terrestrial (urban) | Atak et al. (2020) [98] | |||
Terrestrial (urban) | De Toro et al. (2018) [67] | |||
Aquatic (river) | Suo et al. (2008) [65] | |||
VORS model | The ecosystem service index (S) added to the VOR model | Terrestrial (grassland) | Wang et al. (2020) [99] | |
Terrestrial (urban) | Mallick et al. (2021) [100] | |||
Aquatic (lake) | Tehrani et al. (2022) [86] | |||
PSR model | (1) Pressure: external factors that threaten the ecosystem (2) State: the current state of the ecosystem (3) Response: what ecosystems can do in response to pressure | Aquatic (wetland) | Sun et al. (2016) [101] | |
Aquatic (wetland) | Subhasis et al. (2020) [102] | |||
Terrestrial (urban) | Wang et al. (2018) [72] | |||
DPSIR model | The driving force index (D) and the impact index (I) added to the PSR model | Terrestrial (urban) | Wang et al. (2013) [82] | |
Analytic hierarchy process (AHP) | These index systems include economic, resource, and environmental dimensions and comprehensively represent the level of development and degree of coordination of regional ecosystem health. | Aquatic (watershed) | Ekumah et al. (2020) [73] | |
Entropy weight method (EWM) | Terrestrial (urban) | Li et al. (2014) [74] | ||
Fuzzy mathematics method (FMM) | Terrestrial (forest) | Tao et al. (2019) [76] | ||
Set pair analysis (SPA) | Terrestrial (urban) | Su et al. (2009) [80] |
4.2.2. Levels of Ecosystem Health
4.2.3. Features of Ecosystem Health
5. Discussion and Conclusions
5.1. The Meaning and Development of Ecosystem Health
5.2. Geographical Differences and Characteristics of Ecosystem Health
5.3. Reflection on and Prospects for Ecosystem Health Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oldfield, F.; Barnosky, A.D.; Dearing, J.; Fischer-Kowalski, M.; McNeill, J.; Steffen, W.; Zalasiewicz, J. The Anthropocene Review: Its significance, implications and the rationale for a new transdisciplinary journal. Anthr. Rev. 2014, 1, 3–7. [Google Scholar] [CrossRef] [Green Version]
- Wolf, K.L.; Blahna, D.J.; Brinkley, W.; Romolini, M. Environmental stewardship footprint research: Linking human agency and ecosystem health in the Puget Sound region. Urban Ecosyst. 2013, 16, 13–32. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, S.; Li, X.; Liu, H.; Chi, D.; Xu, K. The influence of climate change and human activities on ecosystem service value. Ecol. Eng. 2016, 87, 224–239. [Google Scholar] [CrossRef]
- Corvalan, C.; Hales, S.; McMichae, A. Ecosystems and Human Well-Being: Health Synthesis: A Report of the Millennium Ecosystem Assessment; World Health Organization: Geneva, Switzerland, 2005. [Google Scholar]
- Lawton, J.H.; Daily, G.C. (Eds.) Nature’s Services. Societal Dependence on Natural Ecosystems; Island Press: Washington, DC, USA, 1997; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Villnas, A.; Norkko, J.; Hietanen, S.; Josefson, A.B.; Lukkari, K.; Norkko, A. The role of recurrent disturbances for ecosystem multifunctionality. Ecology 2013, 94, 2275–2287. [Google Scholar] [CrossRef] [PubMed]
- Schaeffer, D.J.; Herricks, E.E.; Kerster, H.W. Ecosystem health: I. measuring ecosystem health. Environ. Manag. 1988, 12, 445–455. [Google Scholar] [CrossRef]
- Daily, G.C. Developing a Scientific Basis for Managing Earth’s Life Support Systems. Ecol. Soc. 1999, 3, 45–49. [Google Scholar] [CrossRef] [Green Version]
- Rapport, D.J.; Costanza, R.; McMichael, A.J. Assessing ecosystem health. Trends Ecol. Evol. 1998, 13, 397–402. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, A.; Townsend, K.; Hale, R.; Sharley, D.; Pettigrove, V. How is ecosystem health defined and measured? A critical review of freshwater and estuarine studies. Ecol. Indic. 2016, 69, 722–729. [Google Scholar] [CrossRef]
- Rapport, D.J.; Bohm, G.; Buckingham, D.; Cairns, J.; Costanza, R.; Karr, J.R.; de Kruijf, H.A.M.; Levins, R.; McMichael, A.J.; Nielsen, N.O.; et al. Ecosystem health: The concept, the ISEH, and the important tasks ahead. Ecosyst. Health 1999, 5, 82–90. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.X.; Peng, J.; Wang, A.; Xie, P.; Han, Y.N. New research progress and trends in ecosystem health. Acta Ecol. Sin. 2015, 35, 5920–5930. [Google Scholar]
- Yang, H.; Shao, X.X.; Wu, M. A Review on Ecosystem Health Research: A Visualization Based on CiteSpace. Sustainability 2019, 11, 4908. [Google Scholar] [CrossRef]
- Rocha, L.; Hegoburu, C.; Torremorell, A.; Feijoo, C.; Navarro, E.; Fernandez, H.R. Use of ecosystem health indicators for assessing anthropogenic impacts on freshwaters in Argentina: A review. Environ. Monit. Assess. 2020, 192, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Soubry, I.; Doan, T.; Chu, T.; Guo, X.L. A Systematic Review on the Integration of Remote Sensing and GIS to Forest and Grassland Ecosystem Health Attributes, Indicators, and Measures. Remote Sens. 2021, 13, 3262. [Google Scholar] [CrossRef]
- Fu, S.K.; Zhao, L.; Qiao, Z.; Sun, T.; Sun, M.; Hao, Y.Y.; Hu, S.Y.; Zhang, Y.C. Development of Ecosystem Health Assessment (EHA) and Application Method: A Review. Sustainability 2021, 13, 11838. [Google Scholar] [CrossRef]
- Pauna, V.H.; Picone, F.; Le Guyader, G.; Buonocore, E.; Franzese, P.P. The scientific research on ecosystem services: A bibliometric analysis. Ecol. Quest. 2018, 29, 53–62. [Google Scholar] [CrossRef]
- Sun, S.K.; Jiang, Y.T.; Zheng, S.N. Research on Ecological Infrastructure from 1990 to 2018: A Bibliometric Analysis. Sustainability 2020, 12, 2304. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Cao, K. Cultural Ecosystem Services Research Progress and Future Prospects: A Review. Sustainability 2022, 14, 11845. [Google Scholar] [CrossRef]
- Leopold, A.P. Wilderness as a land laboratory. Living Wilderness 1941, 6, 3. [Google Scholar]
- Odum, E.P. The status of three ecosystem-level hypotheses regarding salt marsh estuaries: Tidal subsidy, out-welling, and detritus-based food chains. In Estuarine Perspectives; Academic Press: Cambridge, MA, USA, 1980; pp. 485–495. [Google Scholar]
- Holling, C.S. Resilience and Stability of Ecological Systems. Annu. Rev. Ecol. Syst. 1973, 4, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Karr, J.R. Biological monitoring and environmental assessment: A conceptual framework. Environ. Manag. 1987, 11, 249–256. [Google Scholar] [CrossRef]
- Rapport, D.J. What constitutes ecosystem health? Perspect. Biol. Med. 1989, 33, 120–132. [Google Scholar] [CrossRef]
- Mageau, M.T.; Costanza, R.; Ulanowicz, R.E. Quantifying the trends expected in developing ecosystems. Ecol. Model. 1998, 112, 1–22. [Google Scholar] [CrossRef]
- Brüll, A.; van Bohemen, H.; Costanza, R.; Mitsch, W.J.; van den Boomen, R.; Chaudhuri, N.; Heeb, J.; Jenssen, P.; Kalin, M.; Schonborn, A. Benefits of ecological engineering practices. In Proceedings of the Ecological Engineering: From Concepts to Applications, Paris, France, 2–4 December 2009; pp. 16–20. [Google Scholar]
- Li, D.; Qiu, Z.H. The Study on Ecological Ethics of “Unity of Man and Nature”. In Environmental Protection and Resources Exploitation, Proceedings of the 2013 International Conference on Advances in Energy and Environmental Science (ICAEES 2013), Guangzhou, China, 30–31 July, 2013; Trans Tech Publications Ltd.: Zurich, Switzerland, 2013; pp. 906–909. [Google Scholar]
- Jiang, W.; Zhang, H.R. Traditional Chinese Culture and the Construction of Ecological Civilization: From Cultural Genes to Practical Behaviors—Case Studies in Confucianism, Buddhism and Taoism. Chin. J. Urban Environ. Stud. 2020, 8, 2050011. [Google Scholar] [CrossRef]
- Chen, C.M. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.M. Searching for intellectual turning points: Progressive knowledge domain visualization. Proc. Natl. Acad. Sci. USA 2004, 101, 5303–5310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, Y.; Yin, J.; Wu, B.H. Climate change and tourism: A scientometric analysis using CiteSpace. J. Sustain. Tour. 2018, 26, 108–126. [Google Scholar] [CrossRef]
- Liu, S.; Sun, Y.P.; Gao, X.L.; Sui, Y. Knowledge domain and emerging trends in Alzheimer’s disease: A scientometric review based on CiteSpace analysis. Neural Regen. Res. 2019, 14, 1643–1650. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.M.; Hu, Z.G.; Liu, S.B.; Tseng, H. Emerging trends in regenerative medicine: A scientometric analysis in CiteSpace. Expert Opin. Biol. Ther. 2012, 12, 593–608. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Van Damme, S.; Uyttenhove, P. A review of empirical studies of cultural ecosystem services in urban green infrastructure. J. Environ. Manag. 2021, 293, 112895. [Google Scholar] [CrossRef]
- Munawar, M.; Munawar, I.F.; Weisse, T.; Leppard, G.G.; Legner, M. The significance and future potential of using microbes for assessing ecosystems health: The Great Lakes example. J. Aquat. Ecosyst. Health 1994, 3, 295–310. [Google Scholar] [CrossRef]
- Tampo, L.; Kabore, I.; Alhassan, E.H.; Oueda, A.; Bawa, L.M.; Djaneye-Boundjou, G. Benthic Macroinvertebrates as Ecological Indicators: Their Sensitivity to the Water Quality and Human Disturbances in a Tropical River. Front. Water 2021, 3, 662765. [Google Scholar] [CrossRef]
- Wells, P.G. Biomonitoring the health of coastal marine ecosystems—The roles and challenges of microscale toxicity tests. Mar. Pollut. Bull. 1999, 39, 39–47. [Google Scholar] [CrossRef]
- Park, B.Y.; Lee, J.K.; Ro, H.M.; Kim, Y.H. Effects of heavy metal contamination from an abandoned mine on nematode community structure as an indicator of soil ecosystem health. Appl. Soil Ecol. 2011, 51, 17–24. [Google Scholar] [CrossRef]
- Yang, T.; Chen, J.; Li, X.P.; Wu, T.; Hu, Z.J.; Wang, S. Ecological risk by heavy metal contents in sediments within the Wei River Basin, China. Environ. Earth Sci. 2019, 78, 1–12. [Google Scholar] [CrossRef]
- Giles, R.K.; Nguyen, C.A.T.; Ho, T.T.Y.; Nguyen, C.V.; Ngo, N.T.; Rochman, C.M. Source-Specific Patterns of Marine Debris and Associated Ecological Impacts in the Red River Estuary of Xuan Thuy National Park, Vietnam. Front. Environ. Sci. 2021, 9, 679530. [Google Scholar] [CrossRef]
- Deininger, A.; Frigstad, H. Reevaluating the Role of Organic Matter Sources for Coastal Eutrophication, Oligotrophication, and Ecosystem Health. Front. Mar. Sci. 2019, 6, 210. [Google Scholar] [CrossRef] [Green Version]
- Su, M.R.; Zhang, Y.; Liu, G.Y.; Xu, L.Y.; Zhang, L.X.; Yang, Z.F. Urban Ecosystem Health Assessment: Perspectives and Chinese Practice. Int. J. Environ. Res. Public Health 2013, 10, 5874–5885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weindl, I.; Ost, M.; Wiedmer, P.; Schreiner, M.; Neugart, S.; Klopsch, R.; Kuhnhold, H.; Kloas, W.; Henkel, I.M.; Schluter, O.; et al. Sustainable food protein supply reconciling human and ecosystem health: A Leibniz Position. Glob. Food Secur. -Agric. Policy Econ. Environ. 2020, 25, 100367. [Google Scholar] [CrossRef]
- Qiu, H.-H.; Liu, L.-G. A Study on the Evolution of Carbon Capture and Storage Technology Based on Knowledge Mapping. Energies 2018, 11, 1103. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.O.; Shim, W.J.; Baek, S.H.; Choi, J.W.; Kim, D.; Choi, H.W. Coastal Ecosystem Health Assessment in Korea: Busan Case Study. Ocean Sci. J. 2019, 54, 165–182. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Duan, Z.D.; Wang, Z.Y.; Zhong, M.F.; Tian, W.; Wang, H.L.; Huang, H. Freshwater lake ecosystem health assessment and its response to pollution stresses based on planktonic index of biotic integrity. Environ. Sci. Pollut. Res. 2019, 26, 35240–35252. [Google Scholar] [CrossRef]
- Shao, N.F.; Yang, S.T.; Sun, Y.; Gai, Y.; Zhao, C.S.; Wang, F.; Yin, X.; Dong, B. Assessing aquatic ecosystem health through the analysis of plankton biodiversity. Mar. Freshw. Res. 2019, 70, 647–655. [Google Scholar] [CrossRef]
- Wolmarans, C.T.; Kemp, M.; de Kock, K.N.; Roets, W.; van Rensburg, L.; Quinn, L. A semi-quantitative survey of macroinvertebrates at selected sites to evaluate the ecosystem health of the Olifants River. Water SA 2014, 40, 245–254. [Google Scholar] [CrossRef] [Green Version]
- Kabore, I.; Moog, O.; Alp, M.; Guenda, W.; Koblinger, T.; Mano, K.; Oueda, A.; Ouedraogo, R.; Trauner, D.; Melcher, A.H. Using macroinvertebrates for ecosystem health assessment in semi-arid streams of Burkina Faso. Hydrobiologia 2016, 766, 57–74. [Google Scholar] [CrossRef]
- Phillips, I.D.; Davies, J.M.; Bowman, M.F.; Chivers, D.P. Macroinvertebrate communities in a Northern Great Plains river are strongly shaped by naturally occurring suspended sediments: Implications for ecosystem health assessment. Freshw. Sci. 2016, 35, 1354–1364. [Google Scholar] [CrossRef]
- Tampo, L.; Lazar, I.M.; Kabore, I.; Oueda, A.; Akpataku, K.V.; Djaneye-Boundjou, G.; Bawa, L.M.; Lazar, G.; Guenda, W. A multimetric index for assessment of aquatic ecosystem health based on macroinvertebrates for the Zio river basin in Togo. Limnologica 2020, 83, 125783. [Google Scholar] [CrossRef]
- Li, T.; Huang, X.; Jiang, X.; Wang, X. Assessment of ecosystem health of the Yellow River with fish index of biotic integrity. Hydrobiologia 2018, 814, 31–43. [Google Scholar] [CrossRef]
- Lee, S.J.; Lee, E.H.; An, K.G. Lotic Ecosystem Health Assessments Using an Integrated Analytical Approach of Physical Habitat, Chemical Water Quality, and Fish Multi-Metric Health Metrics. Pol. J. Environ. Stud. 2018, 27, 2113–2131. [Google Scholar] [CrossRef]
- Mieiro, C.L.; Pacheco, M.; Pereira, M.E.; Duarte, A.C. Mercury distribution in key tissues of fish (Liza aurata) inhabiting a contaminated estuary-implications for human and ecosystem health risk assessment. J. Environ. Monit. 2009, 11, 1004–1012. [Google Scholar] [CrossRef] [Green Version]
- Xue, H.; Zheng, B.H.; Meng, F.S.; Wang, Y.Y.; Zhang, L.S.; Cheng, P.X. Assessment of Aquatic Ecosystem Health of the Wutong River Based on Benthic Diatoms. Water 2019, 11, 727. [Google Scholar] [CrossRef] [Green Version]
- Oeding, S.; Taffs, K.H. Are diatoms a reliable and valuable bio-indicator to assess sub-tropical river ecosystem health? Hydrobiologia 2015, 758, 151–169. [Google Scholar] [CrossRef]
- Bennion, H.; Kelly, M.G.; Juggins, S.; Yallop, M.L.; Burgess, A.; Jamieson, J.; Krokowski, J. Assessment of ecological status in UK lakes using benthic diatoms. Freshw. Sci. 2014, 33, 639–654. [Google Scholar] [CrossRef]
- Aguirre-Rubi, J.; Luna-Acosta, A.; Ortiz-Zarragoitia, M.; Zaldibar, B.; Izagirre, U.; Ahrens, M.J.; Villamil, L.; Marigomez, I. Assessment of ecosystem health disturbance in mangrove-lined Caribbean coastal systems using the oyster Crassostrea rhizophorae as sentinel species. Sci. Total Environ. 2018, 618, 718–735. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.E.; Ronan, A.D. Development of a model to assess coastal ecosystem health using oysters as the indicator species. Estuar. Coast. Shelf Sci. 2020, 233, 106528. [Google Scholar] [CrossRef]
- Raftopoulou, E.K.; Dimitriadis, V.K. Assessment of the health status of mussels Mytilus galloprovincialis along Thermaikos Gulf (Northern Greece): An integrative biomarker approach using ecosystem health indices. Ecotoxicol. Environ. Saf. 2010, 73, 1580–1587. [Google Scholar] [CrossRef] [PubMed]
- Marigomez, I.; Garmendia, L.; Soto, M.; Orbea, A.; Izagirre, U.; Cajaraville, M.P. Marine ecosystem health status assessment through integrative biomarker indices: A comparative study after the Prestige oil spill “Mussel Watch”. Ecotoxicology 2013, 22, 486–505. [Google Scholar] [CrossRef] [Green Version]
- Bharti, H.; Bharti, M.; Pfeiffer, M. Ants as bioindicators of ecosystem health in Shivalik Mountains of Himalayas: Assessment of species diversity and invasive species. Asian Myrmecol. 2016, 8, 65–79. [Google Scholar] [CrossRef]
- Wike, L.D.; Martin, F.D.; Paller, M.H.; Nelson, E.A. Impact of forest seral stage on use of ant communities for rapid assessment of terrestrial ecosystem health. J. Insect Sci. 2010, 10, 77. [Google Scholar] [CrossRef] [PubMed]
- Purvaja, R.; Robin, R.S.; Ganguly, D.; Hariharan, G.; Singh, G.; Raghuraman, R.; Ramesh, R. Seagrass meadows as proxy for assessment of ecosystem health. Ocean Coast. Manag. 2018, 159, 34–45. [Google Scholar] [CrossRef]
- Suo, A.N.; Xiong, Y.C.; Wang, T.M.; Yue, D.X.; Ge, J.P. Ecosystem health assessment of the Jinghe River Watershed on the Huangtu Plateau. Ecohealth 2008, 5, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Hou, P.; Jiang, J.B.; Xiao, R.L.; Zhai, J.; Fu, Z.; Hou, J. Ecosystem Health Assessment of Shennongjia National Park, China. Sustainability 2020, 12, 7672. [Google Scholar] [CrossRef]
- De Toro, P.; Iodice, S. Ecosystem Health Assessment in urban contexts: A proposal for the Metropolitan Area of Naples (Italy). Aestimum 2018, 72, 39–59. [Google Scholar] [CrossRef]
- Das, M.; Das, A.; Mandal, A. Research note: Ecosystem Health (EH) assessment of a rapidly urbanizing metropolitan city region of eastern India—A study on Kolkata Metropolitan Area. Landsc. Urban Plan. 2020, 204, 103938. [Google Scholar] [CrossRef]
- Yu, G.M.; Yu, Q.W.; Hu, L.M.; Zhang, S.; Fu, T.T.; Zhou, X.; He, X.L.; Liu, Y.A.; Wang, S.; Jia, H.H. Ecosystem health assessment based on analysis of a land use database. Appl. Geogr. 2013, 44, 154–164. [Google Scholar] [CrossRef]
- Liu, D.L.; Hao, S.L. Ecosystem Health Assessment at County-Scale Using the Pressure-State-Response Framework on the Loess Plateau, China. Int. J. Environ. Res. Public Health 2017, 14, 861. [Google Scholar] [CrossRef] [Green Version]
- Sun, R.; Yao, P.P.; Wang, W.; Yue, B.; Liu, G. Assessment of Wetland Ecosystem Health in the Yangtze and Amazon River Basins. Isprs Int. J. Geo-Inf. 2017, 6, 81. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.Y.; Tang, L.N.; Qiu, Q.Y.; Chen, H.X.; Wu, T.; Shao, G.F. Assessment of Regional Ecosystem Health-A Case Study of the Golden Triangle of Southern Fujian Province, China. Int. J. Environ. Res. Public Health 2018, 15, 802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekumah, B.; Armah, F.A.; Afrifa, E.K.A.; Aheto, D.W.; Odoi, J.O.; Afitiri, A.R. Geospatial assessment of ecosystem health of coastal urban wetlands in Ghana. Ocean Coast. Manag. 2020, 193, 105226. [Google Scholar] [CrossRef]
- Li, Y.F.; Li, D. Assessment and forecast of Beijing and Shanghai’s urban ecosystem health. Sci. Total Environ. 2014, 487, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Lin, A.W.; Zhao, Z.Z.; Zou, L.; Sun, C. Assessment of Urban Ecosystem Health Based on Entropy Weight Extension Decision Model in Urban Agglomeration. Sustainability 2016, 8, 869. [Google Scholar] [CrossRef] [Green Version]
- Tao, N.; Liu, D.; Wu, J. Assessment of Forest Ecosystem Health Based On Fuzzy Evaluation Method-A Case Study Of Forest Ecosystem In Liangshui Natural Reserve. Rev. Int. De Contam. Ambient. 2019, 35, 159–164. [Google Scholar] [CrossRef]
- Cheng, W.J.; Xi, H.Y.; Sindikubwabo, C.; Si, J.H.; Zhao, C.G.; Yu, T.F.; Li, A.L.; Wu, T.R. Ecosystem health assessment of desert nature reserve with entropy weight and fuzzy mathematics methods: A case study of Badain Jaran Desert. Ecol. Indic. 2020, 119, 106843. [Google Scholar] [CrossRef]
- Hou, Q.H.; Zhu, W.T.; Liu, X.Y.; Zhang, X. Urban Ecosystem Health Assessment Inside Xi’an By Multivariate Data. J. Environ. Prot. Ecol. 2018, 19, 1016–1025. [Google Scholar]
- Su, M.R.; Yang, Z.F.; Chen, B. Set pair analysis for urban ecosystem health assessment. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 1773–1780. [Google Scholar] [CrossRef]
- Su, M.R.; Yang, Z.F.; Chen, B.; Ulgiati, S. Urban ecosystem health assessment based on emergy and set pair analysis-A comparative study of typical Chinese cities. Ecol. Model. 2009, 220, 2341–2348. [Google Scholar] [CrossRef]
- Su, M.R.; Yang, Z.F.; Liu, G.Y.; Chen, B. Ecosystem Health Assessment and Regulation for Urban Ecosystems: A Case Study of the Yangtze River Delta Urban Cluster, China. J. Environ. Inform. 2011, 18, 65–74. [Google Scholar] [CrossRef]
- Wang, C.; Qu, A.Y.; Wang, P.F.; Hou, J. Estuarine ecosystem health assessment based on the DPSIR framework: A case of the Yangtze Estuary, China. J. Coast. Res. 2013, 165, 1236–1241. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, J.Q.; Wu, R.; Ma, Q.Y.; Yang, J. Ecosystem health assessment based on DPSIRM framework and health distance model in Nansi Lake, China. Stoch. Environ. Res. Risk Assess. 2016, 30, 1235–1247. [Google Scholar] [CrossRef]
- Pan, Z.Z.; He, J.H.; Liu, D.F.; Wang, J.W.; Guo, X.A. Ecosystem health assessment based on ecological integrity and ecosystem services demand in the Middle Reaches of the Yangtze River Economic Belt, China. Sci. Total Environ. 2021, 774, 144837. [Google Scholar] [CrossRef]
- Kang, P.; Chen, W.P.; Hou, Y.; Li, Y.Z. Linking ecosystem services and ecosystem health to ecological risk assessment: A case study of the Beijing-Tianjin-Hebei urban agglomeration. Sci. Total Environ. 2018, 636, 1442–1454. [Google Scholar] [CrossRef]
- Tehrani, N.A.; Shafri, H.Z.M.; Salehi, S.; Chanussot, J.; Janalipour, M. Remotely-Sensed Ecosystem Health Assessment (RSEHA) model for assessing the changes of ecosystem health of Lake Urmia Basin. Int. J. Image Data Fusion 2022, 13, 180–205. [Google Scholar] [CrossRef]
- Xu, D.; Cai, Z.; Xu, D.; Lin, W.P.; Gao, J.; Li, L.B. Land Use Change and Ecosystem Health Assessment on Shanghai-Hangzhou Bay, Eastern China. Land 2022, 11, 867. [Google Scholar] [CrossRef]
- Ran, C.; Wang, S.J.; Bai, X.Y.; Tan, Q.; Wu, L.H.; Luo, X.L.; Chen, H.; Xi, H.P.; Lu, Q. Evaluation of temporal and spatial changes of global ecosystem health. Land Degrad. Dev. 2021, 32, 1500–1512. [Google Scholar] [CrossRef]
- Xie, X.F.; Pu, L.J. Assessment of Urban Ecosystem Health Based on Matter Element Analysis: A Case Study of 13 Cities in Jiangsu Province, China. Int. J. Environ. Res. Public Health 2017, 14, 940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, P.D.; Rong, L.L.; Teng, F. The Evaluation of Ecosystem Health Based On Hybrid Todim Method For Chinese Case. Technol. Econ. Dev. Econ. 2019, 25, 542–570. [Google Scholar] [CrossRef] [Green Version]
- Zeng, C.; Deng, X.Z.; Xu, S.; Wang, Y.T.; Cui, J.X. An integrated approach for assessing the urban ecosystem health of megacities in China. Cities 2016, 53, 110–119. [Google Scholar] [CrossRef]
- Zhang, Z.X.; Liu, Y.; Li, Y.; Wang, X.G.; Li, H.Z.; Yang, H.; Ding, W.H.; Liao, Y.P.; Tang, N.B.; He, F.F. Lake ecosystem health assessment using a novel hybrid decision-making framework in the Nam Co, Qinghai-Tibet Plateau. Sci. Total Environ. 2022, 808, 152087. [Google Scholar] [CrossRef]
- Xu, W.; Dong, Z.C.; Ren, L.; Ren, J.; Guan, X.K.; Zhong, D.Y. Using an improved interval technique for order preference by similarity to ideal solution to assess river ecosystem health. J. Hydroinformatics 2019, 21, 624–637. [Google Scholar] [CrossRef]
- Wang, C.; Qu, A.Y.; Wang, P.F.; Hou, J.; Ao, Y.H. Development Of A Multi-Index Ecosystem Health Assessment Model Using Back-Propagation Neural Network Approach: A Case Study Of The Yangtze Estuary, China. Environ. Eng. Manag. J. 2017, 16, 1551–1561. [Google Scholar]
- Li, Y.Z.; Wu, Y.X.; Liu, X.G. Regional ecosystem health assessment using the GA-BPANN model: A case study of Yunnan Province, China. Ecosyst. Health Sustain. 2022, 8, 2084458. [Google Scholar] [CrossRef]
- Wu, W.; Xu, Z.X.; Yin, X.W.; Zuo, D.P. Assessment of ecosystem health based on fish assemblages in the Wei River basin, China. Environ. Monit. Assess. 2014, 186, 3701–3716. [Google Scholar] [CrossRef]
- Li, Y.Y.; Dong, S.K.; Wen, L.; Wang, X.X.; Wu, Y. Three-Dimensional Framework of Vigor, Organization, and Resilience (VOR) for Assessing Rangeland Health: A Case Study from the Alpine Meadow of the Qinghai-Tibetan Plateau, China. Ecohealth 2013, 10, 423–433. [Google Scholar] [CrossRef] [PubMed]
- Atak, B.K.; Tonyaloglu, E.E. Monitoring the spatiotemporal changes in regional ecosystem health: A case study in Izmir, Turkey. Environ. Monit. Assess. 2020, 192, 385. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, Z.P.; Shi, H.; Han, F.; Liu, Q.; Qi, J.W.; Lu, Y.Y. Ecosystem Health Assessment of World Natural Heritage Sites Based on Remote Sensing and Field Sampling Verification: Bayanbulak as Case Study. Sustainability 2020, 12, 2610. [Google Scholar] [CrossRef]
- Mallick, J.; AlQadhi, S.; Talukdar, S.; Pradhan, B.; Bindajam, A.A.; Islam, A.M.T.; Dajam, A.S. A Novel Technique for Modeling Ecosystem Health Condition: A Case Study in Saudi Arabia. Remote Sens. 2021, 13, 2632. [Google Scholar] [CrossRef]
- Sun, T.T.; Lin, W.P.; Chen, G.S.; Guo, P.P.; Zeng, Y. Wetland ecosystem health assessment through integrating remote sensing and inventory data with an assessment model for the Hangzhou Bay, China. Sci. Total Environ. 2016, 566, 627–640. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Pradhan, B.; Shit, P.K.; Alamri, A.M. Assessment of Wetland Ecosystem Health Using the Pressure-State-Response (PSR) Model: A Case Study of Mursidabad District of West Bengal (India). Sustainability 2020, 12, 5932. [Google Scholar] [CrossRef]
- Wang, Z.J.; Liu, Y.; Li, Y.X.; Su, Y. Response of Ecosystem Health to Land Use Changes and Landscape Patterns in the Karst Mountainous Regions of Southwest China. Int. J. Environ. Res. Public Health 2022, 19, 3273. [Google Scholar] [CrossRef]
- Sun, B.D.; Tang, J.C.; Yu, D.H.; Song, Z.W.; Wang, P.G. Ecosystem health assessment: A PSR analysis combining AHP and FCE methods for Jiaozhou Bay, China. Ocean Coast. Manag. 2019, 168, 41–50. [Google Scholar] [CrossRef]
- Song, Z.; Sun, Y.; Chen, P.; Jia, M. Assessing the Ecosystem Health of Coastal Wetland Vegetation (Suaeda salsa) Using the Pressure State Response Model, a Case of the Liao River Estuary in China. Int. J. Environ. Res. Public Health 2022, 19, 546. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Li, H.M.; Zhang, K.Z. Urban Water Ecosystem Health Evaluation Based on the Improved Fuzzy Matter-Element Extension Assessment Model: Case Study from Zhengzhou City, China. Math. Probl. Eng. 2019, 2019, 7502342. [Google Scholar] [CrossRef]
- Das, M.; Das, A.; Pereira, P.; Mandal, A. Exploring the spatio-temporal dynamics of ecosystem health: A study on a rapidly urbanizing metropolitan area of Lower Gangetic Plain, India. Ecol. Indic. 2021, 125, 107584. [Google Scholar] [CrossRef]
- Li, W.; Xie, S.; Wang, Y.; Huang, J.; Cheng, X. Effects of urban expansion on ecosystem health in Southwest China from a multi-perspective analysis. J. Clean. Prod. 2021, 294, 126341. [Google Scholar] [CrossRef]
- Xie, X.; Fang, B.; Li, X.; He, S.S. Urban ecosystem health assessment and obstacle factor diagnosis using a comprehensive assessment model for Nanjing, China. Growth Change 2021, 52, 1938–1954. [Google Scholar] [CrossRef]
- Guan, B.H.; An, S.Q.; Gu, B.H. Assessment of ecosystem health during the past 40 years for Lake Taihu in the Yangtze River Delta, China. Limnology 2011, 12, 47–53. [Google Scholar] [CrossRef]
- Aguirre-Rubi, J.R.; Ortiz-Zarragoitia, M.; Izagirre, U.; Etxebarria, N.; Espinoza, F.; Marigomez, I. Prospective biomonitor and sentinel bivalve species for pollution monitoring and ecosystem health disturbance assessment in mangrove-lined Nicaraguan coasts. Sci. Total Environ. 2019, 649, 186–200. [Google Scholar] [CrossRef]
- Cui, W.Y.; Guo, S.Y.; Meng, X.Z.; Kong, F.Q. Application of adapted Benthic Index of Biotic Integrity (B-IBI) for river ecosystem health assessment in Zhanghe River Watershed, China. Pol. J. Ecol. 2018, 66, 407–415. [Google Scholar] [CrossRef]
- Houssou, A.M.; Adjahouinou, D.C.; Bonou, C.A.; Montchowui, E. Plankton Index of Biotic Integrity (P-IBI) for assessing ecosystem health within the Oueme River basin, Republic of Benin. Afr. J. Aquat. Sci. 2020, 45, 452–465. [Google Scholar] [CrossRef]
- Huang, X.Y.; Xu, J.; Liu, B.; Guan, X.; Li, J.S. Assessment of Aquatic Ecosystem Health with Indices of Biotic Integrity (IBIs) in the Ganjiang River System, China. Water 2022, 14, 278. [Google Scholar] [CrossRef]
- Tan, X.; Ma, P.M.; Bunn, S.E.; Zhang, Q.F. Development of a benthic diatom index of biotic integrity (BD-IBI) for ecosystem health assessment of human dominant subtropical rivers, China. J. Environ. Manag. 2015, 151, 286–294. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.L.; Tao, S.; Dawson, R.W.; Li, P.G.; Cao, J. Lake ecosystem health assessment: Indicators and methods. Water Res. 2001, 35, 3157–3167. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.H.; Abu Noman, M.; Narale, D.D.; Feng, W.H.; Pujari, L.; Sun, J. Evaluation of ecosystem health and potential human health hazards in the Hangzhou Bay and Qiantang Estuary region through multiple assessment approaches. Environ. Pollut. 2020, 264, 114791. [Google Scholar] [CrossRef] [PubMed]
- Lin, B.; Shang, H.; Chen, Z. The assessment of wetland ecosystem health by means of LDI: A case study in Baiyangdian wetland, China. J. Food Agric. Environ. 2013, 11, 1187–1192. [Google Scholar]
- Xia, J.; Zhang, Y.Y.; Zhao, C.S.; Bunn, S.E. Bioindicator Assessment Framework of River Ecosystem Health and the Detection of Factors Influencing the Health of the Huai River Basin, China. J. Hydrol. Eng. 2014, 19, 1–34. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.B.; Wang, Y.J.; Li, F.Y.; Liu, Z.C. Aquatic ecosystem health assessment of a typical sub-basin of the Liao River based on entropy weights and a fuzzy comprehensive evaluation method. Sci. Rep. 2019, 9, 1–13. [Google Scholar] [CrossRef]
- Han, J.H.; Kim, B.; Kim, C.; An, K.G. Ecosystem health evaluation of agricultural reservoirs using multi-metric lentic ecosystem health assessment (LEHA) model. Paddy Water Environ. 2014, 12, S7–S18. [Google Scholar] [CrossRef]
- Meng, L.R.; Huang, J.; Dong, J.H. Assessment of rural ecosystem health and type classification in Jiangsu province, China. Sci. Total Environ. 2018, 615, 1218–1228. [Google Scholar] [CrossRef] [PubMed]
- Muniz, P.; Venturini, N.; Hutton, M.; Kandratavicius, N.; Pita, A.; Brugnoli, E.; Burone, L.; Garcia-Rodriguez, F. Ecosystem health of Montevideo coastal zone: A multi approach using some different benthic indicators to improve a ten-year-ago assessment. J. Sea Res. 2011, 65, 38–50. [Google Scholar] [CrossRef]
- Piroddi, C.; Moutopoulos, D.K.; Gonzalvo, J.; Libralato, S. Ecosystem health of a Mediterranean semi-enclosed embayment (Amvrakikos Gulf, Greece): Assessing changes using a modeling approach. Cont. Shelf Res. 2016, 121, 61–73. [Google Scholar] [CrossRef]
- Tang, D.H.; Zou, X.Q.; Liu, X.J.; Liu, P.T.; Zhamangulova, N.; Xu, X.G.; Zhao, Y.F. Integrated ecosystem health assessment based on eco-exergy theory: A case study of the Jiangsu coastal area. Ecol. Indic. 2015, 48, 107–119. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, J.; Deng, W.; Peng, L. Ecosystem Health: Assessment Framework, Spatial Evolution, and Regional Optimization in Southwest China. Chin. Geogr. Sci. 2020, 30, 142–156. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.Y.; Yang, Z.F.; Chen, B.; Zhang, Y.; Zhang, L.X.; Zhao, Y.W.; Jiang, M.M. Emergy-based urban ecosystem health assessment: A case study of Baotou, China. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 972–981. [Google Scholar] [CrossRef]
- Li, J.; Shen, W. Spatial Heterogeneity of the Effects of Human Activities On Ecosystem Health Of A Coastal Tourism City—A Case Study Of Rizhao, China. Appl. Ecol. Environ. Res. 2021, 19, 3029–3051. [Google Scholar] [CrossRef]
- Xu, F.L.; Dawson, R.W.; Tao, S.; Cao, J.; Li, B.G. A method for lake ecosystem health assessment: An Ecological Modeling Method (EMM) and its application. Hydrobiologia 2001, 443, 159–175. [Google Scholar] [CrossRef]
- Van Bruggen, A.H.C.; Goss, E.M.; Havelaar, A.; van Diepeningen, A.D.; Finckh, M.R.; Morris, J.G. One Health—Cycling of diverse microbial communities as a connecting force for soil, plant, animal, human and ecosystem health. Sci. Total Environ. 2019, 664, 927–937. [Google Scholar] [CrossRef] [PubMed]
Ecological Ethics | Focal Point | Main Content | Epistemology | The Key to Assessing Ecosystem Health |
---|---|---|---|---|
Anthropocentrism | Humans | (1) Humans have priority in natural ecosystems. (2) The whole, sustainable, and healthy development of human beings is the center, and human interests and values are the starting point for understanding and transforming nature. | Dualism | The healthy development of human groups and human societies |
Biocentrism | Living organisms | (1) People are opposed to being born superior to other species and believe that people are equal to all creatures in the ecosystem. (2) All living things in nature depend on each other. | Monism | The health of all living species in the ecosystem |
Ecocentrism | Overall ecosystem | (1) The harmony between humans and nature is emphasized, claiming a community with a shared future. (2) Humans’ evaluation of the value of nature should not be based on humans’ own interests but should be fully based on objective facts. | Monism | The health and development of the ecosystem overall |
Theme | Cluster ID | Keywords | Size | Mean (Year) |
---|---|---|---|---|
Assessment and modeling of ecosystem health | Cluster 9 | Ecosystem health assessment | 36 | 2009 |
Cluster 14 | Sustainability assessment | 30 | 1999 | |
Cluster 8 | Remote sensing | 38 | 2006 | |
Cluster 11 | Land use | 33 | 2007 | |
Cluster 10 | River | 35 | 2005 | |
Cluster 23 | Marine environment | 13 | 2001 | |
Cluster 6 | Biomass | 38 | 2008 | |
Cluster 17 | Community structure | 24 | 2005 | |
Cluster 16 | Organic matter | 28 | 2004 | |
Environmental pollution and protection | Cluster 5 | Plastic pollution | 40 | 2007 |
Cluster 20 | Heavy metals | 20 | 2006 | |
Cluster 7 | Eutrophication | 38 | 2008 | |
Cluster 18 | Earth observation | 23 | 2015 | |
Cluster 21 | Ecological security pattern | 19 | 2014 | |
Cluster 13 | Adaptive management | 30 | 2002 | |
Human health | Cluster 12 | Public health | 32 | 2011 |
Sustainable development | Cluster 15 | Sustainable development | 29 | 2010 |
Cluster 1 | Biodiversity | 55 | 2008 | |
Cluster 2 | Climate change | 47 | 2009 |
Period | Keyword | Strength | Beginning | End | 1988–2022 |
---|---|---|---|---|---|
1988–1999 | Stress | 10.20 | 1990 | 2002 | |
Ecosystem management | 9.16 | 1994 | 2007 | ||
Adaptive management | 6.00 | 1994 | 2013 | ||
Ecosystem health | 45.11 | 1995 | 2004 | ||
Integrity | 8.75 | 1997 | 2010 | ||
Perspective | 5.02 | 1997 | 2000 | ||
Population | 8.31 | 1999 | 2008 | ||
2000–2014 | Ecological indicator | 8.69 | 2000 | 2012 | |
Habitat | 7.28 | 2006 | 2012 | ||
River | 6.88 | 2006 | 2012 | ||
Fish | 5.25 | 2007 | 2016 | ||
Infectious disease | 5.16 | 2007 | 2009 | ||
United States | 5.28 | 2010 | 2011 | ||
Regime | 6.37 | 2013 | 2016 | ||
Oxidative stress | 6.14 | 2014 | 2016 | ||
2015–2022 | Multiple stressor | 5.09 | 2015 | 2017 | |
Disturbance | 4.97 | 2015 | 2017 | ||
Emission | 4.83 | 2015 | 2016 | ||
Identification | 4.86 | 2016 | 2018 | ||
Vulnerability | 5.98 | 2018 | 2022 | ||
City | 5.29 | 2019 | 2022 | ||
Surface sediment | 5.05 | 2019 | 2022 | ||
Mechanism | 4.77 | 2019 | 2022 | ||
Service | 11.44 | 2020 | 2022 | ||
Urbanization | 7.41 | 2020 | 2022 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Zhang, J.; Wang, P.; Ma, X.; Yang, L.; Zhou, L. Progress in Ecosystem Health Research and Future Prospects. Sustainability 2022, 14, 15814. https://doi.org/10.3390/su142315814
Wang J, Zhang J, Wang P, Ma X, Yang L, Zhou L. Progress in Ecosystem Health Research and Future Prospects. Sustainability. 2022; 14(23):15814. https://doi.org/10.3390/su142315814
Chicago/Turabian StyleWang, Jingwei, Jinhe Zhang, Peijia Wang, Xiaobin Ma, Liangjian Yang, and Leying Zhou. 2022. "Progress in Ecosystem Health Research and Future Prospects" Sustainability 14, no. 23: 15814. https://doi.org/10.3390/su142315814