Historical Trends and Characteristics of Meteorological Drought Based on Standardized Precipitation Index and Standardized Precipitation Evapotranspiration Index over the Past 70 Years in China (1951–2020)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Collection
2.2. Drought Indices
2.2.1. Standardized Precipitation Index (SPI)
2.2.2. Standardized Precipitation Evapotranspiration Index (SPEI)
- Calculating the difference between potential evapotranspiration (PET) and monthly precipitation provides the monthly climatic water balance () as follows:
- A Log-logistic probability distribution with 3 parameters (scale function (α), shape function (β), and origin parameter (γ)) was used to linearly fit the series to obtain the cumulative function of the probability distribution:
- The cumulative probability density (P), subjected to standard normalization, is calculated as the value of the SPEI corresponding to each value in the series:
2.3. Temporal Analysis (Trend Analysis and Magnitude Change)
2.4. Drought Identification and Characterization
2.5. Analysis of Spatial Autocorrelation Patterns (Moran’s I Index)
3. Results and Analysis
3.1. Temporal and Spatial Variability of Droughts
3.2. Percentage of Stations Affected by Drought
SPI and SPEI Values | Drought Category |
---|---|
>0 | No drought (ND) |
0 to −0.5 | Mild drought (MiD) |
−0.5 to −1 | Moderate drought (MoD) |
−1 to −1.5 | Severe drought (SD) |
−1.5 to −2 | Extreme drought (ED) |
>−2 | Very extreme drought (vED) |
3.3. SPEI-12-Based Spatial Extent of 2010–2011 Extreme Drought
3.4. SPI-12 and SPEI-12-Based Spatial Patterns of Drought Characteristics
4. Discussion
4.1. Inconsistency in Distinguished Trend Patterns of SPI/SPEI over China
4.2. Extreme Drought and Spatial Patterns of Drought Characteristics
5. Conclusions
- (i)
- Management of Water Resources: Enhance the management and protection of water resources. This can be achieved by implementing measures to modernize irrigation systems, thereby improving water efficiency and reducing water loss.
- (ii)
- Water Conservation Measures: Implement water conservation measures across various sectors, including residential, agricultural, and industrial areas. Examples of such measures include promoting the use of water-saving toilets, advocating for garbage classification, and encouraging the installation of household water storage tanks in dry regions with extended drought periods, particularly in northern China.
- (iii)
- Scientific Farming: Focus on the development of drought-resistant crops and the adoption of more scientific farming techniques. This includes improving crop drought resistance and yield through the implementation of flexible agricultural management measures.
- (iv)
- Appropriate Planting Methods: During drought periods, it is crucial to choose appropriate planting methods, such as using insulation to cover crops or employing drip irrigation technology. These methods can help conserve moisture and reduce water usage.
- (v)
- Strengthen Monitoring and Early Warning Systems: Enhance monitoring and early warning systems for drought. This involves promptly identifying drought situations, predicting the severity and extent of drought, and implementing suitable protective measures based on the information gathered.
- (vi)
- Resource Sharing: Strengthen international cooperation and establish multilateral and bilateral resource-sharing mechanisms to collectively address the challenges posed by drought.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Schewe, J.; Heinke, J.; Gerten, D.; Haddeland, I.; Arnell, N.W.; Clark, D.B.; Dankers, R.; Eisner, S.; Fekete, B.M.; Colón-González, F.J.; et al. Multimodel Assessment of Water Scarcity under Climate Change. Proc. Natl. Acad. Sci. USA 2014, 111, 3245–3250. [Google Scholar] [CrossRef] [PubMed]
- Pedro-Monzonís, M.; Solera, A.; Ferrer, J.; Estrela, T.; Paredes-Arquiola, J. A Review of Water Scarcity and Drought Indexes in Water Resources Planning and Management. J. Hydrol. 2015, 527, 482–493. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.; Chen, J.; Wang, K.; Niu, J. A New Method and a New Index for Identifying Socioeconomic Drought Events under Climate Change: A Case Study of the East River Basin in China. Sci. Total Environ. 2018, 616–617, 363–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, L.; Apps, D.; Arcand, S.; Xu, H.; Pan, M.; Hoerling, M. Contribution of Temperature and Precipitation Anomalies to the California Drought during 2012–2015. Geophys. Res. Lett. 2017, 44, 3184–3192. [Google Scholar] [CrossRef]
- Mokhtar, A.; He, H.; Alsafadi, K.; Li, Y.; Zhao, H.; Keo, S.; Bai, C.; Abuarab, M.; Zhang, C.; Elbagoury, K.; et al. Evapotranspiration as a Response to Climate Variability and Ecosystem Changes in Southwest, China. Environ. Earth Sci. 2020, 79, 312. [Google Scholar] [CrossRef]
- Dai, A.; Zhao, T.; Chen, J. Climate Change and Drought: A Precipitation and Evaporation Perspective. Curr. Clim. Chang. Rep. 2018, 4, 301–312. [Google Scholar] [CrossRef]
- Qiang, Z.; Lanying, H.; Jingjing, L.; Qingyan, C. North–South Differences in Chinese Agricultural Losses Due to Climate-Change-Influenced Droughts. Theor. Appl. Clim. 2018, 131, 719–732. [Google Scholar] [CrossRef]
- Zhang, T.; Huang, Y. Impacts of Climate Change and Inter-Annual Variability on Cereal Crops in China from 1980 to 2008. J. Sci. Food Agric. 2012, 92, 1643–1652. [Google Scholar] [CrossRef]
- Ye, T.; Shi, P.; Wang, J.; Liu, L.; Fan, Y.; Hu, J. China’s Drought Disaster Risk Management: Perspective of Severe Droughts in 2009–2010. Int. J. Disaster Risk Sci. 2012, 3, 84–97. [Google Scholar] [CrossRef] [Green Version]
- Lu, E.; Luo, Y.; Zhang, R.; Wu, Q.; Liu, L. Regional Atmospheric Anomalies Responsible for the 2009-2010 Severe Drought in China: The 2009-2010 Severe Drought in China. J. Geophys. Res. Atmos. 2011, 116, D21114. [Google Scholar] [CrossRef]
- Lü, J.; Ju, J.; Ren, J.; Gan, W. The Influence of the Madden-Julian Oscillation Activity Anomalies on Yunnan’s Extreme Drought of 2009–2010. Sci. China Earth Sci. 2012, 55, 98–112. [Google Scholar] [CrossRef]
- Yang, J.; Gong, D.; Wang, W.; Hu, M.; Mao, R. Extreme Drought Event of 2009/2010 over Southwestern China. Meteorol. Atmos. Phys. 2012, 115, 173–184. [Google Scholar] [CrossRef]
- Leng, G.; Tang, Q.; Rayburg, S. Climate Change Impacts on Meteorological, Agricultural and Hydrological Droughts in China. Glob. Planet. Chang. 2015, 126, 23–34. [Google Scholar] [CrossRef]
- Song, Z.; Xia, J.; She, D.; Li, L.; Hu, C.; Hong, S. Assessment of Meteorological Drought Change in the 21st Century Based on CMIP6 Multi-Model Ensemble Projections over Mainland China. J. Hydrol. 2021, 601, 126643. [Google Scholar] [CrossRef]
- Gong, X.; Du, S.; Li, F.; Ding, Y. Study on the Spatial and Temporal Characteristics of Mesoscale Drought in China under Future Climate Change Scenarios. Water 2021, 13, 2761. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, X.; Zhang, Z.; Kong, R.; Peng, Z.; Zhang, Q.; Chen, X. The Increasing Risk of Future Simultaneous Droughts over the Yangtze River Basin Based on CMIP6 Models. Stoch. Environ. Res. Risk Assess. 2023, 37, 2577–2601. [Google Scholar] [CrossRef]
- Cao, S.; He, Y.; Zhang, L.; Chen, Y.; Yang, W.; Yao, S.; Sun, Q. Spatiotemporal Characteristics of Drought and Its Impact on Vegetation in the Vegetation Region of Northwest China. Ecol. Indic. 2021, 133, 108420. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, J.; Singh, V.P.; Bai, Y. SPI-Based Evaluation of Drought Events in Xinjiang, China. Nat. Hazards 2012, 64, 481–492. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, F. Daily Extreme Precipitation and Trends over China. Sci. China Earth Sci. 2017, 60, 2190–2203. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, H.; Zhang, Q. Extreme Drought in the Recent Two Decades in Northern China Resulting from Eurasian Warming. Clim. Dyn. 2019, 52, 2885–2902. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Wang, R.; Peng, Q.; Wu, X.; Ning, H.; Li, C. The Relationship between Drought Activity and Vegetation Cover in Northwest China from 1982 to 2013. Nat. Hazards 2018, 92, 145–163. [Google Scholar] [CrossRef]
- Zhang, Q.; Yao, Y.; Wang, Y.; Wang, S.; Wang, J.; Yang, J.; Wang, J.; Li, Y.; Shang, J.; Li, W. Characteristics of Drought in Southern China under Climatic Warming, the Risk, and Countermeasures for Prevention and Control. Theor. Appl. Climatol. 2019, 136, 1157–1173. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, Y.; Feng, J.; Wang, F. ENSO Cycle and Climate Anomaly in China. Chin. J. Ocean. Limnol. 2012, 30, 985–1000. [Google Scholar] [CrossRef]
- Zhao, P.; Tan, L.; Zhang, P.; Wang, S.; Cui, B.; Li, D.; Xue, G.; Cheng, X. Stable Isotopic Characteristics and Influencing Factors in Precipitation in the Monsoon Marginal Region of Northern China. Atmosphere 2018, 9, 97. [Google Scholar] [CrossRef] [Green Version]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales. In Proceedings of the Eighth Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 17–22. [Google Scholar]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Palmer, W.C. Meteorological Drought; Research Paper, No. 45; U.S. Department of Commerce, Weather Bureau: Washington, DC, USA, 1965; p. 58. [Google Scholar]
- Narasimhan, B.; Srinivasan, R. Development and Evaluation of Soil Moisture Deficit Index (SMDI) and Evapotranspiration Deficit Index (ETDI) for Agricultural Drought Monitoring. Agric. For. Meteorol. 2005, 133, 69–88. [Google Scholar] [CrossRef]
- Liu, X.; Wang, S.; Zhou, Y.; Wang, F.; Li, W.; Liu, W. Regionalization and Spatiotemporal Variation of Drought in China Based on Standardized Precipitation Evapotranspiration Index (1961–2013). Adv. Meteorol. 2015, 2015, 950262. [Google Scholar] [CrossRef] [Green Version]
- Alsafadi, K.; Al-Ansari, N.; Mokhtar, A.; Mohammed, S.; Elbeltagi, A.; Sh Sammen, S.; Bi, S. An Evapotranspiration Deficit-Based Drought Index to Detect Variability of Terrestrial Carbon Productivity in the Middle East. Environ. Res. Lett. 2022, 17, 014051. [Google Scholar] [CrossRef]
- Hoffman, M.T.; Carrick, P.J.; Gillson, L.; West, A.G. Drought, Climate Change and Vegetation Response in the Succulent Karoo, South Africa. S. Afr. J. Sci. 2009, 105, 54. [Google Scholar] [CrossRef] [Green Version]
- Tirivarombo, S.; Osupile, D.; Eliasson, P. Drought Monitoring and Analysis: Standardised Precipitation Evapotranspiration Index (SPEI) and Standardised Precipitation Index (SPI). Phys. Chem. Earth Parts A/B/C 2018, 106, 1–10. [Google Scholar] [CrossRef]
- Li, L.; She, D.; Zheng, H.; Lin, P.; Yang, Z.-L. Elucidating Diverse Drought Characteristics from Two Meteorological Drought Indices (SPI and SPEI) in China. J. Hydrometeorol. 2020, 21, 1513–1530. [Google Scholar] [CrossRef]
- Danandeh Mehr, A.; Vaheddoost, B. Identification of the Trends Associated with the SPI and SPEI Indices across Ankara, Turkey. Theor. Appl. Clim. 2020, 139, 1531–1542. [Google Scholar] [CrossRef]
- Lee, S.-H.; Yoo, S.-H.; Choi, J.-Y.; Bae, S. Assessment of the Impact of Climate Change on Drought Characteristics in the Hwanghae Plain, North Korea Using Time Series SPI and SPEI: 1981–2100. Water 2017, 9, 579. [Google Scholar] [CrossRef] [Green Version]
- Nedealcov, M.; Răileanu, V.; Sîrbu, R.; Cojocari, R. The Use Of Standardized Indicators (SPI And SPEI) In Predicting Droughts Over The Republic Of Moldova Territory. Present Environ. Sustain. Dev. 2015, 9, 149–158. [Google Scholar] [CrossRef]
- Mohammed, S.; Alsafadi, K.; Al-Awadhi, T.; Sherief, Y.; Harsanyie, E.; El Kenawy, A.M. Space and Time Variability of Meteorological Drought in Syria. Acta Geophys. 2020, 68, 1877–1898. [Google Scholar] [CrossRef]
- Chaudhary, U.; Limbu, M.N.; Kaphle, G.C. Statistical Analysis of Rainfall Distribution in Biratnagar, Nepal: A Case Study. Pragya Darshan 2023, 5, 52–57. [Google Scholar] [CrossRef]
- Liu, X.; Zhu, X.; Pan, Y.; Bai, J.; Li, S. Performance of Different Drought Indices for Agriculture Drought in the North China Plain. J. Arid. Land. 2018, 10, 507–516. [Google Scholar] [CrossRef] [Green Version]
- Mokhtar, A.; Jalali, M.; He, H.; Al-Ansari, N.; Elbeltagi, A.; Alsafadi, K.; Abdo, H.G.; Sammen, S.S.; Gyasi-Agyei, Y.; Rodrigo-Comino, J. Estimation of SPEI Meteorological Drought Using Machine Learning Algorithms. IEEE Access 2021, 9, 65503–65523. [Google Scholar] [CrossRef]
- Yao, N.; Li, Y.; Lei, T.; Peng, L. Drought Evolution, Severity and Trends in Mainland China over 1961–2013. Sci. Total Environ. 2018, 616–617, 73–89. [Google Scholar] [CrossRef]
- Xu, D.; Zhang, Q.; Ding, Y.; Zhang, D. Spatiotemporal Pattern Mining of Drought in the Last 40 Years in China Based on the SPEI and Space–Time Cube. J. Appl. Meteorol. Climatol. 2021, 60, 1219–1230. [Google Scholar] [CrossRef]
- Li, J.; Hsu, H.-H.; Wang, W.-C.; Ha, K.-J.; Li, T.; Kitoh, A. East Asian Climate under Global Warming: Understanding and Projection. Clim. Dyn. 2018, 51, 3969–3972. [Google Scholar] [CrossRef] [Green Version]
- Piao, S.; Ciais, P.; Huang, Y.; Shen, Z.; Peng, S.; Li, J.; Zhou, L.; Liu, H.; Ma, Y.; Ding, Y.; et al. The Impacts of Climate Change on Water Resources and Agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Schamm, K.; Ziese, M.; Becker, A.; Finger, P.; Meyer-Christoffer, A.; Schneider, U.; Schröder, M.; Stender, P. Global Gridded Precipitation over Land: A Description of the New GPCC First Guess Daily Product. Earth Syst. Sci. Data 2014, 6, 49–60. [Google Scholar] [CrossRef] [Green Version]
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS Monthly High-Resolution Gridded Multivariate Climate Dataset. Sci. Data 2020, 7, 109. [Google Scholar] [CrossRef] [Green Version]
- Ali, R.; Kuriqi, A.; Abubaker, S.; Kisi, O. Long-Term Trends and Seasonality Detection of the Observed Flow in Yangtze River Using Mann-Kendall and Sen’s Innovative Trend Method. Water 2019, 11, 1855. [Google Scholar] [CrossRef] [Green Version]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Charles Griffin: London, UK, 1975. [Google Scholar]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245. [Google Scholar] [CrossRef]
- Sanogo, A.; Kabange, R.S.; Owusu, P.A.; Djire, B.I.; Donkoh, R.F.; Dia, N. Investigation into Recent Temperature and Rainfall Trends in Mali Using Mann-Kendall Trend Test: Case Study of Bamako. GEP 2023, 11, 155–172. [Google Scholar] [CrossRef]
- Neeti, N.; Eastman, J.R. A Contextual Mann-Kendall Approach for the Assessment of Trend Significance in Image Time Series: A Novel Method for Testing Trend Significance. Trans. GIS 2011, 15, 599–611. [Google Scholar] [CrossRef]
- Hamed, K.H.; Ramachandra Rao, A. A Modified Mann-Kendall Trend Test for Autocorrelated Data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Theil, H. A Rank-Invariant Method of Linear and Polynomial Regression Analysis. In Henri Theil’s Contributions to Economics and Econometrics; Raj, B., Koerts, J., Eds.; Advanced Studies in Theoretical and Applied Econometrics; Springer: Dordrecht, The Netherlands, 1992; Volume 23, pp. 345–381. ISBN 978-94-010-5124-8. [Google Scholar]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Yevjevich, V. An Objective Approach to Definitions and Investigations of Continental Hydrologic Droughts. J. Hydrol. 1967, 7, 353. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Xiao, J.; Zhou, Y.; Zheng, Y.; Li, J.; Xiao, H. Drought Events and Their Effects on Vegetation Productivity in China. Ecosphere 2016, 7, e01591. [Google Scholar] [CrossRef]
- Alsafadi, K.; Mohammed, S.A.; Ayugi, B.; Sharaf, M.; Harsányi, E. Spatial–Temporal Evolution of Drought Characteristics Over Hungary Between 1961 and 2010. Pure Appl. Geophys. 2020, 177, 3961–3978. [Google Scholar] [CrossRef] [Green Version]
- Moran, P.A.P. The Interpretation of Statistical Maps. J. R. Stat. Soc. Ser. B 1948, 10, 243–251. [Google Scholar] [CrossRef]
- Assuncao, R.M.; Reis, E.A. A new proposal to adjust Moran’s I for population density. Stat. Med. 1999, 18, 2147. [Google Scholar] [CrossRef]
- Anselin, L. Local Indicators of Spatial Association-LISA. Geogr. Anal. 2010, 27, 93–115. [Google Scholar] [CrossRef]
- Anselin, L.; Syabri, I.; Kho, Y. GeoDa: An Introduction to Spatial Data Analysis. Geogr. Anal. 2006, 38, 5–22. [Google Scholar] [CrossRef]
- Chen, M.; Gong, Y.; Li, Y.; Lu, D.; Zhang, H. Population Distribution and Urbanization on Both Sides of the Hu Huanyong Line: Answering the Premier’s Question. J. Geogr. Sci. 2016, 26, 1593–1610. [Google Scholar] [CrossRef]
- Liu, J.; Yang, Q.; Liu, J.; Zhang, Y.; Jiang, X.; Yang, Y. Study on the Spatial Differentiation of the Populations on Both Sides of the “Qinling-Huaihe Line” in China. Sustainability 2020, 12, 4545. [Google Scholar] [CrossRef]
- Yang, J.; Yang, Y.; Li, Z.; Liao, L.; Gan, R.; Wang, W.; Wang, T.; Liang, L. The Regional Characteristics of Meteorological Drought Event and Its Multidimensional Factors Measurement by Daily SPEI in Guangxi, China. Geomat. Nat. Hazards Risk 2023, 14, 117–142. [Google Scholar] [CrossRef]
- Tan, C.; Yang, J.; Li, M. Temporal-Spatial Variation of Drought Indicated by SPI and SPEI in Ningxia Hui Autonomous Region, China. Atmosphere 2015, 6, 1399–1421. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, S.; Alsafadi, K.; Enaruvbe, G.O.; Bashir, B.; Elbeltagi, A.; Széles, A.; Alsalman, A.; Harsanyi, E. Assessing the Impacts of Agricultural Drought (SPI/SPEI) on Maize and Wheat Yields across Hungary. Sci. Rep. 2022, 12, 8838. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.; Lu, H.; Yao, T.; Yu, Q. Drought Characteristics and Its Elevation Dependence in the Qinghai–Tibet Plateau during the Last Half-Century. Sci. Rep. 2020, 10, 14323. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Chen, J.; Chen, X.; Wang, Y. Variability of Precipitation Extremes and Dryness/Wetness over the Southeast Coastal Region of China, 1960–2014. Int. J. Climatol. 2017, 37, 4656–4669. [Google Scholar] [CrossRef]
- Li, H.; Hou, E.; Deng, J. Spatio-Temporal Differentiation Characteristic and Evolution Process of Meteorological Drought in Northwest China From 1960 to 2018. Front. Earth Sci. 2022, 10, 857953. [Google Scholar] [CrossRef]
- Yao, J.; Zhao, Y.; Chen, Y.; Yu, X.; Zhang, R. Multi-Scale Assessments of Droughts: A Case Study in Xinjiang, China. Sci. Total Environ. 2018, 630, 444–452. [Google Scholar] [CrossRef]
- Wan, H.; Zhong, Z.; Yang, X.; Li, X. Impact of City Belt in Yangtze River Delta in China on a Precipitation Process in Summer: A Case Study. Atmos. Res. 2013, 125–126, 63–75. [Google Scholar] [CrossRef]
- Liu, J.; Schlünzen, K.H.; Frisius, T.; Tian, Z. Effects of Urbanization on Precipitation in Beijing. Phys. Chem. Earth Parts ABC 2021, 122, 103005. [Google Scholar] [CrossRef]
- Liu, K.; Li, X.; Wang, S.; Li, Y. Investigating the Impacts of Driving Factors on Urban Heat Islands in Southern China from 2003 to 2015. J. Clean. Prod. 2020, 254, 120141. [Google Scholar] [CrossRef]
- Ma, F.; Yuan, X. More Persistent Summer Compound Hot Extremes Caused by Global Urbanization. Geophys. Res. Lett. 2021, 48, e2021GL093721. [Google Scholar] [CrossRef]
- Gao, Z.; Zhu, J.; Guo, Y.; Luo, N.; Fu, Y.; Wang, T. Impact of Land Surface Processes on a Record-Breaking Rainfall Event on May 06–07, 2017, in Guangzhou, China. Geophys. Res. Atmos. 2021, 126, e2020JD032997. [Google Scholar] [CrossRef]
- Lorenz, J.M.; Kronenberg, R.; Bernhofer, C.; Niyogi, D. Urban Rainfall Modification: Observational Climatology Over Berlin, Germany. J. Geophys. Res. Atmos. 2019, 124, 731–746. [Google Scholar] [CrossRef]
- Luo, M.; Lau, N. Increasing Heat Stress in Urban Areas of Eastern China: Acceleration by Urbanization. Geophys. Res. Lett. 2018, 45, 13060–13069. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, L.; Wang, Y.; Singh, V.P.; Xu, C.-Y.; Ren, L.; Zhang, M.; Liu, Y.; Jiang, S.; Yuan, F. Spatial and Temporal Characterization of Drought Events in China Using the Severity-Area-Duration Method. Water 2020, 12, 230. [Google Scholar] [CrossRef] [Green Version]
- Han, R.; Li, Z.; Li, Z.; Han, Y. Spatial–Temporal Assessment of Historical and Future Meteorological Droughts in China. Atmosphere 2021, 12, 787. [Google Scholar] [CrossRef]
- Yue, Y.; Liu, H.; Mu, X.; Qin, M.; Wang, T.; Wang, Q.; Yan, Y. Spatial and Temporal Characteristics of Drought and Its Correlation with Climate Indices in Northeast China. PLoS ONE 2021, 16, e0259774. [Google Scholar] [CrossRef]
- McGregor, G.R.; Ebi, K. El Niño Southern Oscillation (ENSO) and Health: An Overview for Climate and Health Researchers. Atmosphere 2018, 9, 282. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Wu, P.; Zhou, T.; Xiao, C. ENSO transition from La Niña to El Niño drives prolonged spring–summer drought over North China. J. Clim. 2018, 31, 3509–3523. [Google Scholar] [CrossRef]
- Zhang, W.; Jin, F.-F.; Turner, A. Increasing Autumn Drought over Southern China Associated with ENSO Regime Shift. Geophys. Res. Lett. 2014, 41, 4020–4026. [Google Scholar] [CrossRef] [Green Version]
- Deng, S.; Chen, T.; Yang, N.; Qu, L.; Li, M.; Chen, D. Spatial and Temporal Distribution of Rainfall and Drought Characteristics across the Pearl River Basin. Sci. Total Environ. 2018, 619–620, 28–41. [Google Scholar] [CrossRef]
- Cui, K.; Shoemaker, S.P. A Look at Food Security in China. Npj Sci. Food 2018, 2, 4. [Google Scholar] [CrossRef] [Green Version]
- Qin, Z.; Tang, H.; Li, W.; Zhang, H.; Zhao, S.; Wang, Q. Modelling Impact of Agro-Drought on Grain Production in China. Int. J. Disaster Risk Reduct. 2014, 7, 109–121. [Google Scholar] [CrossRef]
- Yu, C.; Huang, X.; Chen, H.; Huang, G.; Ni, S.; Wright, J.S.; Hall, J.; Ciais, P.; Zhang, J.; Xiao, Y.; et al. Assessing the Impacts of Extreme Agricultural Droughts in China Under Climate and Socioeconomic Changes. Earths Future 2018, 6, 689–703. [Google Scholar] [CrossRef]
- Pei, W.; Fu, Q.; Liu, D.; Li, T.; Cheng, K.; Cui, S. Spatiotemporal Analysis of the Agricultural Drought Risk in Heilongjiang Province, China. Theor. Appl. Clim. 2018, 133, 151–164. [Google Scholar] [CrossRef]
- Lei, Y.; Wang, J.; Yue, Y.; Yin, Y.; Sheng, Z. How Adjustments in Land Use Patterns Contribute to Drought Risk Adaptation in a Changing Climate—A Case Study in China. Land. Use Policy 2014, 36, 577–584. [Google Scholar] [CrossRef]
- Huang, J.; Xue, Y.; Sun, S.; Zhang, J. Spatial and Temporal Variability of Drought during 1960–2012 in Inner Mongolia, North China. Quat. Int. 2015, 355, 134–144. [Google Scholar] [CrossRef]
Index | SPI | SPEI | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
TDE | MDD | MDP | MDS | MDI | TDE | MDD | MDP | MDS | MDI | |
Moran’s Index | 0.250 | 0.196 | 0.0189 | 0.202 | 0.113 | 0.304 | 0.200 | 0.122 | 0.156 | 0.080 |
z-score | 22.366 | 17.648 | 2.051 | 18.12 | 10.267 | 27.166 | 18.233 | 11.054 | 14.629 | 7.421 |
p-value | <0.001 | <0.001 | 0.040 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, J.; Bi, S.; Bashir, B.; Ge, Z.; Wu, K.; Alsalman, A.; Ayugi, B.O.; Alsafadi, K. Historical Trends and Characteristics of Meteorological Drought Based on Standardized Precipitation Index and Standardized Precipitation Evapotranspiration Index over the Past 70 Years in China (1951–2020). Sustainability 2023, 15, 10875. https://doi.org/10.3390/su151410875
Sun J, Bi S, Bashir B, Ge Z, Wu K, Alsalman A, Ayugi BO, Alsafadi K. Historical Trends and Characteristics of Meteorological Drought Based on Standardized Precipitation Index and Standardized Precipitation Evapotranspiration Index over the Past 70 Years in China (1951–2020). Sustainability. 2023; 15(14):10875. https://doi.org/10.3390/su151410875
Chicago/Turabian StyleSun, Jiwei, Shuoben Bi, Bashar Bashir, Zhangxi Ge, Kexin Wu, Abdullah Alsalman, Brian Odhiambo Ayugi, and Karam Alsafadi. 2023. "Historical Trends and Characteristics of Meteorological Drought Based on Standardized Precipitation Index and Standardized Precipitation Evapotranspiration Index over the Past 70 Years in China (1951–2020)" Sustainability 15, no. 14: 10875. https://doi.org/10.3390/su151410875
APA StyleSun, J., Bi, S., Bashir, B., Ge, Z., Wu, K., Alsalman, A., Ayugi, B. O., & Alsafadi, K. (2023). Historical Trends and Characteristics of Meteorological Drought Based on Standardized Precipitation Index and Standardized Precipitation Evapotranspiration Index over the Past 70 Years in China (1951–2020). Sustainability, 15(14), 10875. https://doi.org/10.3390/su151410875