The Study of Groundwater in the Zhambyl Region, Southern Kazakhstan, to Improve Sustainability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Scope Study Description
2.1.1. Orography
2.1.2. Hydrography
2.1.3. Climate
2.2. Geological Setting
- Big Karatau areas with Precambrian and early Paleozoic formations.
- Shu–Sarysu depression with Paleozoic outcrops.
- Eastern Betpak-Dala area with Cambrian and Ordovician sections.
2.3. Hydrogeological Setting
2.4. Field Data
2.5. Sampling and Data Preparation
Orography Laboratory Analysis
- -
- The quantity of the well’s sampling.
- -
- Consistency of the well’s sampling; a permanent well-monitoring system will be reasonable to introduce.
- -
- Quality of the water sample collection and transportation over the long distance from the field to the main chemical laboratory.
3. Results and Discussions
3.1. Groundwater Chemistry
3.2. Potable Water Quality Standard Exceedances
3.3. Comparison of Water Composition Characteristics According to Geology and Land Use
3.4. Summary of the Areas with the Water Compositions High Levels
- -
- -
- Chloride (Cl) with values of 465.4 mg/L (permissible 250 mg/L) leads to a violation of the digestive system, incidence of cholelithiasis, urolithiasis, cardiovascular system, bladder cancer, stomach cancer, liver cancer, cancer of the rectum and colon, as well as digestive system diseases [42].
- -
- Sulfate (SO4) with values of 602. mg/L (permissible 250 mg/L) leads to irritated esophagus, affects gastric secretion, disrupts the digestion process, causes intestinal upset, and provokes allergic itching and skin inflammation [43].
- -
- Lithium (Li) with values of 0.18 mg/L (permissible 0.03 mg/L) leads to disruption of the cardiovascular and central nervous system, tremor, ataxia, memory loss, convulsions, and kidney damage [44].
- -
- Strontium (Sr) with values of 15.0 mg/L (permissible 7.0 mg/L) leads to Urov disease, serious deformities of the musculoskeletal system, causing disability, and growth retardation in children [45].
3.5. Data and Database
3.6. Further Investigations for the Natural “White” Hydrogen “Factories” Locations
3.7. Recommendations, Solutions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ingrao, C.; Strippoli, R.; Lagioia, G.; Huisingh, D. Water scarcity in agriculture: An overview of causes, impacts and approaches for reducing the risks. Heliyon 2023, 9, e18507. [Google Scholar] [CrossRef]
- Unfried, K.; Kis-Katos, K.; Poser, T. Water scarcity and social conflict. J. Environ. Econ. Manag. 2022, 113, 102633. [Google Scholar] [CrossRef]
- DeNicola, E.; Aburizaiza, O.S.; Siddique, A.; Khwaja, H.; Carpenter, D.O. Climate Change and Water Scarcity: The Case of Saudi Arabia. Ann. Glob. Health 2015, 81, 342–353. [Google Scholar] [CrossRef] [PubMed]
- WWAP (United Nations World Water Assessment Program). The United Nations World Water Development Report 2015: Water for a Sustainable World; UNESCO: Paris, France, 2015; ISBN 978-92-3-100071-3. Available online: https://unesdoc.unesco.org/ark:/48223/pf0000231823 (accessed on 20 June 2023).
- WWAP (United Nations World Water Assessment Program)/UN-Water. The United Nations World Water Development Report 2018: Nature-Based Solutions for Water; UNESCO: Paris, France, 2018; ISBN 978-92-3-100264-9. [Google Scholar]
- UNESCO. Groundwater Making the Invisible Visible. The United Nations World Water Development Report 2022; UNESCO: Paris, France, 2022; p. 248. ISBN 978-92-3-100507-7. WWDR_2022_EN_report_web_0.pdf (unesco.at). [Google Scholar]
- Dai, Y.; Liu, Z. Spatiotemporal heterogeneity of urban and rural water scarcity and its influencing factors across the world. Ecol. Indic. 2023, 153, 110386. [Google Scholar] [CrossRef]
- Absametov, M.K.; Mukhamedjanov, M.A.; Sydykov, J.S.; Murtazin, E.J. Underground Waters of Kazakhstan—A Strategic Resource of Water Security of the Country; Kazakh Academy of Science: Almaty, Kazakhstan, 2017; p. 220. (In Russian) [Google Scholar]
- Tolepbayeva, A.K.; Orazbekova, K.S.; Karagulova, R.K.; Nurkisa, A.S.; Kadirbekova, A.A.; Lentschke, J.; Kazova, R.A. Modeling the impact of man-made landscapes on the state of the soil. Pollut. Res. Pap. 2018, 37, 600–605. Available online: http://www.envirobiotechjournals.com/article_abstract.php?aid=8922&iid=259&jid=4 (accessed on 20 March 2024).
- Mukhamedjanov, M.A.; Arystanbaev, Y.Y. Underground waters of arid regions of Kazakhstan and their use under conditions of climate change and growth of water consumption. In Proceedings of the International Conference Water resources of Central Asia and Their Use, Almaty, Kazakhstan, 22–23 September 2016; Volume 1, pp. 122–126. (In Russian). [Google Scholar]
- Mukhamedzhanov, M.A.; Kazanbaeva, L.M.; Sagin, D.; Nurgazieva, A.A. The laws of formation of groundwater resources on the territory of Kazakhstan at the expense of surface and groundwater. News Natl. Acad. Sci. Repub. Kazakhstan 2019, 3, 42–52. [Google Scholar] [CrossRef]
- Sydykov, Z.S.; Jakelov, A.K.; Jabasov, M.H. Underground Waters of Kazakhstan. Resources, Use and Protection Problems; Kazakh Academy of Science: Almaty, Kazakhstan, 1999; p. 11. (In Russian) [Google Scholar]
- Smolyar, V.A.; Burov, B.V.; Veselov, V.V. Water Resources of Kazakhstan (Surface and Underground Waters, Current State); Publishing House Gylym: Almaty, Kazakhstan, 2002; p. 595. [Google Scholar]
- Mukhamedzhanov, M.A.; Sagin, J.; Kazanbaeva, L.M.; Rakhmetov, I.K. Influence of anthropogenic factors on hydrogeochemical conditions of underground drinking waters of Kazakhstan. News Natl. Acad. Sci. Repub. Kazakhstan 2018, 5, 6–8. [Google Scholar] [CrossRef]
- Mukhamedzhanov, M.A.; Sagin, J.; Nurgaziyeva, A.A. Relation between surface water and groundwater as the factor for formation of groundwater renewable resources on the territory of Kazakhstan. News Natl. Acad. Sci. Repub. Kazakhstan 2018, 5, 15–17. [Google Scholar] [CrossRef]
- Dzhakelov, A.K. Formation of Groundwater of Chu-Sarysu Artesian Basin; Publishing House Science: Almaty, Kazakhstan, 1993; p. 240. Available online: https://search.rsl.ru/ru/record/01000594988?ysclid=lkwi6bftpu47361126 (accessed on 20 June 2023). (In Russian)
- Ecology of Zhambyl Region. Available online: https://www.stud24.ru/ecology/jekologiya-zhambylskoj-oblasti/62674-205974-page3.html (accessed on 11 December 2023). (In Russian).
- National Report on the State of the Environment of the Republic of Kazakhstan. 2015. Available online: https://2uch.ru/textbooks/ndrs/mes/juyovesth?ysclid=lq6fu00tu458228389 (accessed on 11 December 2023). (In Russian).
- Absametov, M.K. (Ed.) Rational Use and Protection of Groundwater in the Republic of Kazakhstan in the Context of Climatic and Anthropogenic Changes; Publishing House Print Express: Almaty, Kazakhstan, 2020; p. 280. [Google Scholar]
- National Report on the State of the Environment of the Republic of Kazakhstan. 2016. Available online: https://www.gov.kz/memleket/entities/ecogeo/documents/details/196864?lang=ru&ysclid=lwej8s29cr185379623 (accessed on 11 December 2023). (In Russian)
- Murtazin, E.; Miroshnichenko, O.; Trushel, L. Description of the informational system of groundwater resources and reserves of Kazakhstan. In Proceedings of the 19th International Multidisciplinary Scientific Geo Conference & EXPO SGEM, Albena, Bulgaria, 30 June–6 July 2019; pp. 137–144. [Google Scholar]
- Ahmedsafin, U.M. (Ed.) Regional Groundwater Resources of Kazakhstan: (Prospects and Methods of Rational Use); Publishing House Science: Alma-Ata, Kazakhstan, 1983; p. 175. Available online: https://search.rsl.ru/ru/record/01001167912?ysclid=lkwgw7dwsp763787477 (accessed on 20 June 2023). (In Russian)
- Dmitrovsky, V.I. (Ed.) Hydrogeology of the USSR. South Kazakhstan; Nedra, Subsoil Publishers: Moscow, Russia, 1970; Volume 36, p. 473. Available online: https://g.eruditor.one/file/868887/?ysclid=lkwhev67jq627554410 (accessed on 20 June 2023). (In Russian)
- Ahmedsafin, U.M. (Ed.) Formation and Hydrodynamics of Artesian Waters in South Kazakhstan; Publishing House Science: Alma-Ata, Kazakhstan, 1973; p. 231. Available online: https://search.rsl.ru/ru/record/01007065233?ysclid=lkwhqjznrx294162308 (accessed on 20 June 2023). (In Russian)
- Ahmedsafin, U.M. (Ed.) Hydrogeological Conditions of Kazakhstan; Publishing House Science: Alma-Ata, Kazakhstan, 1975; p. 256. Available online: https://search.rsl.ru/ru/record/01006919643?ysclid=lkwif97goz252031821 (accessed on 23 June 2023). (In Russian)
- On Approval of the Rules for Sampling Moved (Transported) Objects and Biological Material. Available online: https://adilet.zan.kz/rus/docs/V1500011618 (accessed on 20 June 2023).
- Kazakhstan Government. Drinking Water General Requirements for the Organization and Methods of Quality Control; ST RK GOST R 51232. In Proceedings of the Committee for Standardization, Metrology and Certification, Astana, Kazakhstan, 29 September 2003. Available online: https://waterservice.kz/downloads/rd/gst7.pdf?ysclid=ld3fpwacho899490449 (accessed on 20 June 2023). (In Russian).
- International Standard. GOST 26449.1-85. Stationary Distillation Desalting Units. Available online: https://ohranatruda.ru/upload/iblock/274/4294850335.pdf?ysclid=lwkda3de1n312899182 (accessed on 20 March 2024). (In Russian).
- Water. GOST 33045-2014. Methods for Determining Nitrogen-Containing Substances. 2014. Available online: https://internet-law.ru/gosts/gost/58829/?ysclid=lwkfgdqpdh675539723 (accessed on 20 March 2024). (In Russian).
- State Standard of the Republic of Kazakhstan. ST RK 1015-2000. Water. Graphimetric Determination Method Sulfate Content in Natural, Wastewater. 2000. Available online: https://files.stroyinf.ru/Data2/1/4293739/4293739431.pdf?ysclid=lwkfuws8yv642336166 (accessed on 20 March 2024). (In Russian).
- Drinking Water. ST RK 2727-2015. Fluoride Determination Method. 2015. Available online: https://files.stroyinf.ru/Data2/1/4293739/4293739373.pdf?ysclid=lwkg3ge0po926988940 (accessed on 20 March 2024). (In Russian).
- State Standard of the Republic of Kazakhstan. ST RK ISO 17294-2-2006. 2006. Available online: https://files.stroyinf.ru/Data2/1/4293739/4293739341.pdf?ysclid=lwkh8gqdb552014169 (accessed on 20 March 2024). (In Russian).
- Quantitative Chemical Analysis of Water. HDPE F 14.1:2:4.36-95. Methodology for Measuring the Mass Concentration of Nitrate Ions in Drinking, Surface and Waste Waters Using the Photometric Method with Salicylic Acid. 2011. Available online: https://files.stroyinf.ru/Data2/1/4293808/4293808610.pdf?ysclid=lwkhofresj592363888 (accessed on 20 March 2024). (In Russian).
- Drinking Water. Sample Selection; ST RK GOST R 51593-2000. 2008. Available online: https://internet-law.ru/gosts/gost/28459/?ysclid=lo2nmwyboy523770870 (accessed on 11 December 2023). (In Russian).
- Design and Operation of a Concentration Photoelectric Colorimeter (KFC-2). Available online: https://ohranatruda.ru/upload/iblock/42c/4293806891.pdf?ysclid=ll0cz129em450802281 (accessed on 20 June 2023).
- International Standard. ISO 17294-2. 2006. Available online: https://cdn.standards.iteh.ai/samples/36127/5395f5b265b64455bb9890d9d161cf95/ISO-17294-2-2003.pdf (accessed on 11 December 2023).
- Drinking Water. Methods for Determining Sulfate Content. 2003. Available online: https://internet-law.ru/gosts/gost/42209/?ysclid=lny8qts43f546546961 (accessed on 11 December 2023). (In Russian).
- Drinking Water. Methods for Determining Chloride Content. 2010. Available online: https://internet-law.ru/gosts/gost/37105/?ysclid=lny8t722ol862537230 (accessed on 11 December 2023). (In Russian).
- WHO/EU Drinking Water Standards Comparative Table. Available online: https://www.lenntech.com/who-eu-water-standards.htm (accessed on 10 September 2022).
- Distribution of Some Required Components in Groundwater of the North of the Russian Plate and Their Impact on the Human Body. Available online: https://natural-sciences.ru/ru/article/view?id=36169 (accessed on 20 June 2023). (In Russian).
- Amu, O.O.; Amu, E.O.; Igibah, E.C.; Agashua, L.O. Human health risk evaluation of sodium and ironic elements variability in groundwater: A case study of Abuja North, Nigeria. Fuel Commun. 2022, 10, 100041. [Google Scholar] [CrossRef]
- Makotrina, L.V.; Zverkova, A.S. Drinking water chlorine disinfection and its influence on human health. Tech. Science. Constr. 2021, 1, 87–94. Available online: https://cyberleninka.ru/article/n/vliyanie-obezzarazhivaniya-pitievoy-vody-hlorom-na-zdorovie-cheloveka/viewer (accessed on 20 March 2024). (In Russian).
- Sazonova, O.V.; Sergeev, A.K.; Chupakhina, L.V.; Ryazanova, T.K.; Sudakova, T.V. Analysis of the population health risk due to pollution of drinking water (experience of the Samara region). Health Risk Anal. 2021, 2, 41–51. [Google Scholar] [CrossRef]
- Shakoor, N.; Adeel, M.; Ahmad, M.A.; Zain, M.; Waheed, U.; Javaid, R.A.; Haider, F.U.; Azeem, I.; Zhou, P.; Li, Y.; et al. Reimagining safe lithium applications in the living environment and its impacts on human, animal, and plant system. Environ. Sci. Ecotechnology 2023, 15, 100252. [Google Scholar] [CrossRef] [PubMed]
- Ding, D.; Kong, L.; Jiang, D.; Wei, J.; Cao, S.; Li, X.; Zheng, L.; Deng, S. Source apportionment and health risk assessment of chemicals of concern in soil, water and sediment at a large strontium slag pile area. J. Environ. Manag. 2022, 304, 114228. [Google Scholar] [CrossRef] [PubMed]
- Health of the Population of the Republic of Kazakhstan and Activity of Healthcare Organizations in 2020. 2021. Available online: https://view.officeapps.live.com/op/view.aspx?src=https%3A%2F%2Fwww.gov.kz%2Fuploads%2F2022%2F9%2F6%2F313aa8c6d7b680004f6725e7d388adf2_original.13420544.doc&wdOrigin=BROWSELINK (accessed on 11 December 2023). (In Russian)
- Hydrochemical Indicators of the State of the Environment: A Textbook for Students of Higher Educational Institutions Studying in the Specialty “Environmental Protection and Rational Use of Natural Resources”/[Ya. P. Molchanov and Others].—Moscow: FORUM: INFRA-M, 2007. 190 p. Available online: https://search.rsl.ru/ru/record/01003049112?ysclid=lq295mde34394471539 (accessed on 11 December 2023). (In Russian).
- Musgrove, M. The occurrence and distribution of strontium in U.S. groundwater. Appl. Geochem. 2021, 126, 104867. [Google Scholar] [CrossRef]
- Keesari, T.; Sabarathinam, C.; Sinha, U.K.; Pethaperumal, R.T.; Kamaraj, P. Fate and transport of strontium in groundwater from a layered sedimentary aquifer system. Chemosphere 2022, 307, 136015. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Liu, C.; Sun, J.; Zhang, M.; Jing, J.; Li, L. A regional scale investigation on factors controlling the groundwater chemistry of various aquifers in a rapidly urbanized area: A case study of the Pearl River Delta. Sci. Total Environ. 2018, 625, 510–518. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Huang, G.; Hou, Q.; Liu, C.; Zhang, Y.; Zhang, Q. Groundwater quality in the Pearl River Delta after the rapid expansion of industrialization and urbanization: Distributions, main impact indicators, and driving forces. J. Hydrol. 2019, 577, 124004. [Google Scholar] [CrossRef]
- Huang, G.; Chen, Z.; Sun, J.; Wang, J.; Hou, Q. Groundwater quality in aquifers affected by the anthropogenic and natural processes in an urbanized area, south China. Environ. Forensics 2016, 17, 107–119. [Google Scholar] [CrossRef]
- Liu, C.; Hou, Q.; Chen, Y.; Huang, G. Hydrogeochemical Characteristics and Groundwater Quality in a Coastal Urbanized Area, South China: Impact of Land Use. Water 2022, 14, 4131. [Google Scholar] [CrossRef]
- Huang, G.; Sun, J.; Zhang, Y.; Chen, Z.; Liu, F. Impact of anthropogenic and natural processes on the evolution of groundwater chemistry in a rapidly urbanized coastal area, South China. Sci. Total Environ. 2013, 463, 209–221. [Google Scholar] [CrossRef] [PubMed]
- Kazphosphate. Available online: https://www.kpp.kz/en (accessed on 20 June 2023). (In Russian).
- Kazakhstan’s Chemical Pollution Analysis, Toraigurov University. 2023. Available online: https://tou.edu.kz/arm/upload/umk_pdf/78092.pdf (accessed on 10 September 2023).
- Osipova, I. In Kazakhstan, 33 Water Bodies Are Unsuitable for Use, Kursiv. 2021. Available online: https://kz.kursiv.media/2021-09-28/v-kazakhstane-33-vodnykh-obekta-neprigodny-dlya-polzovaniya/ (accessed on 10 September 2023).
- Shashkina, A. Cancer Issues in Kazakhstan, Kursiv. 2023. Available online: https://kz.kursiv.media/2023-02-28/lnsh-cancer/?ysclid=lmueb4rjvt299545013 (accessed on 10 September 2023).
- National Oncology Center, 2023, Stomach Cancer. Available online: https://www.cancercenter.kz/index.php/ru/rak-zheludka (accessed on 10 September 2023).
- Koemez, E. Poor Water Quality Consumption Issues in Kazakhstan, Karavan. 2018. Available online: https://www.caravan.kz/gazeta/kamennye-kazakhstancy-k-chemu-privodit-upotreblenie-nekachestvennojj-pitevojj-vody-488310/?ysclid=lmufatk66e159701821 (accessed on 10 September 2023).
- Bettayeb, K. A Gigantic Hydrogen Deposit in Northeast France? 2023. Available online: https://news.cnrs.fr/articles/a-gigantic-hydrogen-deposit-in-northeast-france (accessed on 12 January 2024).
- Erussard, V. Energy Observer. What Potential for Natural Hydrogen? 2023. Available online: https://energy-observer.imgix.net/documents/Presskit_EN.pdf (accessed on 15 January 2024).
- Ellis, G. USGS, the Potential for Geologic Hydrogen for Next-Generation Energy. 2023. Available online: https://www.usgs.gov/news/featured-story/potential-geologic-hydrogen-next-generation-energy (accessed on 10 April 2024).
- NWC. Nebraska Water Center, “Know Your Well” Is a Collaborative Citizen Science Program Training High School Students How to Sample and Test Well Water Quality. 2023. Available online: https://knowyourwell.unl.edu/ (accessed on 10 April 2024).
- Hydroma, Sustainable Development through Natural Hydrogen Economy, West African Big Green Deal Initiative and Foundation (W.A.B.G.D.). Available online: https://hydroma.ca/ (accessed on 10 April 2024).
No. | Administrative Districts | Total Inspected | Flowing | Without Flowing | Pumped | Blocked | Liquidated | Well Rate, L/s |
---|---|---|---|---|---|---|---|---|
1 | Zhambyl | 10 | 6 | 1 | 2 | 1 | from 0.5 to 5 | |
2 | Baizak | 16 | 6 | 4 | 3 | 3 | from 0.1 to 5 | |
3 | Zhualy | 39 | 25 | 3 | 8 | 3 | from 0.2 to 30 | |
4 | T. Ryskulov | 32 | 24 | 2 | 6 | from 0.1 to 10 | ||
Total | 97 | 61 | 8 | 5 | 19 | 4 |
Parameter | Unit | Detection Limit, mg/L | Dry Season (Nov. 2020) | Wet Season (May 2022) | Drinking Water Standards | |||||
---|---|---|---|---|---|---|---|---|---|---|
Min | Mean | Max | Min | Mean | Max | Kazakhstan | WHO/EU/USA | |||
pH | 0–12 | 6.2 | 7.9 | 9.0 | 7.23 | 7.9 | 8.4 | 6–9 | 6.2–8.5 | |
Temp. | °C | 0–100 | 11.0 | 18.4 | 29.1 | 10.5 | 15.5 | 25.3 | ||
Ca | mg/L | titration method | 1.0 | 20.3 | 64.0 | 9.0 | 40.7 | 160.3 | ||
Mg | mg/L | titration method | 0.3 | 7.2 | 29.8 | 4.9 | 17.3 | 73.0 | ||
Na | mg/L | 0.1 | 2.8 | 38.0 | 179.0 | 3.1 | 50.0 | 436.5 | 200 | 200 |
K | mg/L | 0.05 | 0.1 | 0.8 | 2.2 | 0.1 | 1.2 | 4.2 | ||
CO3 | mg/L | titration method | 6.0 | 3.1 | 17.0 | 8.0 | 8.4 | 24.0 | ||
HCO3 | mg/L | titration method | 12.2 | 101.7 | 280.7 | 85.4 | 159.3 | 311.2 | ||
Cl | mg/L | by electrophoresis | 3.5 | 12.2 | 42.5 | 2.1 | 43.1 | 465.4 | 350 | 250 |
SO4 | mg/L | by electrophoresis | 9.9 | 43.6 | 198.4 | 2.5 | 73.7 | 602.0 | 500 | 250 |
NO3 | mg/L | by electrophoresis | 0.1 | 3.9 | 20.9 | 0.2 | 5.0 | 15.4 | 45.0 | 50.0 |
NO2 | mg/L | by electrophoresis | 0.01 | 0.17 | 0.15 | 0.01 | 0.01 | 0.01 | 3.0 | 0.50 |
NH4 | mg/L | spectrophotometer | 0.0 | 0.0 | 0.0 | 0.05 | 0.05 | 0.3 | 0.2 | 0.50 |
F | mg/L | electrophoresis method | 0.3 | 1,0 | 1.5 | 0.22 | 0.7 | 1.2 | 1.5 | 1.5 |
B | mg/L | 0.01 | 0.001 | 0.005 | 0.005 | 0.01 | 0.01 | 0.74 | 0.5 | 1.0 |
Cd | mg/L | 0.0001 | 0.0004 | 0.0005 | 0.0007 | 0.0005 | 0.001 | 0.002 | 0.001 | |
Si | mg/L | spectrophotometer | 0.1 | 0.1 | 2.2 | 4.81 | 0.1 | 4.81 | 10.0 | |
Li | mg/L | 0.001 | 0.01 | 0.02 | 0.02 | 0.1 | 0.004 | 0.18 | 0.03 | |
Mo | mg/L | 0.0005 | 0.008 | 0.02 | 0.1 | 0.001 | 0.002 | 0.005 | 0.25 | |
As | mg/L | 0.001 | 0.008 | 0.008 | 0.01 | 0.005 | 0.005 | 0.005 | 0.05 | 0.01 |
Pb | mg/L | 0.0001 | 0.003 | 0.003 | 0.005 | 0.002 | 0.002 | 0.02 | 0.03 | 0.01 |
Ag | mg/L | 0.001 | 0.0003 | 0.0003 | 0.0003 | 0.0005 | 0.0002 | 0.011 | 0.001 | 0.001 |
Sr | mg/L | 0.0005 | 0.1 | 0.1 | 0.3 | 0.8 | 0.4 | 15.0 | 7.0 | 4.0 |
Fe2 | mg/L | spectrophotometer | 0.0 | 0.0 | 0.0 | 0.05 | 0.07 | 0.1 | 0.3 | 0.2 |
Fe3 | mg/L | spectrophotometer | 0.05 | 0.05 | 0.1 | 0.05 | 0.07 | 0.1 | 0.3 | 0.2 |
Ions | Unit | Min | Mean | Max | Interpretation | R2 | WQI | Water Type | |
---|---|---|---|---|---|---|---|---|---|
HCO3 | mg/L | 85.4 | 159.3 | 311.2 | Weak | from 0.2 to 0.5 | 0.2914 | 90–100—very good 70–90—good 50–70—medium 25–50—bad 0–25—very bad | water type: hydro carbonate sulfate, calcium sodium, 84% |
Ca | mg/L | 9.0 | 40.7 | 160.3 | Strong | from 0.7 to 0.9 | 0.8435 | ||
Mg | mg/L | 4.9 | 17.3 | 73.0 | 0.8629 | ||||
Na | mg/L | 3.1 | 50.0 | 436.5 | Very strong | from 0.9 to 1.0 | 0.9138 | ||
Cl | mg/L | 2.1 | 43.1 | 465.4 | 0.9336 | ||||
SO4 | mg/L | 2.5 | 73.7 | 602.0 | 0.9686 |
Months | Jan | Feb | Mar | Apr | May | June | July | Aug | Sep | Okt | Nov | Dec |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Average temperature (°C) | −3.3 | −1.6 | 5.4 | 11.9 | 18.1 | 23.6 | 26.0 | 24.8 | 18.8 | 10.8 | 2.8 | −2.8 |
Minimum temperature (°C) | −8.1 | −7.0 | −1.1 | 4.4 | 9.8 | 14.7 | 17.5 | 16.4 | 11.2 | 4.1 | −2.5 | −7.5 |
Maximum temperature (°C) | 2.2 | 4.0 | 11.7 | 18.1 | 24.7 | 30.3 | 32.7 | 31.8 | 25.8 | 17.5 | 8.8 | 2.6 |
Precipitation rate (mm) | 40 | 45 | 61 | 69 | 45 | 26 | 15 | 9 | 15 | 36 | 47 | 40 |
Humidity (%) | 68 | 70 | 67 | 62 | 51 | 37 | 32 | 31 | 37 | 55 | 71 | 70 |
No. | Quantity of Wells | Location of Wells | Total Flow Rate, L/s |
---|---|---|---|
1 | 11 | Zhualy district | 147 |
2 | 3 | T. Ryskulov district | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adenova, D.; Sarsekova, D.; Absametov, M.; Murtazin, Y.; Sagin, J.; Trushel, L.; Miroshnichenko, O. The Study of Groundwater in the Zhambyl Region, Southern Kazakhstan, to Improve Sustainability. Sustainability 2024, 16, 4597. https://doi.org/10.3390/su16114597
Adenova D, Sarsekova D, Absametov M, Murtazin Y, Sagin J, Trushel L, Miroshnichenko O. The Study of Groundwater in the Zhambyl Region, Southern Kazakhstan, to Improve Sustainability. Sustainability. 2024; 16(11):4597. https://doi.org/10.3390/su16114597
Chicago/Turabian StyleAdenova, Dinara, Dani Sarsekova, Malis Absametov, Yermek Murtazin, Janay Sagin, Ludmila Trushel, and Oxana Miroshnichenko. 2024. "The Study of Groundwater in the Zhambyl Region, Southern Kazakhstan, to Improve Sustainability" Sustainability 16, no. 11: 4597. https://doi.org/10.3390/su16114597