Sustainable Production: Integrating Medicinal Plants with Fish Farming in Aquaponics—A Mini Review
Abstract
:1. Introduction
2. Methodology
2.1. The Basis of Our Study
2.2. Search of Literature
2.3. Analysis
3. Brief Overview of Aquaponics and Its Historical Significance
4. Sustainability in Aquaponics
4.1. Synergy between Fish and Plants
4.2. Medicinal Plants Have Been Identified as Effective in Stimulating Fish Growth
5. Pharmacological Value of Herbs Suitable for Aquaponics Cultivation
6. Suitable Herb Species Cultivated in Aquaponics
7. Risk and Problem of Aquaponics Associated with Economic Sustainability
8. Conclusions
Funding
Conflicts of Interest
References
- Rakocy, J.E.; McGinty, A.S. Island Perspectives; Virgin Islands Agricultural Experiment Station: Saint Croix, VI, USA, 1989; pp. 5–10. [Google Scholar]
- Love, D.C.; Fry, J.P.; Genello, L.; Hill, E.S.; Frederick, J.A.; Li, X.; Semmens, K. An international survey of aquaponics practitioners. PLoS ONE 2014, 9, e102662. [Google Scholar] [CrossRef] [PubMed]
- Goddek, S.; Delaide, B.; Mankasingh, U.; Ragnarsdottir, V.K.; Jijakli, H.; Thorarinsdottir, R. Challenges of Sustainable and Commercial Aquaponics. Sustainability 2015, 7, 4199–4224. [Google Scholar] [CrossRef]
- Diver, S.; Rinehart, L. Aquaponics—Integration of Hydroponics with Aquaculture; ATTRA NCAT: Butte, MT, USA, 2010; p. 28. Available online: https://d1wqtxts1xzle7.cloudfront.net/54584884/aquaponic-libre.pdf?150679089 (accessed on 20 May 2024).
- Alexandratos, N.; Bruinsma, J. World Agriculture Towards 2030/2050: The 2012 Revision; FAO, Agricultural Development Economics Division: Rome, Italy, 2012. [Google Scholar] [CrossRef]
- Bindraban, P.S.; Van der Velde, M.; Ye, L.; van den Berg, M.; Materechera, S.; Kiba, D.I.; Tamene, L.; Ragnarsdottir, K.V.; Jongschaap, R.; Hoogmoed, M. Assessing the impact of soil degradation on food production. Curr. Opin. Environ. Sustain. 2012, 4, 478–488. [Google Scholar] [CrossRef]
- Klinger, D.; Naylor, R. Searching for Solutions in Aquaculture: Charting a Sustainable Course. Annu. Rev. Environ. Resour. 2012, 37, 247–276. [Google Scholar] [CrossRef]
- Espinosa Moya, A.E.; Sahagún, C.A.A.; Carrillo, M.M.J.; Alpuche, J.P.A.; Álvarez-González, A.C.; Martínez-Yáñez, R. Herbaceous plants as part of biological filter for aquaponics system. Aquac. Res. 2022, 53, 6419–6934. [Google Scholar] [CrossRef]
- Iannacone, J.; Alvariño, L. Ecotoxicidad acuática de dos colo- rantes y de tres antiparasitarios de importancia en acuicultura en Daphnia magna. Ecol. Apl. 2007, 6, 101–110. [Google Scholar] [CrossRef]
- Abdelaty, B.; Aly, H.; Abdel-Rahim, M.; Sallam, G.; Elokaby, M.; El Hamamy, M.; Helal, A. Symbiotic Between Oreochromis niloticus Fingerlings and Some Medicinal Plants: Growth Performance and Water Quality Enhancement. Egypt. J. Aquat. Biol. Fish. Zool. 2023, 27, 339–353. [Google Scholar] [CrossRef]
- Ta, M.D.P.; Wendt, S.; Sigurjonsson, T.O. Applying Artificial Intelligence to Promote Sustainability. Sustainability 2024, 16, 4879. [Google Scholar] [CrossRef]
- Diver, S.; Rinehart, L. Aquaponics: Integration of Hydroponics and Aquaculture. Appropriate Technology Transfer for Rural Areas: Horticulture Systems Guide. Available online: http://attra.ncat.org/attra-pub/aquaponic.html (accessed on 24 July 2017).
- Jensen, M.H. Hydroponics. HortScience 1997, 32, 1018–1021. [Google Scholar] [CrossRef]
- Nelson, R.L. Ten aquaponic systems around the world. Aquapon. J. 2007, 46, 8–12. [Google Scholar]
- Resh, H.M. Hydroponic Food Production; New Concept Press: Mahwah, NJ, USA, 2004; pp. 6–128. Available online: https://www.routledge.com/ (accessed on 20 May 2024).
- Tyson, V.R.; Danyluk, D.M.; Simonne, H.E.; Treadwell, D.D. Aquaponics—Sustainable Vegetable and Fish Co-Production. Tomato production in aquaponic system: Mass balance and nutrient recycling. Aquaculture Europe 2015. European aquaculture society. Proc. Fla. State Hort. Soc. 2012, 125, 381–385. [Google Scholar]
- Rakocy, J.E. Aquaculture engineering: The status of aquaponics, Part 1. Aquacult. Mag. 1999, 25, 83–88. [Google Scholar]
- Ira-Adeline, S.; Victor Cristea, V.; Ștefan-Mihai, P.; Nicoară, M.; Ștefan-Adrian, S. Aquaponics awareness: A modern approach for limiting the aquaculture environmental impact and improving the productivit. Biol. Anim. 2017, 63, 75–83. [Google Scholar]
- Munguia-Fragozo, P.; Alatorre-Jacome, O.; Rico-Garcia, E.; Torres-Pacheco, I.; Cruz-Hernandez, A.; Ocampo-Velazquez, R.V.; Garcia-Trejo, J.F.; Guevara-Gonzalez, R.G. Perspective for aquaponic systems: “omic” technologies for microbial community analysis. Biomed. Res. Int. 2015, 2015, 480386. [Google Scholar] [CrossRef] [PubMed]
- Naegel, A.C.L. Combined production of fish and plants in recirculating water Author links open overlay panel. Aquaculture 1977, 10, 17–24. [Google Scholar] [CrossRef]
- Lewis, W.M.; Yopp, J.H.; Schramm, J.R.H.L.; Brandenburg, A.M. Use of hydroponics to maintain quality of recirculated water in a fish culture system. Trans. Am. Fish. Soc. 1978, 107, 92–99. [Google Scholar] [CrossRef]
- McMurtry, M.R.; Sanders, D.C.; Cure, J.D.; Hodson, R.G.; Haning, B.C.; Amand, E.C.S. Efficiency of water use of an integrated fish/vegeta- ble co- culture system. J. World Aquacult. Soc. 1997, 28, 420–428. [Google Scholar] [CrossRef]
- Rennert, B.; Drews, M. The possibility of combined fish and vegeta- ble production in greenhouses. Adv. Fish. Sci. 1989, 8, 19–27. [Google Scholar]
- Baganz, G.F.M.; Schrenk, M.; Körner, O.; Baganz, D.; Keesman, K.J.; Goddek, S.; Siscan, Z.; Baganz, E.; Doernberg, A.; Monsees, H.; et al. Causal Relations of Upscaled Urban Aquaponics and the Food-Water-Energy Nexus—A Berlin Case Study. Water 2021, 13, 2029. [Google Scholar] [CrossRef]
- Sneed, K.; Allen, K.; Ellis, J. Fish farming and hydroponics. Aquac. Fish. Farmers 1975, 2, 18–20. [Google Scholar]
- Chumtong, J.; Kaldevey, D. Beyond the Google NGram Viewer; FIW Working paper; Forum Internationale Wissenschaft: Bonn, Germany, 2017; p. 34. Available online: https://www.researchgate.net/publication/319313734 (accessed on 20 May 2024).
- Love, D.C.; Fry, J.P.; Li, X.; Hill, E.S.; Genello, L.; Semmens, K.; Thompson, R.E. Commercial aquaponics production and profitability: Findings from an international survey. Aquaculture 2015, 435, 67–74. [Google Scholar] [CrossRef]
- Nishanth, D. Standardizing Sustainable Aquaponic Production of Leafy Greens and Fish: A Comparison Withleafy Greens and Fish: A Comparison with Conventional Systems in the United Arab Emiratesconventional Systems in the United Arab Emirates. Master’s Thesis, United Arab Emirates University, Al Ain, United Arab Emirates, 2023. Available online: https://scholarworks.uaeu.ac.ae/all_theses/1074/ (accessed on 20 May 2024).
- Valdez-Sandoval, C.J.; Guerra-Centeno, D.; Lepe-López, M.; Díaz-Rodríguez, M.; Pineda-Alvizuris, L. Survival and Productivity of Culinary Herb Species in a Nutrient Film Technique-type Aquaponic System with Nile Tilapia. WVJ 2020, 10, 578–586. [Google Scholar] [CrossRef]
- Nelson, R.L. Tilapia. Fast growing, hardy andtasty. Aquapon. J. 2004, 35, 16–17. [Google Scholar]
- Graber, A.; Junge, R. Aquaponic Systems: Nutrient recycling from fish wastewater by vegetable production. Desalination 2009, 246, 47–156. [Google Scholar] [CrossRef]
- Palm, H.W.; Seidemann, R.; Wehofsky, S.; Knaus, U. Significant factors affecting the economic sustainability of closed aquaponic systems. Part I: System design, chemophysical parameters and general aspects. AACL Bioflux. 2014, 7, 20–32. [Google Scholar]
- Simeonidou, M.; Paschos, I.; Gouva, E.; Kolygas, M.; Perdikaris, C. Performance of a small-scale modular aquaponic system. AACL Bioflux. 2012, 5, 182–188. [Google Scholar]
- Ramırez, D.; Sabogal, D.; Jimenez, P.; Hurtado-Giraldo, H. La acuaponıa: Una alternativa orientada aldesarrollo sostenible. Rev. Fac. Cienc. Basicas. 2008, 4, 32–51. [Google Scholar] [CrossRef]
- ASA. Alliance for Sustainable Aquaculture and Food and Water Watch. Land-Based Recirculating Aquaculture Systems: A More Sustainable Approach to Aquaculture. 2009. Available online: https://www.scribd.com/document/20754730/Land-Based-Recirculating-Aquaculture-Systems-A-More-Sustainable-Approach-to-Aquaculture (accessed on 20 May 2024).
- Rakocy, J.; Shultz, R.C.; Bailey, D.S.; Thoman, E.S. Aquaponic production of tilapia and basil: Comparing a batch and staggered cropping system. Acta Hortic. 2003, 648, 63–69. [Google Scholar] [CrossRef]
- Ronzon-Ortega, M.; Hernandez-Vergara, M.P.; Perez-Rostro, C.I. Produccion hidroponica y acuaponica de albahaca (Ocimum basilicum) y langos-tino malayo (Macrobrachium rosenbergii). Trop. Andsubtrop. Agroecosyst. 2012, 15, S63–S71. [Google Scholar]
- Trang, N.T.D.; Brix, H. Use of planted biofilters in integrated recirculating aquaculture-hydroponics systems in the Mekong Delta, Vietnam. Aquac. Res. 2012, 45, 460–469. [Google Scholar] [CrossRef]
- Hargreaves, J.A. Nitrogen biogeochemistry of aquaculture ponds. Aquaculture 1998, 166, 181–212. [Google Scholar] [CrossRef]
- Campos-Pulido, R. Evaluaciyn de Siete Tipos de Vegetales Herbбceas Cultivadas en Acuaponia Usando el Efluente del Cultivo de Tilapia (Oreochromis niloticus. aureus) en Condiciones Salobres. Tesis Presentada Como Requisito Parcial Para Obtener el Grado de. Colegio de Postgraduados, Campus Veracruz, 2013; p. 112. Available online: http://colposdigital.colpos.mx:8080/jspui/handle/10521/1994 (accessed on 20 May 2024).
- Danaher, J.J. Effect of Leachate from Geotextile Bag Dewatering Aquaculture Effluent on Culinary Herb Production. Doctoral Dissertation, Auburn University, Auburn, AL, USA, 2013. [Google Scholar]
- Knaus, U.; Palm, H.W. Effects of fish biology on ebb and flow aquaponical cultured herbs in northern Germany (Mecklenburg Western Pomerania). Aquaculture 2017, 466, 51–63. [Google Scholar] [CrossRef]
- Knaus, U.; Wenzel, C.L.; Appelbaum, S.; Palm, W.H. Aquaponics (s.l.) Production of Spearmint (Mentha spicata) with African Catfish (Clarias gariepinus) in Northern Germany. Sustainability 2020, 12, 8718. [Google Scholar] [CrossRef]
- Espinosa-Moya, A.; Álvarez-González, A.; Albertos-Alpuche, P.; Guzmán-Mendoza, R.; Martínez-Yáñez, R. Growth and development of herbaceous plants in aquaponic systems. Acta Univ. Multidiscip. Sci. J. 2018, 28, 1–8. [Google Scholar] [CrossRef]
- Diver, S. Aquaponics—Integration of Hydroponics and Aquaculture. Apropriate Technology Transfer for Rural Areas: Horticulture Systems Guide, Fayetteville, AR:21 pgs. 2006. Available online: https://attra.ncat.org (accessed on 20 May 2024).
- Bomo, A.M.; Husby, A.; Stevik, T.K.; Hanssen, J.F. Removal of fish pathogenic bacteria in biological sand filters. Water Res. 2003, 37, 2618–2626. [Google Scholar] [CrossRef]
- König, B.; Junge, R.; Bittsanszky, A.; Villarroel, M.; Komives, T. On the sustainability of aquaponics. Ecocycles 2016, 2, 26–32. [Google Scholar] [CrossRef]
- Somerville, C.; Cohen, M.; Pantanella, E.; Stankus, A.; Lovatelli, A. Smallscale Aquaponic Food Production; Integrated Fish and Plant Farming. FAO Fisheries and Aquaculture Technical Paper; FAO: Rome, Italy, 2014; p. 589. Available online: https://www.proquest.com/openview/6c3a0de6739c75c63321ef0a7d133463/1?cbl=237320&pq-orig (accessed on 20 May 2024).
- Rijn, V.J. The potential for integrated biological treatment systems in recirculating fish culture–a review. Aquaculture 1996, 139, 181–201. [Google Scholar] [CrossRef]
- Rakocy, J.E. Chapter 14: Aquaponics—Integrating fish and plant culture. In Aquaculture Production Systems; Tidwell, J.H., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2012; pp. 344–386. [Google Scholar] [CrossRef]
- Rakocy, J.E.; Masser, M.P.; Losordo, T.M. Recirculating aquaculture tank production systems: Aquaponics-Integrating fish and plant culture. South. Reg. Aquac. Center 2006, 454, 16. Available online: https://www.researchgate.net/publication/284496499/ (accessed on 20 May 2024).
- Watten, B.J.; Busch, L.B. 1984. Tropical production of tilapia (Sarotherodon aurea) and tomatoes (Lycopersicon esculentum) in a small-scale recirculation water system. Aquaculture 1984, 41, 271–283. [Google Scholar] [CrossRef]
- Kotzen, B.; Appelbaum, S. An investigation of aquaponics using brackish water resources in the Negev Desert. J. Appl. Aquaculture. 2010, 22, 297–320. [Google Scholar] [CrossRef]
- Liang, J.Y.; Chien, Y.H. Effects of feeding frequency and photoperiod on water quality and crop production in a tilapia–water spinach raft aquaponics system. Int. Biodeterior. Biodegradat. 2013, 85, 693–700. [Google Scholar] [CrossRef]
- Seawright, D.E.; Stickney, R.R.; Walker, R.B. Nutrient dynamics in integrated aquaculture–hydroponics systems. Aquaculture 1998, 160, 215–237. [Google Scholar] [CrossRef]
- Rosas, A. Granja Integral Dimensional. Rojas Eberhard Editores, Bogota, Colombia. 2002. Available online: https://repository.unimilitar.edu.co/handle/10654/37571/ (accessed on 20 May 2024).
- Rennert, B.; Groß, R.; van Ballegooy, C.; Kloas, W. Ein Aquaponiksystem zur kombinierten Tilapia- und Tomatenproduktion. Fisch. Teichwirt. 2011, 6, 209–214. [Google Scholar]
- Lennard, W. Aquaponics: The integration of recirculating aquaculture and Hydroponics. World AquAcul 40 2019, 1, 23–25. [Google Scholar]
- Schmautz, Z.; Graber, A.; Jaenicke, S.; Goesmann, A.; Junge, R.; Smits, T.H. Microbial diversity in different compartments of an aquaponics system. Arch. Microbiol. 2017, 199, 613–620. [Google Scholar] [CrossRef]
- Gold, M. Sustainable Agriculture: Definitions and Terms. Special Reference Briefs Series no. SRB 99–02; National Agricultural Library: Beltsville, MD, USA, 1999. Available online: http://www.nal.usda.gov/afsic/pubs/terms/srb9902.shtml (accessed on 20 May 2024).
- Madigan, M.T.; Martinko, J.M.; Parker, J. Metabolic diversity. Brock Biol. Microorg. 2003, 151–165. [Google Scholar]
- Fedoroff, N.V.; Battisti, D.S.; Beachy, R.N.; Cooper, P.J.M.; Fischhoff, D.A.; Hodges, C.N.; Knauf, V.C.; Lobell, D.; Mazur, J.B.; Molden, D.; et al. Radically Rethinking Agriculture for the 21st Century. J. Remote Sens. SPJ 2010, 327, 833–834. [Google Scholar] [CrossRef] [PubMed]
- FAO. The State of Food Security and Nutrition in the World 2018. Available online: http://www.fao.org/3/I9553EN/i9553en.pdf (accessed on 20 May 2024).
- Timmons, M.B.; Ebeling, J.M.; Wheaton, F.W.; Summerfelt, S.T.; Vinci, J.B. Recirculating Aquaculture Systems, 2nd ed.; Northeast Regional Aquaculture Center Publication No. 01–002, 2002; p. 769. Available online: https://www.sidalc.net/search/ (accessed on 20 May 2024).
- Wei, Y.; Li, W.; An, D.; Li, D.; Jiao, Y.; Wei, Q. Equipment and Intelligent Control System in Aquaponics: A Review. IEEE Access 2019, 7, 306–326. [Google Scholar] [CrossRef]
- Lennard, W.A.; Leonard, B.V. A comparison of three different hydroponic sub-systems (gravel bed, floating and nutrient film technique) in an Aquaponic test system. Aquac. Int. 2006, 14, 539–550. [Google Scholar] [CrossRef]
- Salam, M.A.; Asadujjaman, M.; Rahman, S.M. Aquaponics for Improving High Density Fish Pond Water Quality through Raft and Rack Vegetable Production. WJFMS 2013, 5, 251–256. [Google Scholar] [CrossRef]
- Dalrymple, D.G. Controlled Environment Agriculture: A Global Review of Green house Food Production; US Department of Agriculture, Economic Research Service: Washington, DC, USA, 1973; pp. 1–150.
- Buhmann, A.; Papenbrock, J. Biofiltering of aquaculture effluents by halophytic plants: Basic principles, current uses and future perspectives. Environ. Exp. Bot. 2013, 92, 122–133. [Google Scholar] [CrossRef]
- Wang, F.; Liang, Y.; Jiang, Y.; Yang, Y.; Xue, K.; Xiong, J.; Zhou, J.; Sun, B. Planting increases the abundance and structure complexity of soil core functional genes relevant to carbon and nitrogen cycling. Sci. Rep. 2015, 5, 14345. [Google Scholar] [CrossRef] [PubMed]
- Taiz, L.; Zeiger, E. Plant Physiology, 5th ed.; Sinauer Associates Inc.: Sunderland, MA, USA, 2010; p. 782. Available online: https://www.scirp.org/reference/referencespapers?referenceid=1273207 (accessed on 20 May 2024).
- Zhang, K.; Burns, I.G.; Turner, M.K. Derivation of a Dynamic Model of the Kinetics of Nitrogen Uptake Throughout the Growth of Lettuce: Calibration and Validation. J. Plant Nutr. 2008, 31, 1440–1460. [Google Scholar] [CrossRef]
- Fink, M.; Feller, C. An empirical model for describing growth and nitrogen uptake of white cabbage (Brassica oleracea var. capitata). Sci. Hortic. 1998, 73, 75–88. [Google Scholar] [CrossRef]
- Mariscal-Lagarda, M.M.; Páez-Osuna, F. Mass balances of nitrogen and phosphorus in an integrated culture of shrimp (Litopenaeus vannamei) and tomato (Lycopersicon esculentum Mill) with low salinity groundwater: A short communication. Aquac. Eng. 2014, 58, 107–112. [Google Scholar] [CrossRef]
- Hu, Z.; Lee, J.W.; Chandran, K.; Kim, S.; Brotto, A.C.; Khanal, S.K. Effect of plant species on nitrogen recovery in aquaponics. Biores. Technol. 2015, 188, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Lee, J.W.; Chandran, K.; Kim, S.; Sharma, K.; Khanal, S.K. Influence of carbohydrate addition on nitrogen transformations and greenhouse gas emissions of intensive aquaculture system. Sci. Total Environ. 2014, 470–471, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Buzby, K.M.; Lin, L.S. Scaling aquaponic systems: Balancing plant uptake with fish output. Aquac. Eng. 2014, 63, 39–44. [Google Scholar] [CrossRef]
- Sikawa, D.C.; Yakupitiyage, A. The hydroponic production of lettuce (Lactuca sativa L) by using hybrid catfish (Clarias macrocephalus × C. gariepinus) pond water: Potentials and constraints. Agric. Water Manag. 2010, 97, 1317–1325. [Google Scholar] [CrossRef]
- Lam, S.S.; Ma, N.L.; Jusoh, A.; Ambak, M.A. Biological nutrient removal by recirculating aquaponic system: Optimization of the dimension ratio between the hydroponic and & rearing tank components. Int. Biodeterior. Biodegradat. 2015, 102, 107–115. [Google Scholar] [CrossRef]
- Popma, T.; Masser, M. Tilapia: Life History and Biology. SRAC Publ. No.283. 1999. Available online: https://aquaculture.ca.uky.edu/sites/aquaculture.ca.uky.edu/files/srac_283_tilapia_life_history_and_biology.pdf (accessed on 20 May 2024).
- Pavaraj, M.; Balasubram, V.; Baskaran, S.; Ramasamy, P. Development of immunity by extract of medicinal plant Ocimum sanctum on common carp Cyprinus carpio (L.). Res. J. Immunol. 2011, 4, 12–18. [Google Scholar] [CrossRef]
- Takaoka, O.; Seung-Cheol, J.; Ishimaru, K.; Takii, K. Effect of rotifer enrichment with herbal extracts on growth and resistance of red sea bream, Pagrus major (Temminck & Schlegel) larvae against Vibrio anguillarum. Aquac. Res. 2011, 42, 1824–1829. [Google Scholar] [CrossRef]
- Punitha, S.M.J.; Babu, M.M.; Sivaram, V.; Shankar, S.V.; Dhas, A.S.; Mahesh, C.T.; Immanuel, G.; Citarasu, T. Immunostimulating influence of herbal biomedicines on nonspecific immunity in Grouper Epinephelus tauvina juvenile against Vibrio harveyi infection. Aquac. Int. 2008, 16, 511–523. [Google Scholar] [CrossRef]
- Putra, A.A.S.; Santoso, U.; Lee, M.C.; Nan, F.H. Effects of dietary katuk leaf extract on growth performance, feeding behavior and water quality of grouper Epinephelus coioides. Aceh. Int. J. Sci. Technol. 2013, 2, 17–25. [Google Scholar] [CrossRef]
- Talpur, A.D.; Ikhwanuddin, M.; Ambok Bolong, A.M. Nutritional effects of ginger (Zingiber officinale Roscoe) on immune response of Asian sea bass, Lates calcarifer (Bloch) and disease resistance against Vibrio harveyi. Aquaculture 2013, 400–401, 46–52. [Google Scholar] [CrossRef]
- Nya, E.J.; Dawood, Z.; Austin, B. The garlic component, allicin, prevents disease caused by Aeromonas hydrophila in rainbow trout, Oncorhynchus mykiss (Walbaum). J. Fish. Dis. 2010, 33, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Nya, E.J.; Austin, B. Use of dietary ginger, Zingiber officinale Roscoe, as an immunostimulant to control Aeromonas hydrophila infections in rainbow trout, Oncorhynchus mykiss (Walbaum). J. Fish Dis. 2009, 32, 971–977. [Google Scholar] [CrossRef] [PubMed]
- Sirakov, I.; Velichkova, K.; Stoyanova, S.; Staykov, Y. Growth performance, biochemical blood parameters and meat qualityof rainbow trout (Oncorhynchus mykiss W.) fed with licorice (Glycyrrhiza glabra L.) supplemented dieti. Trakia J. Sci. 2018, 4, 284–291. [Google Scholar] [CrossRef]
- Sonmez, A.Y.; Bilen, S.; Albayrak, M.; Yılmaz, S.; Biswas, G.; Hisar, O.; Yanik, T. Effects of dietary supplementation of herbal oils containing 1, 8-cineole, carvacrol or pulegone on growth performance, survival, fatty acid composition and liver and kidney histology of rainbow trout (Oncorhynchus mykiss) fingerlings. Turk. J. Fish. Aquat. Sci. 2015, 15, 813–819. [Google Scholar] [CrossRef]
- Diler, O.; Gormez, O.; Diler, I.; Metin, S. Effect of oregano (Origanum onites L.) essential oil on growth, lysozyme and antioxidant activity and resistance against Lactococcusgarvieae in rainbow trout, Oncorhynchus mykiss (Walbaum). Aquac. Nutr. 2016, 23, 844–851. [Google Scholar] [CrossRef]
- Rodriguez-Fragoso, L.; Reyes-Esparza, J.; Burchiel, S.W.; Herrera-Ruiz, D.; Torres, E. Risks and benefits of commonly used herbal medicines in Mexico. Toxicol. Appl. Pharmacol. 2008, 227, 125–135. [Google Scholar] [CrossRef] [PubMed]
- De Sousa Guedes, J.P.; da Costa Medeiros, J.A.; de Souza, E.; Silva, R.S.; de Sousa, J.M.; da Conceição, M.L.; de Souza, E.L. The efficacy of Mentha arvensis L. and M. piperita L. essential oils in reducing pathogenic bacteria and maintaining quality characteristics in cashew, guava, mango, and pineapple juices. Int. J. Food Microbiol. 2016, 238, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Valente, J.S.S.; Fonseca, A.O.S.; Denardi, L.B.; Dal Ben, V.S.; Filho, F.S.M.; Baptista, C.T.; Braga, C.Q.; Zambrano, C.G.; Alves, S.H.; Botton, S.A.; et al. In Vitro Susceptibility of Pythium insidiosum to Melaleuca alternifolia, Mentha piperitaand Origanum vulgare Essential Oils Combinations. Mycopathologia 2016, 181, 617–622. [Google Scholar] [CrossRef] [PubMed]
- Trevisan, C.C.S.; Menezes, P.P.A.; Barbalho, M.S.; Guiguer, L.È. Properties of mentha piperita: A brief review. WJPR 2017, 3, 309–313. [Google Scholar]
- Badal, R.M.; Badal, D.; Badal, P.; Khare, A.; Shrivastava, J.; Kumare, V. Pharmacological Action of Mentha piperita on Lipid Profile in Fructose-Fed Rats. Iran. J. Pharm. Res. Autumn. 2011, 10, 843–848. [Google Scholar]
- Al-Sereiti, M.R.; Abu-Amer, K.M.; Sena, P. Pharmacology of rosemary (Rosmarinus officinalis Linn.) and its therapeutic potentials. NISCAIR-CSIR 1999, 37, 124–130. [Google Scholar]
- Menyiy, E.N.; Mrabti, N.H.; Omari, E.N.; EI Bakili, A.E.A.; Bakrim, S.; Mekkaou, M.; Balahbib, A.; Ardekani, A.E.; Ullah, R.; Alqahtani, S.A.; et al. Medicinal Uses, Phytochemistry, Pharmacology, and Toxicology of Mentha spicata. Hindawi Evid.-Based Complement. Altern. Med. 2022, 1–32. [Google Scholar] [CrossRef] [PubMed]
- Desta Abayechaw, D.; Yoseph, T. Review on Health Benefits of Spearmint (Mentha spicata L.) and Its Inter-cropping Advantage with Maize (Zea mays L.). J. Nutr. Food Process. 2021, 4, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Dorman, H.J.; Koşar, M.; Kahlos, K.; Holm, Y.; Hiltunen, R. Antioxidant properties and composition of aqueous extracts from Mentha species, hybrids, varieties, and cultivars. J. Agr. Food Chem. 2003, 51, 4563–4569. [Google Scholar] [CrossRef] [PubMed]
- Kiselova, Y.; Ivanova, D.; Chervenkov, T.; Gerova, D.; Galunska, B. Correlation between the in vitro antioxidant activity and polyphenol content of aqueous extracts from Bulgarian herbs. Phytother. Res. 2006, 20, 961–965. [Google Scholar] [CrossRef] [PubMed]
- Scherer, R.; Lemos, M.F.; Lemos, M.F.; Martinelli, G.C.; Martins, J.D.L. Antioxidant and antibacterial activities and composition of Brazilian spearmint (Mentha spicata L.). Indus. Crops Prod. 2013, 50, 408–413. [Google Scholar] [CrossRef]
- Tetik, F.; Civelek, S.; Cakilcioglu, U. Traditional uses of some medicinal plants in Malatya (Turkey). J. Ethnopharmacol. 2013, 146, 331–346. [Google Scholar] [CrossRef] [PubMed]
- Senatore, F. Influence of harvesting time on yield and composition of the essential oil of a thyme (Thymus pulegioides L.) growing wild in Campania (southern Italy). J. Agric. Food Chem. 1996, 44, 1327–1332. [Google Scholar] [CrossRef]
- Simon, J.E.; Morales, R.M.; Phippen, B.W.; Vieira, F.R.; Hao, Z. Basil: A source of aroma compounds and a popular culinary and ornamental herb. In Perspectives on New Crops and New Uses; Anick, J.J., Ed.; Ashs Press: Alexandria, VA, USA, 1999; pp. 499–505. Available online: https://d1wqtxts1xzle7.cloudfront.net/34911540/v4-499-libre.pdf?1411927791 (accessed on 20 May 2024).
- Javanmardi, J.; Khalighi, A.; Kashi, A.; Bais, P.H.; Vivanco, M.J. Chemical Characterization of Basil (Ocimum basilicum L.) Found in Local Accessions and Used in Traditional Medicines in Iran. J. Agric. Food Chem. 2002, 50, 5878–5883. [Google Scholar] [CrossRef] [PubMed]
- Baranauskiene, R.; Venskutonis, R.P.; Viskelis, P.; Dambrauskiene, E. Influence of nitrogen fertilizers on the yield and composi- tion of thyme (Thymus vulgaris). J. Agric. Food Chem. 2003, 51, 7751–7758. [Google Scholar] [CrossRef] [PubMed]
- Simon, J.E.; Chadwick, A.F.; Craker, L.E. Herbs, an Indexed Bibliography, 1971–1980; Elsevier: Amsterdam, The Netherlands, 1984; Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/19840324811 (accessed on 20 May 2024).
- Pushpangadan, P.; George, V. Basil. In Handbook of Herbs and Spices; Woodhead Publishing: Sawston, UK, 2012; pp. 55–72. [Google Scholar] [CrossRef]
- Chun, S.S.; Vattem, A.D.; Lin, Y.T.; Shetty, K. Phenolic antioxidants from clonal oregano (Origanum vulgare) with antimicrobial activity against Helicobacter pylori. Process Biochem. 2005, 40, 809–816. [Google Scholar] [CrossRef]
- Wojdyło, A.; Oszmiański, J.; Gzemerys, R. Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem. 2007, 105, 940–949. [Google Scholar] [CrossRef]
- Ocana, F.A.; Gutiérrez, A.E.; Senorans, J.E.; Reglero, G. Supercritical fluid extraction of oregano (Origanum vulgare) essentials oils: Anti-inflammatory properties based on cytokine response on THP-1 macrophages. FCT 2010, 48, 1568–1575. [Google Scholar] [CrossRef]
- Oniga, I.; Pușcaș, C.; Silaghi-Dumitrescu, R.; Olah, N.-K.; Sevastre, B.; Marica, R.; Marcus, I.; Sevastre-Berghian, A.C.; Benedec, D.; Pop, C.E.; et al. Origanum vulgare ssp. vulgare: Chemical Composition and Biological Studies. Molecules 2018, 23, 2077. [Google Scholar] [CrossRef] [PubMed]
- Jacob, P.; Veenstra, P.J.; Johnson, J.J. Oregano (Origanum vulgare) extract for food preservation and improvement in gastrointestinal health. Int. J. Nutr. 2019, 3, 43–52. [Google Scholar] [CrossRef]
- Bhat, S.; Kaushal, P.; Kaur, M.; Sharma, H.K. Coriander (Coriandrum sativum L.): Processing, nutritional and functional aspects. Afr. J. Plant Sci. 2014, 8, 25–33. [Google Scholar] [CrossRef]
- Sahib, N.G.; Anwar, F.; Gilani, A.H.; Hamid, A.A.; Saari, A.; Alkharfy, K.M. Coriander (Coriandrum sativum L.): A potential source of high-value components for functional foods and nutraceuticals—A Review. J. Phytother. 2013, 27, 1439–1456. [Google Scholar] [CrossRef] [PubMed]
- Alison, M.G.; Flatt, R.F. Insulin releasing and insulin activity of the traditional anti diabetic plant Coriandrum sativum. Brit. J. Nut. 1999, 81, 203–209. [Google Scholar] [CrossRef]
- Cortés-Eslava, J.; Gómez-Arroyo, S.; Villalobos-Pietrini, R.; Jesús Javier Espinosa-Aguirre, J.J. Antimutagenicity of coriander (Coriandrum sativum) juice on the mutagenesis produced by plant metabolites of aromatic amines. Toxicol Lett. 2004, 153, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Darughe, F.; Barzegar, M.; Sahari, M.A. Antioxidant and antifungal activity of Coriander (Coriandrum sativum L.) essential oil in cake. IFRJ 2012, 19, 1253–1260. [Google Scholar]
- Eidi, M.; Eidi, A.; Saeidi, A.; Molanaei, S.; Sadeghipour, A.; Bahar, M.; Bahar, K. Effect of coriander seed (Coriandrum sativum L) ethanol extract on insulin release from pancreatic beta cells in streptozotocin- induced diabetic rats. J. Phytother. Res. 2012, 23, 404–406. [Google Scholar] [CrossRef] [PubMed]
- Sunil, C.; Agastian, P.; Kumarappan, C.; Ignacimuthu, S. In vitro antioxidant, antidiabetic and antilipidemic activities of Symplocos cochinchinensis (Lour.) S. Moore bark. J. Food Chem. Toxicol. 2012, 50, 1547–1553. [Google Scholar] [CrossRef] [PubMed]
- Ertas, O.N.; Guler, I.T.; Dalkilicand, C.M.B.; Yilmaz, O. The Effect of a Dietary Supplement coriander seeds on the fatty acid composition of breast muscle in Japanese quail. J. Rev. Med. Vet. 2005, 156, 514–518. [Google Scholar]
- Rattanachaikunsopon, P.; Phumkhachorn, P. Potential ocoriander (Coriandrum sativum) oil as a natural antimicrobial compound in controlling Campylobacter jejuni in raw meat. J. Biosci. Biotechnol. Biochem. 2010, 74, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Wangensteen, H.; Samuelsen, A.B.; Malterud, K.E. Antioxidant activity in extracts from coriander. Food Chem. 2004, 88, 293–297. [Google Scholar] [CrossRef]
- Peethambaran, D.; Bijesh, P.; Bhagyalakshmi, N. Carotenoid content, its stability during drying and the antioxidant activity of commercial coriander (Coriandrum sativum L.) varieties. Int. J. Food Res. 2012, 45, 342–350. [Google Scholar] [CrossRef]
- Kovar, K.A.; Gropper, B.; Friess, D.; Ammon, H.P.T. Blood levels of 1,8-cineoile and locomotor activity of mice after inhalation and oral administration of rosemary oil. Planta Med. 1987, 53, 315–318. [Google Scholar] [CrossRef] [PubMed]
- Matsunaga, T.; Hasegawa, C.; Kawasuji, T.; Suzuki, H.; Saito, H.; Sagioka, T. Isolation of the antiulcer compound in essential oil from the leaves of Cryptomeria japonica. Biol. Pharm. Bull. 2000, 23, 595–598. [Google Scholar] [CrossRef] [PubMed]
- Rulffs, W. Munch Med Wochensch. 12 6 (1984) 207. Available online: https://www.google.bg/search?q=Rulffs+W%2C+Munch+Med+Wochensch/ (accessed on 20 May 2024).
- Manzoor, M.; Ahmad, M.; Zafar, M.; Gillani, W.S.; Shaheen, H.; Pieroni, A.; Al-Ghamdi, A.A.; Elshikh, S.M.; Saqib, S.; Makhkamov, T.; et al. Correction: The local medicinal plant knowledge in Kashmir Western Himalaya: A way to foster ecological transition via community-centred health seeking strategies. J. Ethnobiol. Ethnomed. 2024, 20, 19. [Google Scholar] [CrossRef] [PubMed]
- Hameed, A.; Zafar, M.; Ahmad, M.; Sultana, S.; Akhter, S.M.; Zaman, W.; Saqib, S.; Ullah, F. Micromorphology, phytochemical and pharmacological evaluation of Isodon rugosus (Wall. ex Benth.) Codd. J. Anim. Plant Sci. 2022, 32, 736–745. [Google Scholar] [CrossRef]
- Steinmetz, M.D.; Moulin-Traffort, J.; Regli, P. Transmission and Scanning Electronmicroscopy Study of the Action of Sage and Rosemary Essential Oils and Eucalyptol on Candida albicans/Transmissions-und rasterelektronenmikroskopische Untersuchungen zur Wirkung von Salbeiöl, Rosmarinöl und Eucalyptol auf Candida albicans. Mycoses 1988, 31, 40. [Google Scholar]
- Dauqan, A.M.E.; Aminah Abdullah, A. Medicinal and Functional Values of Thyme (Thymus vulgaris L.) Herb. JABB 2017, 5, 17–22. [Google Scholar] [CrossRef]
- Aksel, B. Bioactive compounds in plants-benefits and risks for man and animals. Nor. Acad. Sci. Letters. Oslo. 2010, 13–14. [Google Scholar]
- Sharangi, A.B.; Guha, S. Wonders of leafy spices: Medicinal properties ensuring Human Health. Sci. Int. 2013, 9, 312–317. [Google Scholar] [CrossRef]
- Ocana, F.A.; Reglero, G. Effects of Thyme extract oils (from Thymus vulgaris, Thymuszygis, and Thymus hyemalis) on cytokine production and gene expression of oxLDL-Stimulated THP-1-Macrophages. J. Obes. 2012, 2012, 104706. [Google Scholar] [CrossRef] [PubMed]
- Prasanth, R.; Ravi, V.K.; Varsha, P.V.; Satyam, S. Review on Thymus vulgaris traditional uses and pharmacological properties. Med. Aromat. Plants 2014, 3, 2167–0412. [Google Scholar] [CrossRef]
- Kreydiyyeh, S.I.; Usta, J.; Kaouk, I.; Al-Sadi, R. The mechanism underlying the laxative properties of parsley extract. J. Phytomed. 2001, 8, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Alyami, A.F.; Rabah, M.D. Effect of drinking parsley leaf tea on urinary composition and urinary stones’ risk factors. Saudi J. Kidney Dis. Transpl. 2011, 22, 511–514. [Google Scholar] [PubMed]
- Baytop, T. Therapy with Medicinal Plants in Turkey (Past and Present); Istanbul University Yayinlari: Istanbul, Turkey, 1984; p. 3255. [Google Scholar]
- Wong, P.Y.Y.; Kitts, D.D. Studies on the dual antioxidant and antibacterial properties of parsley (Petroselinum crispum) and cilantro (Coriandrum sativum) extracts. Food Chem. 2006, 97, 505–515. [Google Scholar] [CrossRef]
- Manderfeld, M.M.; Schafer, H.W.; Davidson, P.M.; Zottola, E.A. Isolation and identification of antimicrobial furanocoumarins from parsley. J. Food Prot. 1997, 60, 72–77. [Google Scholar] [CrossRef]
- Anand, N.K.; Sharma, N.D.; Gupta, S.R. Coumarins from Apiumn petroselinum seeds. Natl Acad Sci. Lett. 1981, 4, 249–251. [Google Scholar]
- Pino, J.A.; Rosada, A.; Fuentes, V. Herb oil of parsley (Petroselinum crispum Mill.) from Cuba. J. Essent. Oil Res. 1997, 9, 241–242. [Google Scholar] [CrossRef]
- Ozsoy-Sacan, O.; Yanardag, R.; Orak, H.; Ozgey, Y.; Yarat, A.; Tunali, T. Effects of parsley (Petroselinum crispum) extract versus glibornuride on the liver of streptozotocin-induced diabetic rats. J. Ethnopharmcol. 2006, 104, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Damabi, N.M.; Moazedi, A.A.; Seyyednejad, S.M. The role of α–and β–adrenergic receptors in the spasmolytic effects on rat ileum of Petroselinum crispum Latifolum (parsley). Asian Pac. J. Trop. Med. 2010, 3, 866–870. [Google Scholar] [CrossRef]
- Mahmood, S.; Hussain, S.; Malik, F. Critique of medicinal conspicuousness of Parsley (Petroselinum crispum): A culinary herb of Mediterranean region. Pak. J. Pharm. Sci. 2013, 27, 193–202. [Google Scholar]
- Jana, S.; Shekhawat, S.G. Anethum graveolens: An Indian traditional medicinal herb and spice. Pharmacogn. Rev. 2010, 4, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Khare, C.P. Indian Herbal Remedies: Rational Western Therapy, Ayurvedic and Other Traditional Usages, Botany; Springer: Berlin/Heidelberg, Germany, 2004; pp. 60–61. [Google Scholar]
- Ravindran, P.; Balachandran, I. Under utilized medicinal spices II. Spice India 2005, 17, 32–36. [Google Scholar]
- Heidarifar, R.; Mehran, N.; Heidari, A.; Tehran, A.H.; Koohbor, M.; Mansourabad, K.M. Effect of Dill (Anethum graveolens) on the severity of primary dysmenorrhea in compared with mefenamic acid: A randomized, double-blind trial. JRMS 2014, 19, 326–330. [Google Scholar] [PubMed]
- Arora, D.S.; Kaur, J.G. Antibacterial activity of some Indian medicinal plants. J. Nat. Med. 2007, 61, 313–317. [Google Scholar] [CrossRef]
- Delaquis, P.J.; Stanich, K.; Girard, B. Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander and eucalyptus essential oils. Int. J. Food Microbiol. 2002, 74, 101–109. [Google Scholar] [CrossRef]
- Stavri, M.; Gibbons, S. The antimycobacterial constituents of Dill (Anethum graveolens). Phytother. Res. 2005, 19, 938–941. [Google Scholar] [CrossRef]
- Rifat-uz-Zaman, R.U.Z.; Akhtar, M.S.; Khan, M.S. In vitro antibacterial screening of Anethum graveolens L. Fruit, Cichorium intybus L. leaf, Plantago ovata L. seed husk and Polygonum viviparum L. root extracts against Helicobacter pylori. Int. J. Pharmacol. 2006, 2, 674–677. [Google Scholar] [CrossRef]
- Al-Snafi, A.E. The pharmacological importance of anethum graveolens.A review. Int. J. Pharm. Pharm. Sci. 2014, 6, 11–13. [Google Scholar]
- Gurib-Fakim, A. Medicinal plants: Traditions of yesterday and drugs of tomorrow. Mol. Asp. Med. 2006, 27, 1–93. [Google Scholar] [CrossRef]
- Ivanova, D.; Gerova, D.; Chervenkov, T.; Yankova, T. Polyphenols and antioxidant capacity of Bulgarian medicinal plants. J. Ethnopharmacol. 2005, 96, 145–150. [Google Scholar] [CrossRef]
- Bahmani, M.; Mojtaba, K.; Rafieian-Kopaei, M.; Naser, A. Overview of the Therapeutic Effects of Origanum vulgare and Hypericum perforatum Based on Iran’s Ethnopharmacological Documents. JCDR 2018, 12, 1–4. [Google Scholar] [CrossRef]
- Ozturk, Y.; Baser, C.H.K.; Aydin, S. Hepatoprotective (antihepatotoxic) plants in Turkey. In Proceedings of the 9th Symposium on Plant Drugs, Eskisehir, Turkey, 16–19 May 1991; pp. 40–50. [Google Scholar]
- Nielsen, S.E.; Young, J.F.; Daneshvar, B.; Lauridsen, T.S.; Knuthsen, P.; Sandstrom, B. Effect of parsley (Petroselinum crispum) intake on urinary apigenin excretion, blood antioxidant enzymes and biomarkers for oxidative stress in human subjects. Br. J. Nutr. 1999, 81, 447–455. [Google Scholar] [CrossRef] [PubMed]
- Stojanov, N.; Kitanov, B. Wild Useful Plants in Bulgaria; Bulgarian Academy of Sciences Press: Bulgaria, Sofia, 1960; p. 357. [Google Scholar]
- Lennard, A.W. A comparison of buffering species and regimes applied within a research-scale, recirculating aquaponics system. Aquac. Fish. 2020, 6, 495–505. [Google Scholar] [CrossRef]
- Kintzios, S.; Makri, O. Ocimum sp. (Basil): Botany, cultivation, pharmaceutical properties, and biotechnology. J. Herbs Spices Med. Plants 2008, 13, 123–150. [Google Scholar] [CrossRef]
- Ramırez-Sanchez, L.M.; Perez-Trujillo, M.M.; Jimenez, P.; Hurtado-Giraldo, H.; Gomez-Ramırez, E. Evaluacion preliminar de sistemas acuaponicos e hidroponicos en cama flotante para el cultivo de oregano(Origanum vulgare: Lamiaceae). Rev. Fac. Cienc. Basicas. 2011, 7, 242–259. [Google Scholar] [CrossRef]
- Buzby, K.M.; Waterland, N.L.; Semmens, K.J.; Lin, L.S. Evaluating aquaponic crops in a freshwater flow-through fish culture system. Aquaculture 2016, 460, 15–24. [Google Scholar] [CrossRef]
- Filep, M.R.; Diaconescu, S.; Costache, M.; Bedivan, M.M.S.; Bădulescu, L.; Nicolae, G.C. Pilot Aquaponic Growing System of Carp (Cyprinus carpio) and Basil (Ocimum basilicum). Agric. Agric. Sci. Procedia 2016, 10, 255–260. [Google Scholar] [CrossRef]
- Salam, S.A.M.; Kandel, A.M.; El-Shinawy, M.Z.; Amer, M.A.; Abul-Soud, M. Evaluation of mint and sweet basil herbs production integrated into the aquaponic tilapia production system. AUJASCI, Arab Univ. J. Agric. Sci. 2020, 28, 563–573. [Google Scholar] [CrossRef]
- Yep, B.; Zheng, Y. Aquaponic trends and challenges—A review. J. Clean. Product. 2019, 228, 1586–1599. [Google Scholar] [CrossRef]
- Chinchar, G.V. Ranaviruses (family Iridoviridae): Emerging cold-blooded killers. Arch. Virol. 2002, 147, 447–470. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Wang, D.; Wei, K.; Xu, B.; Xu, J. The Mechanism of Elizabethkingia miricola Infection of the Black Spotted Frog as Revealed by Multi-Omics Analysis. Fishes 2024, 9, 91. [Google Scholar] [CrossRef]
- Trimpert, J.; Eichhorn, I.; Vladimirova, D.; Haake, A.; Schink, A.-K.; Klopfleisch, R.; Lübke-Becker, A. Elizabethkingia miricola infection in multiple anuran species. Transbound. Emerg. Dis. 2021, 68, 931–940. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Zheng, Y.; Aweya, J.J.; Zou, X.; Lin, M.; Liu, Y.; Zhang, Z.; Sun, Y.; Wang, H. iTRAQ-based comparative proteomic analysis of the Lithobates catesbeianus bullfrog spleen following challenge with Citrobacter freundii. Aquac. Rep. 2022, 23, 2352–5134. [Google Scholar] [CrossRef]
- Dong, M.; Feng, H. Microbial community analysis and food safety practice survey-based hazard identification and risk assessment for controlled environment hydroponic/aquaponic farming systems. Front. Microbiol. 2022, 13, 879260. [Google Scholar] [CrossRef] [PubMed]
- Dinev, T.; Velichkova, K.; Stoyanova, A.; Sirakov, I. Microbial Pathogens in Aquaponics Potentially Hazardous for Human Health. Microorganisms 2023, 11, 2824. [Google Scholar] [CrossRef] [PubMed]
- Dorick, J.; Hayden, M.; Smith, M.; Blanchard, C.; Monu, E.; Wells, D.; Huang, T.-S. Evaluation of Esherichia coli and coliforms in aquaponics water for produce irrigation. Food Microbiol. 2021, 99, 103801. [Google Scholar] [CrossRef] [PubMed]
- Sirakov, I.; Lutz, M.; Graber, A.; Mathis, A.; Staykov, Y.; Smits, T.H.M.; Junge, R. Potential for Combined Biocontrol Activity against Fungal Fish and Plant Pathogens by Bacterial Isolates from a Model Aquaponic System. Water 2016, 8, 518. [Google Scholar] [CrossRef]
- Goddek, S.; Joyce, A.; Kotzen, B.; Burnell, M.G. Aquaponics Food Production Systems; Springer Nature: Berlin/Heidelberger, Germany, 2019; p. 607. [Google Scholar] [CrossRef]
- Gigliona, J. Implementation of a Biogas-System into Aquaponics; Mid Sweden University: Sundsvall, Sweden, 2015; p. 35. Available online: https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A826751&dswid=-3558 (accessed on 20 May 2024).
- Crețu, M.; Dediu, L.; Coadă, T.-M.; RÎmniceanu, C.; Plăcintă, S.; Stroe, D.M.; Vasilean, I. Comparative study on the growth and development of thyme and basil herbs in aquaponic system and hydroponic system. Anim. Sci. 2022, 1, 573–580. [Google Scholar]
Herb | Fish | References |
---|---|---|
Basil (Ocimum basilicum L., 1753) and Coriander (Coriandrum sativum L., 1753) | Nile tilapia (Oreochromis niloticus L., 1758) and Catfish (Clarias gariepinus L., 1758.) | [27,28] |
Coriander (Coriandrum sativum L.), Parsley (Petroselinum crispum L., 1753), Spearmint (Mentha spicata L., 1753), Thyme (Thymus vulgaris L., 1753), Oregano (Origanum vulgare L., 1753), Dill (Anethum graveolens L., 1753) and Basil (Ocimum basilicum) | Nile tilapia (Oreochromis niloticus) | [29,30,31,32,33] |
Basil (Ocimum basilicum), Oregano (Origanum vulgare) and Spearmint (Mentha spicata), Basil (Ocimum basilicum), Spearmint (Mentha spicata) | Nile tilapia (Oreochromis niloticus) and Shrimps; Nile tilapia (Oreochromis niloticus) | [34,35,36,37] |
Parsley (Petroselinum crispum) and Parsley (Petroselinum crispum), Basil (Ocimum basilicum) and Spearmint (Mentha spicata) | Nile tilapia (Oreochromis niloticus) × Blue tilapia (Oreochromis aureus S., 1864); Nile tilapia (Oreochromis niloticus); Nile tilapia (Oreochromis niloticus) and Catfish (Clarias gariepinus) | [38,39,40,41] |
Spearmint (Mentha spicata), Basil (Ocimum basilicum) and Peppermint (Menthe piperita L., 1753), Coriander (Coriandrum sativum), Parsley (Petroselinum crispum), Spearmint (Mentha spicata), Thyme (Thymus vulgaris), Oregano (Origanum vulgare), Dill (Anethum graveolens) and Basil (Ocimum basilicum); | Nile tilapia (Oreochromis niloticus); Common carp (Cyprinus carpio L., 1785) | [42,43] |
Basil (Ocimum basilicum) and Coriander (Coriandrum sativum), Spearmint (Mentha spicata), Basil (Ocimum basilicum), Rosemary (Salvia rosmarinus L., 1753), Oregano (Origanum vulgare) and Thyme (Thymus vulgaris) | Nile tilapia (Oreochromis niloticus) and Catfish(Clarias gariepinus); Nile tilapia (Oreochromis niloticus) | [28,44] |
Spearmint (Mentha spicata) and Basil (Ocimum basilicum L.) | Nile tilapia (Oreochromis niloticus) | [29] |
Herb | Impact on | References |
---|---|---|
Peppermint (Mentha piperita) | Anti-oxidant, antiviral, antimicrobial, anti-inflammatory and anticarcinogenic properties, functioning of the gastrointestinal tract, effective against harmful bacteria, including E. coli and Listeria; | [91,92,93,94,95,96] |
Spearmint (Mentha spicata) | Antibacterial, antiparasitic, insecticidal, anti-inflammatory, antidiabetic, anti-oxidant, diuretic, analgesic, antipyretic, antihemolytic and protective action, depression and asthma, anti-inflammatory, antimicrobial and sedative, expectorant, antispasmodic and diuretic properties; | [97,98,99,100,101,102] |
Basil (Ocimum basilikum) | Anti-inflammatory, antispasmodic, and appetite-stimulating effect; used as flavoring additives in food, pharmaceutical products, and cosmetics; for the treatment of headache, cough, diarrhea, constipation, warts, worms, and kidney failure, antiseptic, carminative, antimicrobial, and anti-oxidant properties; remedy for diarrhea, headache, cough; | [103,104,105,106,107,108] |
Oregano (Origanum vulgare) | Anti-oxidant effect, therapeutic effect, antimicrobial, anti-inflammatory, and analgesic properties; | [112,113,157] |
Coriander (Coriandrum sativum) | Anti-oxidant, antidiabetic, antimutagenic, anti-anxiety and antimicrobial actions, antilipidemic, antispasmodic its many health benefits and preservative effect; the field of herbal medicine, treatment of the digestive tract, respiratory tract, stomach disorders, urinary tract infections, protect cells from oxidative damage, the treatment or prevention of bronchial asthma, spasmogenic disorders, peptic ulcer, inflammatory diseases, hepatotoxicity, atherosclerosis, ischemic heart disease, cataracts, cancer and low sperm motility, stimulates the central nervous system, respiration and the musculoskeletal system improve circulation, inhibits the growth of Candida albicans; | [114,115,116,118,119,120,122,123,124] |
Rosemary (Rosmarinus officinalis) | Anti-oxidant, antidiabetic, antimutagenic, anti-anxiety and antimicrobial actions, antilipidemic, antispasmodic its many health benefits and preservative effect; the field of herbal medicine; treatment of the digestive tract, respiratory tract, stomach disorders, urinary tract infections, protect cells from oxidative damage. The treatment or prevention of bronchial asthma, spasmogenic disorders, peptic ulcer, inflammatory diseases, hepatotoxicity, atherosclerosis, ischemic heart disease, cataracts, cancer, and low sperm motility. Stimulates the central nervous system, respiration, and the musculoskeletal system, improves circulation, and inhibits the growth of Candida albicans; | [96,125,126,127,130] |
Thyme (Thymus vulgaris) | Antimicrobial properties, anti-oxidants, respiratory diseases such as asthma and bronchitis, and for the treatment of other pathologies antiseptic, antispasmodic, antitussive, antimicrobial, antifungal, anti-oxidant, antiviral, calming nervous agitation, insomnia, headache, and anemia; | [131,132,133,134,135] |
Parsley (Petroselinum crispum) | Diuretic, gastric remedy, abortifacient, treatment of the urinary tract and against the formation of kidney stones, antimicrobial, anticoagulant, antihyperlipidemic, antihepatotoxic, anti-oxidant, laxative effect, treatment of lumbago, eczema, knee pain, impotence, nosebleeds and as a blood pressure regulator, hypoglycemic activity, antidiabetic functions, prevention of intestinal spasms and diarrhea; | [118,136,138,139,140,141,142,143,144,158,159] |
Dill (Anethum graveolens) | Diuretic, heals ulcers, stomachaches, eye diseases, uterine pains; gastrointestinal disorders, and broad-spectrum antibacterial activity against S. aureus, E. coli, P. aeruginosa, S. typhimurium, Shigella flexneri, and Salmonella; antimicrobial properties. | [146,147,149,150,151,152] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stoyanova, S.; Sirakov, I.; Velichkova, K. Sustainable Production: Integrating Medicinal Plants with Fish Farming in Aquaponics—A Mini Review. Sustainability 2024, 16, 6337. https://doi.org/10.3390/su16156337
Stoyanova S, Sirakov I, Velichkova K. Sustainable Production: Integrating Medicinal Plants with Fish Farming in Aquaponics—A Mini Review. Sustainability. 2024; 16(15):6337. https://doi.org/10.3390/su16156337
Chicago/Turabian StyleStoyanova, Stefka, Ivaylo Sirakov, and Katya Velichkova. 2024. "Sustainable Production: Integrating Medicinal Plants with Fish Farming in Aquaponics—A Mini Review" Sustainability 16, no. 15: 6337. https://doi.org/10.3390/su16156337