Educational Practices and Algorithmic Framework for Promoting Sustainable Development in Education by Identifying Real-World Learning Paths
Abstract
:1. Introduction
2. Related Work
2.1. Literature Review of Graph Structure Search Based on Causal Discovery
2.2. Literature Review of Graph Structure Search Based on Evolutionary Computational Methods
3. Learning Path Recognition from Real-World Learning Data
3.1. Characterizing Learning Paths with Graph Structures
3.2. The Method of the Study
4. Collaborative Structural Search Framework for LPR
4.1. Collaborative Structural Search for LPR with Multiple Sub-Populations
4.2. The Structure of the Proposed Framework
Algorithm 1: Collaborative Structural Search Framework for LPR | ||||
Input | : | Population optimization direction: optimization_direction, Environmental pressure: ambient_pressure | ||
Output | : | The best individual Ibest and the corresponding system loss | ||
1: | Initialization: Initialize the population randomly | |||
2: | FE ← 0 | |||
3: | while FE < maxFE do | |||
4: | The parent population Pop generates the offPop of the child population by the DE algorithm | |||
5: | OffPop ← sort([ OffPop, optimization_direction]) //Population fitness ranking | |||
6: | //Establish a positive and negative feedback mechanism | |||
7: | for i = ambient_pressure * PopSize: PopSize or i: ambient_pressure*PopSize - i do | |||
8: | NewEdge ← Offspring(1,i).dec - Population(1,i).dec | |||
9: | count_ones ← count_ones + NewEdge //Record the number of new edges | |||
10: | end | |||
11: | count_ones* ← NF or PF | |||
12: | for i = ambient_pressure * PopSize: PopSize or i = 1: ambient_pressure * PopSize - 1 do | |||
13: | OffPop(1,i).dec ← 1;or OffPop(1,i).dec ← 0; | |||
14: | end | |||
15: | replace ← FitnessSingle(Pop) - FitnessSingle(OffPop) > 0 //The fitness of the offspring population was compared with the current population | |||
16: | Pop(replace) ← OffPop(replace); | |||
17: | Pop(1 : ambient_pressure * PopSize) ← Pop((PopSize - ambient_pressure * PopSize + 1): PopSize) //Perform a differentiation transfer strategy | |||
18: | FE ← FE + PopSize //During the sorting process, the offspring population requested the evaluation of the PopSize secondary function | |||
19: | end | |||
20: | Find out the best individual Ibest and the corresponding system loss generated during the iteration process. | |||
21: | return Ibest and loss |
4.3. Identify Effective Learning Paths with CSSF
5. Simulation Results and Analysis
5.1. Experimental Settings
5.2. Test Experiments on Generated Datasets
5.3. Real-World Datasets Comparison Experiment
5.4. Friedman Test Ranking Experiment
5.5. Ablation Experiment
5.6. Convergence Experiment
6. Discussion
- We introduce a multi-subgroup collaborative search mechanism aimed at enhancing search efficiency. By categorizing individuals within the population into superior, exploratory, and elimination subgroups based on their fitness values, these subgroups are tasked with maintaining individual-level superiority, fostering population-level diversity, and ensuring simplicity in the solution set. This approach significantly improves search efficiency.
- A designed bidirectional feedback mechanism is implemented to distinguish high-quality from low-quality edges within the graph, thereby guiding the graph structure search process. This mechanism addresses optimization challenges arising from the sparse nature of edges in the Learning Path Recognition (LPR) task by oversampling identified high-quality edges and undersampling low-quality edges at the population level.
- Based on the aforementioned work, the CSSF framework is proposed to facilitate the sustainable learning and evolution of the proposed algorithm within continuously updated educational data. Through experimental validation on real-world datasets, we demonstrate the efficacy of CSSF. The project’s source code is openly available on GitHub at https://github.com/YuanHao-CS/CSSF for further exploration by interested readers. This link was accessed on 19 June 2024.
7. Recommendations
8. Limitations
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- UNESCO. Reimagining Our Futures Together: A New Social Contract for Education; Educational and Cultural Organization of the United Nations: Paris, France, 2021. [Google Scholar]
- Alrakhawi, H.A.; Jamiat, N.; Abu-Naser, S.S. Intelligent Tutoring Systems in Education: A Systematic Review of Usage, Tools, Effects and Evaluation. J. Theor. Appl. Inf. Technol. 2023, 101, 1205–1226. [Google Scholar]
- Gligorea, I.; Cioca, M.; Oancea, R.; Gorski, A.-T.; Gorski, H.; Tudorache, P. Adaptive Learning Using Artificial Intelligence in E-Learning: A Literature Review. Educ. Sci. 2023, 13, 1216. [Google Scholar] [CrossRef]
- Shu, X.; Ye, Y. Knowledge Discovery: Methods from Data Mining and Machine Learning. Soc. Sci. Res. 2023, 110, 102817. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Liu, G.; Tang, Y. Multi-Agent Reinforcement Learning: Methods, Applications, Visionary Prospects, and Challenges. arXiv 2023, arXiv:2305.10091. [Google Scholar]
- Rančić, D.; Kuk, K.; Pronić-Rančić, O.; Ranđelović, D. Agent-Based Approach for Game-Based Learning Applications: Case Study in Agent-Personalized Trend in Engineering Education. In Agent and Multi-Agent Systems: Technologies and Applications; Jezic, G., Howlett, R.J., Jain, L.C., Eds.; Smart Innovation, Systems and Technologies; Springer International Publishing: Cham, Switzerland, 2015; Volume 38, pp. 453–466. ISBN 978-3-319-19727-2. [Google Scholar]
- Vallée, A.; Blacher, J.; Cariou, A.; Sorbets, E. Blended Learning Compared to Traditional Learning in Medical Education: Systematic Review and Meta-Analysis. J. Med. Internet Res. 2020, 22, e16504. [Google Scholar] [CrossRef]
- Beyene, W.M.; Mekonnen, A.T.; Giannoumis, G.A. Inclusion, Access, and Accessibility of Educational Resources in Higher Education Institutions: Exploring the Ethiopian Context. Int. J. Incl. Educ. 2023, 27, 18–34. [Google Scholar] [CrossRef]
- Pearl, J. Causality; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Sun, K.; Liu, Y.; Guo, Z.; Wang, C. Visualization for Knowledge Graph Based on Education Data. Int. J. Softw. Inform. 2016, 10, 1–13. [Google Scholar]
- Kosari, S.; Rao, Y.; Jiang, H.; Liu, X.; Wu, P.; Shao, Z. Vague Graph Structure with Application in Medical Diagnosis. Symmetry 2020, 12, 1582. [Google Scholar] [CrossRef]
- Parisi, F.; Ruggieri, S.; Lovreglio, R.; Fanti, M.P.; Uva, G. On the Use of Mechanics-Informed Models to Structural Engineering Systems: Application of Graph Neural Networks for Structural Analysis. In Proceedings of the Structures; Elsevier: Amsterdam, The Netherlands, 2024; Volume 59, p. 105712. [Google Scholar]
- Tang, J.; Yang, Y.; Wei, W.; Shi, L.; Su, L.; Cheng, S.; Yin, D.; Huang, C. GraphGPT: Graph Instruction Tuning for Large Language Models. arXiv 2023, arXiv:2310.13023. [Google Scholar]
- Ding, X.; Xia, C.; Zhang, X.; Chu, X.; Han, J.; Ding, G. Repmlp: Re-Parameterizing Convolutions into Fully-Connected Layers for Image Recognition. arXiv 2021, arXiv:2105.01883. [Google Scholar]
- Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A Comprehensive Survey on Transfer Learning. Proc. IEEE 2019, 109, 43–76. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Y.; Vaidya, S.; Ruehle, F.; Halverson, J.; Soljačić, M.; Hou, T.Y.; Tegmark, M. Kan: Kolmogorov-Arnold Networks. arXiv 2024, arXiv:2404.19756. [Google Scholar]
- Chickering, D.M. Optimal Structure Identification with Greedy Search. J. Mach. Learn. Res. 2002, 3, 507–554. [Google Scholar]
- Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Introduction to Algorithms; MIT Press: Cambridge, MA, USA, 2022. [Google Scholar]
- Tsamardinos, I.; Brown, L.E.; Aliferis, C.F. The Max-Min Hill-Climbing Bayesian Network Structure Learning Algorithm. Mach. Learn. 2006, 65, 31–78. [Google Scholar] [CrossRef]
- Tian, Y.; He, C.; Cheng, R.; Zhang, X. A Multistage Evolutionary Algorithm for Better Diversity Preservation in Multiobjective Optimization. IEEE Trans. Syst. Man Cybern Syst. 2021, 51, 5880–5894. [Google Scholar] [CrossRef]
- Mohammadi-Balani, A.; Dehghan Nayeri, M.; Azar, A.; Taghizadeh-Yazdi, M. Golden Eagle Optimizer: A Nature-Inspired Metaheuristic Algorithm. Comput. Ind. Eng. 2021, 152, 107050. [Google Scholar] [CrossRef]
- Lewis, H.S. Leaders and Followers: Some Anthropological Perspectives; Addison-Wesley: Reading, MA, USA, 1974. [Google Scholar]
- Rubin, D.B. Estimating Causal Effects of Treatments in Randomized and Nonrandomized Studies. J. Educ. Psychol. 1974, 66, 688. [Google Scholar] [CrossRef]
- Wang, D.; Chen, D. Causal Inference: Origin and Development. Control. Eng. China 2022, 29, 464–473. [Google Scholar]
- Pearl, J.; Mackenzie, D. AI Can’t Reason Why. Wall Street J. 2018. Available online: https://www.wsj.com/articles/ai-cant-reason-why-1526657442 (accessed on 1 July 2024).
- Pearl, J. Causal Inference. Causality Object. Assess. 2010, 6, 39–58. [Google Scholar]
- Spirtes, P.; Zhang, K. Causal Discovery and Inference: Concepts and Recent Methodological Advances. In Proceedings of the Applied Informatics; Springer: Berlin/Heidelberg, Germany, 2016; Volume 3, pp. 1–28. [Google Scholar]
- Le, T.D.; Hoang, T.; Li, J.; Liu, L.; Liu, H.; Hu, S. A Fast PC Algorithm for High Dimensional Causal Discovery with Multi-Core PCs. IEEE/ACM Trans. Comput. Biol. Bioinform. 2016, 16, 1483–1495. [Google Scholar] [CrossRef]
- Entner, D.; Hoyer, P.O. On Causal Discovery from Time Series Data Using FCI. Probabilistic Graph. Models 2010, 16, 121–128. [Google Scholar]
- Ramsey, J.; Glymour, M.; Sanchez-Romero, R.; Glymour, C. A Million Variables and More: The Fast Greedy Equivalence Search Algorithm for Learning High-Dimensional Graphical Causal Models, with an Application to Functional Magnetic Resonance Images. Int. J. Data Sci. Anal. 2017, 3, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, J. A Theoretical Analysis of the BDeu Scores in Bayesian Network Structure Learning. Behaviormetrika 2017, 44, 97–116. [Google Scholar] [CrossRef]
- Kuha, J. AIC and BIC: Comparisons of Assumptions and Performance. Sociol. Methods Res. 2004, 33, 188–229. [Google Scholar] [CrossRef]
- Siripatana, A.; Mayo, T.; Sraj, I.; Knio, O.; Dawson, C.; Le Maitre, O.; Hoteit, I. Assessing an Ensemble Kalman Filter Inference of Manning’sn Coefficient of an Idealized Tidal Inlet against a Polynomial Chaos-Based MCMC. Ocean Dyn. 2017, 67, 1067–1094. [Google Scholar] [CrossRef]
- Jiang, B.; Wei, Y.; Gu, M.; Yin, C. Understanding Students’ Backtracking Behaviors in Digital Textbooks: A Data-Driven Perspective. Interact. Learn. Environ. 2023, 1–18. [Google Scholar] [CrossRef]
- Jiang, B.; Wei, Y.; Zhang, T.; Zhang, W. Improving the Performance and Explainability of Knowledge Tracing via Markov Blanket. Inf. Process. Manag. 2024, 61, 103620. [Google Scholar] [CrossRef]
- Spirtes, P.; Richardson, T.; Meek, C. Heuristic Greedy Search Algorithms for Latent Variable Models. In Proceedings of the AI & STAT’97, Fort Lauderdale, FL, USA, 24 November 1997; pp. 481–488. [Google Scholar]
- Kitano, H. Designing Neural Networks Using Genetic Algorithms with Graph Generation System. Complex Syst. 1990, 4, 461–476. [Google Scholar]
- Fahlman, S.; Lebiere, C. The Cascade-Correlation Learning Architecture. Adv. Neural Inf. Process. Syst. 1989, 2, 524–532. [Google Scholar]
- Real, E.; Aggarwal, A.; Huang, Y.; Le, Q.V. Regularized Evolution for Image Classifier Architecture Search. Proc. AAAI Conf. Artif. Intell. 2019, 33, 4780–4789. [Google Scholar] [CrossRef]
- Wei, X.-F.; Tang, K.; Chen, Z.-W.; Chen, H.-J.; Shi, Y.-H.; Jiang, Y.-H. ACDO: An Ant Colony Dynamic Optimization Framework for Tourism Route Planning. In Proceedings of the 2023 4th International Conference on Computer Science and Management Technology, Xi’an, China, 13–15 October 2023; Association for Computing Machinery: New York, NY, USA, 2024; pp. 851–856. [Google Scholar]
- Romera-Paredes, B.; Barekatain, M.; Novikov, A.; Balog, M.; Kumar, M.P.; Dupont, E.; Ruiz, F.J.R.; Ellenberg, J.S.; Wang, P.; Fawzi, O.; et al. Mathematical Discoveries from Program Search with Large Language Models. Nature 2023, 625, 468–475. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zheng, Q.-Q.; He, L.-J.; Tian, H.-W. Ship Traffic Optimization Method for Solving the Approach Channel and Lock Co-Scheduling Problem of the Three Gorges Dam on the Yangzi River. Ocean Eng. 2023, 276, 114196. [Google Scholar] [CrossRef]
- Tang, K.; Wei, X.-F.; Jiang, Y.-H.; Chen, Z.-W.; Yang, L. An Adaptive Ant Colony Optimization for Solving Large-Scale Traveling Salesman Problem. Mathematics 2023, 11, 4439. [Google Scholar] [CrossRef]
- Stanley, K.O.; Miikkulainen, R. Evolving Neural Networks through Augmenting Topologies. Evol. Comput. 2002, 10, 99–127. [Google Scholar] [CrossRef] [PubMed]
- Gomez, F.J.; Miikkulainen, R. Solving Non-Markovian Control Tasks with Neuroevolution. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI99), Stockholm, Sweden, 31 July–6 August 1999; Volume 99, pp. 1356–1361. [Google Scholar]
- Salimans, T.; Ho, J.; Chen, X.; Sidor, S.; Sutskever, I. Evolution Strategies as a Scalable Alternative to Reinforcement Learning. arXiv 2017, arXiv:1703.03864. [Google Scholar]
- Zoph, B.; Vasudevan, V.; Shlens, J.; Le, Q.V. Learning Transferable Architectures for Scalable Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8697–8710. [Google Scholar]
- Zoph, B.; Le, Q.V. Neural Architecture Search with Reinforcement Learning. arXiv 2016, arXiv:1611.01578. [Google Scholar]
- Real, E.; Moore, S.; Selle, A.; Saxena, S.; Suematsu, Y.L.; Tan, J.; Le, Q.V.; Kurakin, A. Large-Scale Evolution of Image Classifiers. In Proceedings of the International Conference on Machine Learning; PMLR: Birmingham, UK, 2017; pp. 2902–2911. [Google Scholar]
- Gong, W.; Smith, D.; Wang, Z.; Barton, C.; Pawlowski, N.; Jennings, J.; Zhang, C. Instructions and Guide: Causal Insights for Learning Paths in Education. CodaLab. 2024. Available online: https://eedi.com/projects/neurips-2022 (accessed on 1 July 2024).
- Blot, A.; Petke, J. Empirical Comparison of Search Heuristics for Genetic Improvement of Software. IEEE Trans. Evol. Comput. 2021, 25, 1001–1011. [Google Scholar] [CrossRef]
- Chen, S.; Wang, W.; Xia, B.; You, X.; Peng, Q.; Cao, Z.; Ding, W. CDE-GAN: Cooperative Dual Evolution-Based Generative Adversarial Network. IEEE Trans. Evol. Comput. 2021, 25, 986–1000. [Google Scholar] [CrossRef]
- Jiang, Y.-H.; Gao, S.; Yin, Y.-H.; Xu, Z.-F.; Wang, S.-Y. A Control System of Rail-Guided Vehicle Assisted by Transdifferentiation Strategy of Lower Organisms. Eng. Appl. Artif. Intell. 2023, 123, 106353. [Google Scholar] [CrossRef]
- Siddique, A.; Browne, W.N.; Grimshaw, G.M. Frames-of-Reference Based Learning: Overcoming Perceptual Aliasing in Multi-Step Decision Making Tasks. IEEE Trans. Evol. Comput. 2021, 26, 174–187. [Google Scholar] [CrossRef]
- Tang, K.; Liu, S.; Yang, P.; Yao, X. Few-Shots Parallel Algorithm Portfolio Construction via Co-Evolution. IEEE Trans. Evol. Comput. 2021, 25, 595–607. [Google Scholar] [CrossRef]
- Heckerman, D.; Meek, C.; Cooper, G. A Bayesian Approach to Causal Discovery. Innov. Mach. Learn. Theory Appl. 2006, 138, 1–28. [Google Scholar]
- Gao, Z.; Ren, B. Network Learning Based on Ant Colony Optimization. Syst. Eng. Electron. 2010, 6, 4. [Google Scholar]
- Yang, C.; Ji, J.; Liu, J.; Liu, J.; Yin, B. Structural Learning of Bayesian Networks by Bacterial Foraging Optimization. Int. J. Approx. Reason. 2016, 69, 147–167. [Google Scholar] [CrossRef]
- Tian, Y.; Zhu, W.; Zhang, X.; Jin, Y. A Practical Tutorial on Solving Optimization Problems via PlatEMO. Neurocomputing 2023, 518, 190–205. [Google Scholar] [CrossRef]
- Jiao, R.; Xue, B.; Zhang, M. A Multiform Optimization Framework for Constrained Multiobjective Optimization. IEEE Trans. Cybern. 2023, 53, 5165–5177. [Google Scholar] [CrossRef] [PubMed]
- Jangir, P.; Heidari, A.A.; Chen, H. Elitist Non-Dominated Sorting Harris Hawks Optimization: Framework and Developments for Multi-Objective Problems. Expert Syst. Appl. 2021, 186, 115747. [Google Scholar] [CrossRef]
- Liu, T.-Y.; Jiang, Y.-H.; Wei, Y.; Wang, X.; Huang, S.; Dai, L. CSSF: A General-Purpose Algorithm Framework Designed to Recognition Real-World Educational Learning Path. Github. 2024. Available online: https://github.com/YuanHao-CS/CSSF (accessed on 1 July 2024).
- Wei, Y.; Zhou, Y.; Jiang, Y.-H.; Jiang, B. Enhancing Explainability of Knowledge Learning Paths: Causal Knowledge Networks. arXiv 2024, arXiv:2406.17518. [Google Scholar] [CrossRef]
- Li, R.; Wang, Y.; Zheng, C.; Jiang, Y.-H.; Jiang, B. Generating Contextualized Mathematics Multiple-Choice Questions Utilizing Large Language Models. In Artificial Intelligence in Education. Posters and Late Breaking Results, Workshops and Tutorials, Industry and Innovation Tracks, Practitioners, Doctoral Consortium and Blue Sky; Olney, A.M., Chounta, I.-A., Liu, Z., Santos, O.C., Bittencourt, I.I., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 494–501. [Google Scholar]
- Jiang, Y.-H.; Li, R.; Zhou, Y.; Qi, C.; Hu, H.; Wei, Y.; Jiang, B.; Wu, Y. AI Agent for Education: Von Neumann Multi-Agent System Framework. In Proceedings of the 28th Global Chinese Conference on Computers in Education (GCCCE 2024); Global Chinese Conference on Computers in Education, Chongqing, China, 1–5 June 2024; pp. 77–84. Available online: http://gccce2024.swu.edu.cn/GCCCE2024_gongzuofanglunwenji2024-06-23A.pdf#page=95 (accessed on 4 July 2024).
- Zhou, Y.; Zhang, Y.; Liu, N. Research on the Design of an AI Career Path Recommendation System Based on MBTI from a Cross-Cultural Perspective. Artif. Intell. Technol. Res. 2024, 2, 1. [Google Scholar]
- Zhou, Y.; Li, Z. Utilizing Machine Learning Algorithms for Predictive Analysis of Student Performance: A Database-Integrated Approach. Int. J. Math. Syst. Sci. 2024, 6, 6. [Google Scholar]
- Zhou, Y.; Zhang, M.; Jiang, Y.-H.; Liu, N.; Jiang, B. A Study on Educational Data Analysis and Personalized Feedback Report Generation Based on Tags and ChatGPT. In Proceedings of the 28th Global Chinese Conference on Computers in Education (GCCCE 2024); Global Chinese Conference on Computers in Education, Chongqing, China, 1–5 June 2024; pp. 108–115. Available online: http://gccce2024.swu.edu.cn/GCCCE2024_gongzuofanglunwenji2024-06-23A.pdf#page=126 (accessed on 4 July 2024).
QuizSsssionId | AnswerId | UserId | QuizId | QuestionId | IsCorect | AnswerValue |
---|---|---|---|---|---|---|
8 | 57 | 5 | 232,950 | 131,432 | 0 | 2 |
8 | 57 | 5 | 232,950 | 131,432 | 0 | 3 |
8 | None | 5 | 232,950 | 131,432 | None | None |
8 | 59 | 5 | 232,950 | 133,665 | 1 | 4 |
8 | 60 | 5 | 232,950 | 131,433 | 1 | 1 |
CorrectAnswer | QuestionSequence | ConstructId | Type |
---|---|---|---|
4 | 2 | 433 | Checkin |
4 | 2 | 433 | CheckinRetry |
None | 2 | 433 | Lesson |
4 | 2 | 433 | Checkout |
1 | 3 | 427 | Checkin |
Algorithm | Parameter |
---|---|
MFOSPEA2 [60] | Initialmax = 1, Initialmin = 0 |
GEO [21] | APmin = 0.5, APmax = 2.0, CPmin = 1.0, CPmax = 0.5 |
EESHHO [61] | Ub = 1, Lb = 0 |
MSEA [20] | Fmax = 1, Fmin = 0 |
CSSF | PF = 0.6, NF = 0.4, AP = 0.4 |
Problem | D | MSEA [20] | GEO [21] | EESHHO [61] | MFOSPEA2 [60] | CSSF |
---|---|---|---|---|---|---|
LPR-GD1 | 1225 | 4.5028 × 10−1 (1.57 × 10−3) [-] | 3.3908 × 10−1 (8.61 × 10−4) [-] | 3.2998 × 10−1 (1.46 × 10−2) [-] | 4.4859 × 10−1 (6.59 × 10−3) [-] | 2.7881 × 10−1 (1.16 × 10−2) |
LPR-GD2 | 1225 | 4.3931 × 10−1 (6.38 × 10−3) [-] | 3.1985 × 10−1 (7.88 × 10−4) [-] | 3.0356 × 10−1 (2.76 × 10−3) [-] | 4.4236 × 10−1 (2.87 × 10−3) [-] | 2.6862 × 10−1 (1.19 × 10−2) |
LPR-GD3 | 1225 | 4.5636 × 10−1 (8.79 × 10−3) [-] | 3.5202 × 10−1 (5.45 × 10−4) [-] | 3.4858 × 10−1 (3.93 × 10−3) [-] | 4.5749 × 10−1 (4.65 × 10−3) [-] | 2.8766 × 10−1 (3.15 × 10−3) |
LPR-GD4 | 1225 | 4.5344 × 10−1 (8.70 × 10−4) [-] | 3.4933 × 10−1 (5.63 × 10−4) [-] | 3.3493 × 10−1 (1.27 × 10−2) [-] | 4.5336 × 10−1 (6.86 × 10−3) [-] | 2.8556 × 10−1 (3.81 × 10−3) |
LPR-GD5 | 1225 | 4.4734 × 10−1 (5.53 × 10−3) [-] | 3.3507 × 10−1 (7.74 × 10−4) [-] | 3.2426 × 10−1 (1.44 × 10−2) [-] | 4.5020 × 10−1 (2.98 × 10−3) [-] | 2.7334 × 10−1 (8.04 × 10−3) |
+/=/− | - | 0/0/5 | 0/0/5 | 0/0/5 | 0/0/5 | - |
Problem | D | MSEA [20] | GEO [21] | EESHHO [61] | MFOSPEA2 [60] | CSSF |
---|---|---|---|---|---|---|
LPR-RWD | 6670 | 4.8361 × 10−1 (1.78 × 10−3) [-] | 3.4382 × 10−1 (3.95× 10−5) [-] | 3.4306 × 10−1 (2.76 × 10−4) [≈] | 4.8325 × 10−1 (2.92 × 10−3) [-] | 3.3844 × 10−1 (4.45 × 10−3) |
LPR-RWD1 | 1225 | 4.1256 × 10−1 (4.36 × 10−3) [-] | 2.7243 × 10−1 (2.06 × 10−3) [-] | 2.7075 × 10−1 (1.59 × 10−3) [-] | 4.2106 × 10−1 (2.68 × 10−3) [-] | 2.3111 × 10−1 (4.25 × 10−3) |
LPR-RWD2 | 1225 | 4.4332 × 10−1 (8.90 × 10−3) [-] | 3.3420 × 10−1 (2.15 × 10−4) [-] | 3.2095 × 10−1 (1.12 × 10−2) [-] | 4.4727 × 10−1 (2.27 × 10−3) [-] | 2.7595 × 10−1 (3.87 × 10−3) |
+/≈/− | - | 0/0/3 | 0/0/3 | 0/1/2 | 0/0/3 | - |
Algorithm | CSSF | EESHHO | GEO | MSEA | MFOSPEA2 |
---|---|---|---|---|---|
Real-world Rank | 1.00 | 2.00 | 3.00 | 4.30 | 4.70 |
Synthetic Rank | 1.00 | 2.00 | 3.00 | 4.20 | 4.80 |
Standard deviation | 0.00 | 0.00 | 0.00 | 0.07 | 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, T.-Y.; Jiang, Y.-H.; Wei, Y.; Wang, X.; Huang, S.; Dai, L. Educational Practices and Algorithmic Framework for Promoting Sustainable Development in Education by Identifying Real-World Learning Paths. Sustainability 2024, 16, 6871. https://doi.org/10.3390/su16166871
Liu T-Y, Jiang Y-H, Wei Y, Wang X, Huang S, Dai L. Educational Practices and Algorithmic Framework for Promoting Sustainable Development in Education by Identifying Real-World Learning Paths. Sustainability. 2024; 16(16):6871. https://doi.org/10.3390/su16166871
Chicago/Turabian StyleLiu, Tian-Yi, Yuan-Hao Jiang, Yuang Wei, Xun Wang, Shucheng Huang, and Ling Dai. 2024. "Educational Practices and Algorithmic Framework for Promoting Sustainable Development in Education by Identifying Real-World Learning Paths" Sustainability 16, no. 16: 6871. https://doi.org/10.3390/su16166871
APA StyleLiu, T.-Y., Jiang, Y.-H., Wei, Y., Wang, X., Huang, S., & Dai, L. (2024). Educational Practices and Algorithmic Framework for Promoting Sustainable Development in Education by Identifying Real-World Learning Paths. Sustainability, 16(16), 6871. https://doi.org/10.3390/su16166871