Estimation of Greenhouse Gas Emissions of Taxis and the Nonlinear Influence of Built Environment Considering Spatiotemporal Heterogeneity
Abstract
:1. Introduction
2. Literature Review
3. Data and Variables
3.1. Data Processing
3.1.1. Research Area Definition and Traffic Analysis Zone (TAZ) Subdivision
3.1.2. Data Preprocessing Process
3.2. Variable Selection
4. Methodology
4.1. Vehicle GHG Emissions Estimation Model
4.1.1. COPERT Model Assumptions
4.1.2. Model Estimation Process
4.2. GBDT Model
5. Results and Discussion
5.1. Estimation of GHG Emissions
5.2. Spatiotemporal Characteristics of GHG Emissions in TAZs
5.3. Spatiotemporal Clustering Analysis of TAZs Based on GHG Emissions
5.4. Nonlinear Impact Analysis of BE on GHG Emissions from Taxis
6. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mead, L. The Road to Sustainable Transport; International Institute for Sustainable Development: Winnipeg, MB, Canada, 2021; pp. 1–9. [Google Scholar]
- Mingolla, S.; Lu, Z. Carbon Emission and Cost Analysis of Vehicle Technologies for Urban Taxis. Transp. Res. Part D Transp. Environ. 2021, 99, 102994. [Google Scholar] [CrossRef]
- Nabavi-Pelesaraei, A.; Mohammadkashi, N.; Naderloo, L.; Abbasi, M.; Chau, K. Principal of Environmental Life Cycle Assessment for Medical Waste during COVID-19 Outbreak to Support Sustainable Development Goals. Sci. Total Environ. 2022, 827, 154416. [Google Scholar] [CrossRef]
- Liu, Z.; Deng, Z.; Zhu, B.; Ciais, P.; Davis, S.J.; Tan, J.; Andrew, R.M.; Boucher, O.; Ben Arous, S.; Canadell, J.G.; et al. Global Patterns of Daily CO2 Emissions Reductions in the First Year of COVID-19. Nat. Geosci. 2022, 15, 615–620. [Google Scholar] [CrossRef]
- Hu, T.; Shao, W. Spatiotemporal Analysis of Urban Nighttime Light After China Lifted 3-Year-Old COVID-19 Restrictions. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 9038–9050. [Google Scholar] [CrossRef]
- Zheng, X.; Chai, Q.; Chen, Y.; Li, X. Assessing the GHG Mitigation Effect of the National VI Emissions Standard for Light Duty Vehicles in China. Environ. Sci. Pollut. Res. 2023, 30, 36–43. [Google Scholar] [CrossRef]
- Gao, J.; Ma, S.; Peng, B.; Zuo, J.; Du, H. Exploring the Nonlinear and Asymmetric Influences of Built Environment on CO2 Emission of Ride-Hailing Trips. Environ. Impact Assess. Rev. 2022, 92, 106691. [Google Scholar] [CrossRef]
- Wang, G.; Han, Q.; de vries, B. The Multi-Objective Spatial Optimization of Urban Land Use Based on Low-Carbon City Planning. Ecol. Indic. 2021, 125, 107540. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, M.; Tang, Z.; Mei, Z. Urbanization, Land Use Change, and Carbon Emissions: Quantitative Assessments for City-Level Carbon Emissions in Beijing-Tianjin-Hebei Region. Sustain. Cities Soc. 2021, 66, 102701. [Google Scholar] [CrossRef]
- Holz-Rau, C.; Scheiner, J. Land-Use and Transport Planning—A Field of Complex Cause-Impact Relationships. Thoughts on Transport Growth, Greenhouse Gas Emissions and the Built Environment. Transp. Policy 2019, 74, 127–137. [Google Scholar] [CrossRef]
- Ding, C.; Cao, X.; Næss, P. Applying Gradient Boosting Decision Trees to Examine Non-Linear Effects of the Built Environment on Driving Distance in Oslo. Transp. Res. Part A Policy Pract. 2018, 110, 107–117. [Google Scholar] [CrossRef]
- Lyu, T.; Wang, P.; Gao, Y.; Wang, Y. Research on the Big Data of Traditional Taxi and Online Car-Hailing: A Systematic Review. J. Traffic Transp. Eng. (Engl. Ed.) 2021, 8, 1–34. [Google Scholar] [CrossRef]
- Yuan, C.; Duan, Y.; Mao, X.; Ma, N.; Zhao, J. Impact of the Mixed Degree of Urban Functions on the Taxi Travel Demand. PLoS ONE 2021, 16, e0247431. [Google Scholar] [CrossRef]
- Yu, W. Discovering Frequent Movement Paths From Taxi Trajectory Data Using Spatially Embedded Networks and Association Rules. IEEE Trans. Intell. Transp. Syst. 2019, 20, 855–866. [Google Scholar] [CrossRef]
- Yang, Y.; He, Z.; Song, Z.; Fu, X.; Wang, J. Investigation on Structural and Spatial Characteristics of Taxi Trip Trajectory Network in Xi’an, China. Phys. A Stat. Mech. Its Appl. 2018, 506, 755–766. [Google Scholar] [CrossRef]
- Li, R.; Yang, F.; Liu, Z.; Shang, P.; Wang, H. Effect of Taxis on Emissions and Fuel Consumption in a City Based on License Plate Recognition Data: A Case Study in Nanning, China. J. Clean. Prod. 2019, 215, 913–925. [Google Scholar] [CrossRef]
- Wang, H.; Chen, C.; Huang, C.; Fu, L. On-Road Vehicle Emission Inventory and Its Uncertainty Analysis for Shanghai, China. Sci. Total Environ. 2008, 398, 60–67. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, F.; Fujiyama, T. Carbon Emission from Urban Passenger Transportation in Beijing. Transp. Res. Part D Transp. Environ. 2015, 41, 217–227. [Google Scholar] [CrossRef]
- Noland, R.B.; Hanson, C.S. Life-Cycle Greenhouse Gas Emissions Associated with a Highway Reconstruction: A New Jersey Case Study. J. Clean. Prod. 2015, 107, 731–740. [Google Scholar] [CrossRef]
- Hanson, C.S.; Noland, R.B.; Cavale, K.R. Life-Cycle Greenhouse Gas Emissions of Materials Used in Road Construction. Transp. Res. Rec. J. Transp. Res. Board 2012, 2287, 174–181. [Google Scholar] [CrossRef]
- Li, X.; Lv, T.; Zhan, J.; Wang, S.; Pan, F. Carbon Emission Measurement of Urban Green Passenger Transport: A Case Study of Qingdao. Sustainability 2022, 14, 9588. [Google Scholar] [CrossRef]
- Liu, J.; Li, J.; Chen, Y.; Lian, S.; Zeng, J.; Geng, M.; Zheng, S.; Dong, Y.; He, Y.; Huang, P.; et al. Multi-Scale Urban Passenger Transportation CO2 Emission Calculation Platform for Smart Mobility Management. Appl. Energy 2023, 331, 120407. [Google Scholar] [CrossRef]
- Sun, D.; Zhang, K.; Shen, S. Analyzing Spatiotemporal Traffic Line Source Emissions Based on Massive Didi Online Car-Hailing Service Data. Transp. Res. Part D Transp. Environ. 2018, 62, 699–714. [Google Scholar] [CrossRef]
- Liu, J.; Han, K.; Chen, X.; Ong, G.P. Spatial-Temporal Inference of Urban Traffic Emissions Based on Taxi Trajectories and Multi-Source Urban Data. Transp. Res. Part C Emerg. Technol. 2019, 106, 145–165. [Google Scholar] [CrossRef]
- Sun, M.; Xue, C.; Cheng, Y.; Zhao, L.; Long, Z. Analyzing Spatiotemporal Daily Travel Source Carbon Emissions Based on Taxi Trajectory Data. IEEE Access 2021, 9, 107012–107023. [Google Scholar] [CrossRef]
- Li, M.; Yu, L.; Zhai, Z.; He, W.; Song, G. Development of Emission Factors for an Urban Road Network Based on Speed Distributions. J. Transp. Eng. 2016, 142, 1–9. [Google Scholar] [CrossRef]
- Yao, Z.; Cao, X.; Shen, X.; Zhang, Y.; Wang, X.; He, K. On-Road Emission Characteristics of CNG-Fueled Bi-Fuel Taxis. Atmos. Environ. 2014, 94, 198–204. [Google Scholar] [CrossRef]
- Li, W.; Pu, Z.; Li, Y.; Tu, M. How Does Ridesplitting Reduce Emissions from Ridesourcing? A Spatiotemporal Analysis in Chengdu, China. Transp. Res. Part D Transp. Environ. 2021, 95, 102885. [Google Scholar] [CrossRef]
- Zhao, P.; Kwan, M.P.; Qin, K. Uncovering the Spatiotemporal Patterns of CO2 Emissions by Taxis Based on Individuals’ Daily Travel. J. Transp. Geogr. 2017, 62, 122–135. [Google Scholar] [CrossRef]
- Handy, S.; Cao, X.; Mokhtarian, P. Correlation or Causality between the Built Environment and Travel Behavior? Evidence from Northern California. Transp. Res. Part D Transp. Environ. 2005, 10, 427–444. [Google Scholar] [CrossRef]
- Duan, Y.; Yuan, C.; Mao, X.; Zhao, J.; Ma, N. Influence of the Built Environment on Taxi Travel Demand Based on the Optimal Spatial Analysis Unit. PLoS ONE 2023, 18, e0292363. [Google Scholar] [CrossRef]
- Chen, C.; Feng, T.; Ding, C.; Yu, B.; Yao, B. Examining the Spatial-Temporal Relationship between Urban Built Environment and Taxi Ridership: Results of a Semi-Parametric GWPR Model. J. Transp. Geogr. 2021, 96, 103172. [Google Scholar] [CrossRef]
- Tan, X.; Tu, T.; Gu, B.; Zeng, Y.; Huang, T.; Zhang, Q. Assessing CO2 Emissions from Passenger Transport with the Mixed-Use Development Model in Shenzhen International Low-Carbon City. Land 2021, 10, 137. [Google Scholar] [CrossRef]
- Kwak, K.-H.; Woo, S.; Kim, K.; Lee, S.-B.; Bae, G.-N.; Ma, Y.-I.; Sunwoo, Y.; Baik, J.-J. On-Road Air Quality Associated with Traffic Composition and Street-Canyon Ventilation: Mobile Monitoring and CFD Modeling. Atmosphere 2018, 9, 92. [Google Scholar] [CrossRef]
- Ashik, F.R.; Rahman, M.H.; Antipova, A.; Zafri, N.M. Analyzing the Impact of the Built Environment on Commuting-Related Carbon Dioxide Emissions. Int. J. Sustain. Transp. 2023, 17, 258–272. [Google Scholar] [CrossRef]
- Shen, Y.-S.; Lin, Y.-C.; Cui, S.; Li, Y.; Zhai, X. Crucial Factors of the Built Environment for Mitigating Carbon Emissions. Sci. Total Environ. 2022, 806, 150864. [Google Scholar] [CrossRef]
- Orsi, F.; Avagyan, V. Built Environment, Daily Activities and Carbon Emissions: Insights from an Eight-Week App-Based Survey in the Province of Utrecht (Netherlands). Urban Clim. 2023, 52, 101744. [Google Scholar] [CrossRef]
- Yang, W. The Nonlinear Effects of Multi-Scale Built Environments on CO2 Emissions from Commuting. Transp. Res. Part D Transp. Environ. 2023, 118, 103736. [Google Scholar] [CrossRef]
- Ding, C.; Cao, X.; Yu, B.; Ju, Y. Non-Linear Associations between Zonal Built Environment Attributes and Transit Commuting Mode Choice Accounting for Spatial Heterogeneity. Transp. Res. Part A Policy Pract. 2021, 148, 22–35. [Google Scholar] [CrossRef]
- Liu, L.; Silva, E.A.; Yang, Z. Similar Outcomes, Different Paths: Tracing the Relationship between Neighborhood-Scale Built Environment and Travel Behavior Using Activity-Based Modelling. Cities 2021, 110, 103061. [Google Scholar] [CrossRef]
- Sun, C.; Quan, W. Evaluation of Bus Accessibility Based on Hotspot Detection and Matter-Element Analysis. IEEE Access 2020, 8, 138800–138809. [Google Scholar] [CrossRef]
- Weng, J.; Shen, H.; Lin, P.; Jing, Y.; Qian, H. Exploring the Spatiotemporal Relationships between Built Environment and the Public Transport Competitiveness: A Case Study from Beijing. J. Clean. Prod. 2024, 446, 141333. [Google Scholar] [CrossRef]
- Ji, S.; Heinen, E.; Wang, Y. Non-Linear Effects of Street Patterns and Land Use on the Bike-Share Usage. Transp. Res. Part D Transp. Environ. 2023, 116, 103630. [Google Scholar] [CrossRef]
- Wang, S.; Liu, X.; Zhou, C.; Hu, J.; Ou, J. Examining the Impacts of Socioeconomic Factors, Urban Form, and Transportation Networks on CO2 Emissions in China’s Megacities. Appl. Energy 2017, 185, 189–200. [Google Scholar] [CrossRef]
- Shu, Y.; Lam, N.S.N. Spatial Disaggregation of Carbon Dioxide Emissions from Road Traffic Based on Multiple Linear Regression Model. Atmos. Environ. 2011, 45, 634–640. [Google Scholar] [CrossRef]
- Andrade, R.; Alves, A.; Bento, C. POI Mining for Land Use Classification: A Case Study. ISPRS Int. J. Geo-Inf. 2020, 9, 493. [Google Scholar] [CrossRef]
- Lashof, D.A.; Ahuja, D.R. Relative Contributions of Greenhouse Gas Emissions to Global Warming. Nature 1990, 344, 529–531. [Google Scholar] [CrossRef]
- van Vuuren, D.P.; Hoogwijk, M.; Barker, T.; Riahi, K.; Boeters, S.; Chateau, J.; Scrieciu, S.; van Vliet, J.; Masui, T.; Blok, K.; et al. Comparison of Top-down and Bottom-up Estimates of Sectoral and Regional Greenhouse Gas Emission Reduction Potentials. Energy Policy 2009, 37, 5125–5139. [Google Scholar] [CrossRef]
- Zhao, C.; Tang, J.; Zeng, Y.; Li, Z.; Gao, F. Understanding the Spatio-Temporally Heterogeneous Effects of Built Environment on Urban Travel Emissions. J. Transp. Geogr. 2023, 112, 103689. [Google Scholar] [CrossRef]
- Li, T.; Wu, J.; Dang, A.; Liao, L.; Xu, M. Emission Pattern Mining Based on Taxi Trajectory Data in Beijing. J. Clean. Prod. 2019, 206, 688–700. [Google Scholar] [CrossRef]
- Lang, J.; Cheng, S.; Zhou, Y.; Zhang, Y.; Wang, G. Air Pollutant Emissions from On-Road Vehicles in China, 1999–2011. Sci. Total Environ. 2014, 496, 1–10. [Google Scholar] [CrossRef]
- Li, Z.; Gao, F.; Xiao, C.; Tang, J. The Effects of the Urban Built Environment on Public Transport Ridership: Similarities and Differences. Travel Behav. Soc. 2023, 33, 100630. [Google Scholar] [CrossRef]
- Wu, X.; Tao, T.; Cao, J.; Fan, Y.; Ramaswami, A. Examining Threshold Effects of Built Environment Elements on Travel-Related Carbon-Dioxide Emissions. Transp. Res. Part D Transp. Environ. 2019, 75, 1–12. [Google Scholar] [CrossRef]
- Si, S.; Zhang, H.; Keerthi, S.S.; Mahajan, D.; Dhillon, I.S.; Hsieh, C.J. Gradient Boosted Decision Trees for High Dimensional Sparse Output. In Proceedings of the 34th International Conference on Machine Learning ICML 2017, Sydney, Australia, 6–11 August 2017; Volume 7, pp. 4899–4908. [Google Scholar]
- Shao, Q.; Zhang, W.; Cao, X.; Yang, J.; Yin, J. Threshold and Moderating Effects of Land Use on Metro Ridership in Shenzhen: Implications for TOD Planning. J. Transp. Geogr. 2020, 89, 102878. [Google Scholar] [CrossRef]
- Hu, S.; Lin, H.; Chen, X.; Xie, K.; Shan, X. Modeling Usage Frequencies and Vehicle Preferences in a Large-Scale Electric Vehicle Sharing System. IEEE Intell. Transp. Syst. Mag. 2022, 14, 74–86. [Google Scholar] [CrossRef]
- Dong, H.; Wu, M.; Ding, X.; Chu, L.; Jia, L.; Qin, Y.; Zhou, X. Traffic Zone Division Based on Big Data from Mobile Phone Base Stations. Transp. Res. Part C Emerg. Technol. 2015, 58, 278–291. [Google Scholar] [CrossRef]
- Anderson, T.K. Kernel Density Estimation and K-Means Clustering to Profile Road Accident Hotspots. Accid. Anal. Prev. 2009, 41, 359–364. [Google Scholar] [CrossRef]
- Yang, J.; Cao, J.; Zhou, Y. Elaborating Non-Linear Associations and Synergies of Subway Access and Land Uses with Urban Vitality in Shenzhen. Transp. Res. Part A Policy Pract. 2021, 144, 74–88. [Google Scholar] [CrossRef]
- An, D.; Tong, X.; Liu, K.; Chan, E.H.W. Understanding the Impact of Built Environment on Metro Ridership Using Open Source in Shanghai. Cities 2019, 93, 177–187. [Google Scholar] [CrossRef]
- Guo, X.; Du, Q.; Li, Y.; Zhou, Y.; Wang, Y.; Huang, Y.; Martinez-Pastor, B. Cascading Failure and Recovery of Metro–Bus Double-Layer Network Considering Recovery Propagation. Transp. Res. Part D Transp. Environ. 2023, 122, 103861. [Google Scholar] [CrossRef]
- Pas, E.I.; Principio, S.L. Braess’ Paradox: Some New Insights. Transp. Res. Part B Methodol. 1997, 31, 265–276. [Google Scholar] [CrossRef]
- Guo, L.; Yang, S.; Zhang, Q.; Zhou, L.; He, H. Examining the Nonlinear and Synergistic Effects of Multidimensional Elements on Commuting Carbon Emissions: A Case Study in Wuhan, China. Int. J. Environ. Res. Public Health 2023, 20, 1616. [Google Scholar] [CrossRef] [PubMed]
Statistical Indicators | Mean | Min | 25% Quantile | Median | 75% Quantile | Max |
---|---|---|---|---|---|---|
TAZs area /km2 | 4.58 | 0.25 | 2.67 | 3.83 | 5.22 | 27.86 |
Field | Format | Field Description |
---|---|---|
ID | A75589 or UD33606 | Vehicle registration number |
IN_DATE | 2019/3/2 00:32:03 | Data entry time |
GPS_TIME | 2019/3/2 00:00:30 | Trajectory point recording time |
LNG | 108.888170 | Longitude |
LAT | 34.268991 | Latitude |
HEIGHT | 436 | Altitude/m |
SPEED | 50 | Speed/km·h−1 |
EFF | 0 or 1 | 0 record invalid; 1 record valid |
CAR_STATE | 4, 5, 7, 9 | 4 Empty vehicle status; 5 Passenger loaded status; 7 Engine off; 9 Abnormal |
Category | Variable | Description | Mean | Min | Max | Std.dev |
---|---|---|---|---|---|---|
Design | Road network density | —— | 9.489 | 0 | 33.331 | 4.960 |
Intersection density | Intersections count per square kilometer within TAZ | 15.090 | 0 | 80.391 | 11.826 | |
Diversity | Mixed degree of urban function | —— | 1.722 | 0 | 2.259 | 0.438 |
Density | Restaurant density | Restaurants count per square kilometer within TAZ | 68.0128 | 0 | 498.241 | 100.569 |
Scenic area density | Scenic areas, park, temples, etc. count per square kilometer within TAZ | 1.272 | 0 | 9.234 | 4.511 | |
Communal facility density | Communal facilities count per square kilometer within TAZ | 2.737 | 0 | 28.059 | 4.025 | |
Shopping use density | Malls, supermarkets count per square kilometer within TAZ | 110.822 | 0 | 816.667 | 155.529 | |
Education facility density | Schools, universities, and other tutoring centers count per square kilometer within TAZ | 13.989 | 0 | 229.735 | 26.820 | |
Finance use density | Insurance company, bank, etc. count per square kilometer within TAZ | 5.797 | 0 | 89.024 | 10.314 | |
Sport use density | Stadium, sports field count per square kilometer within TAZ | 5.983 | 0 | 57.339 | 9.276 | |
Service of life density | Moving companies, courier collection points, telecom business halls, etc. count per square kilometer within TAZ | 56.331 | 0 | 355.759 | 79.359 | |
Residential density | Residential buildings count per square kilometer within TAZ | 9.600 | 0 | 58.283 | 13.530 | |
Accommodation service density | Hotels count per square kilometer within TAZ | 11.317 | 0 | 201.889 | 21.983 | |
Government use density | Government agencies count per square kilometer within TAZ | 6.798 | 0 | 90.353 | 11.731 | |
Medical Institutions density | Hospitals, pharmacies count per square kilometer within TAZ | 9.065 | 0 | 70.748 | 13.633 | |
Distance to transit/ Destination accessibility | Metro/bus/taxi stops density | Bus, metro, and taxi stations count per square kilometer within TAZ | 17.517 | 0 | 108.807 | 22.976 |
αq | βq | γq | δq | εq | ζq | ηq | |
---|---|---|---|---|---|---|---|
CO | 0.00045 | −0.10208 | 6.87693 | 10.38385 | 0.00162 | −0.43756 | 30.33733 |
NOx | −0.00031 | 0.10306 | 0.23906 | −0.33928 | 0.03454 | 1.98601 | 1.26376 |
CH4 | 0.00000 | 0.00000 | 2.87000 | 0.00000 | 0.00000 | 0.00000 | 1000.00000 |
CO2 | 0.34656 | −18.30053 | 1513.54426 | 0.00000 | 0.00080 | 0.09133 | 3.51264 |
Feature | Weekday | Weekend | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cluster 1 | Ranking | Cluster 2 | Ranking | Cluster 3 | Ranking | Cluster 4 | Ranking | Cluster 1 | Ranking | Cluster 2 | Ranking | Cluster 3 | Ranking | Cluster 4 | Ranking | |
Intersection density | 0.027 | 13 | 0.079 | 4 | 0.065 | 5 | 0.064 | 6 | 0.028 | 8 | 0.003 | 8 | 0.041 | 9 | 0.085 | 6 |
Road network density | 0.044 | 6 | 0.130 | 3 | 0.087 | 4 | 0.230 | 1 | 0.091 | 4 | 0.078 | 4 | 0.087 | 4 | 0.139 | 1 |
Mixed degree of urban functions | 0.067 | 5 | 0.029 | 8 | 0.034 | 12 | 0.072 | 4 | 0.042 | 6 | 0 | 9 | 0.018 | 16 | 0.078 | 7 |
Restaurant density | 0.040 | 10 | 0.076 | 5 | 0.043 | 11 | 0.028 | 12 | 0.006 | 16 | 0.102 | 3 | 0.069 | 5 | 0.049 | 9 |
Scenic area density | 0.027 | 12 | 0.007 | 15 | 0.024 | 15 | 0.064 | 5 | 0.010 | 14 | 0 | 9 | 0.028 | 14 | 0.098 | 3 |
Communal facility density | 0.041 | 9 | 0.013 | 12 | 0.048 | 9 | 0.041 | 9 | 0.021 | 10 | 0 | 9 | 0.042 | 8 | 0.047 | 10 |
Shopping use density | 0.031 | 11 | 0.026 | 9 | 0.056 | 7 | 0.017 | 16 | 0.020 | 11 | 0 | 9 | 0.130 | 3 | 0.030 | 12 |
Metro/bus/taxi stops density | 0.244 | 1 | 0.252 | 1 | 0.137 | 2 | 0.027 | 13 | 0.379 | 1 | 0.350 | 2 | 0.192 | 1 | 0.095 | 4 |
Education facility density | 0.042 | 8 | 0.011 | 13 | 0.169 | 1 | 0.025 | 14 | 0.025 | 9 | 0 | 9 | 0.042 | 7 | 0.010 | 16 |
Finance use density | 0.102 | 3 | 0.005 | 16 | 0.062 | 6 | 0.024 | 15 | 0.146 | 2 | 0 | 9 | 0.039 | 11 | 0.010 | 15 |
Sport use density | 0.042 | 7 | 0.022 | 10 | 0.051 | 8 | 0.033 | 11 | 0.028 | 7 | 0 | 9 | 0.047 | 6 | 0.027 | 13 |
Service of life density | 0.020 | 15 | 0.018 | 11 | 0.028 | 14 | 0.039 | 10 | 0.013 | 13 | 0.004 | 7 | 0.036 | 12 | 0.124 | 2 |
Residential density | 0.159 | 2 | 0.231 | 2 | 0.103 | 3 | 0.126 | 2 | 0.122 | 3 | 0.041 | 1 | 0.140 | 2 | 0.019 | 14 |
Accommodation service density | 0.072 | 4 | 0.062 | 6 | 0.031 | 13 | 0.063 | 7 | 0.046 | 5 | 0.048 | 5 | 0.030 | 13 | 0.090 | 5 |
Government use density | 0.018 | 16 | 0.032 | 7 | 0.015 | 16 | 0.094 | 3 | 0.008 | 15 | 0.005 | 6 | 0.020 | 15 | 0.055 | 8 |
Medical Institutions density | 0.024 | 14 | 0.007 | 14 | 0.044 | 10 | 0.055 | 8 | 0.016 | 12 | 0 | 9 | 0.040 | 10 | 0.043 | 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, C.; Ma, N.; Mao, X.; Duan, Y.; Zhao, J.; Ding, S.; Sun, L. Estimation of Greenhouse Gas Emissions of Taxis and the Nonlinear Influence of Built Environment Considering Spatiotemporal Heterogeneity. Sustainability 2024, 16, 7040. https://doi.org/10.3390/su16167040
Yuan C, Ma N, Mao X, Duan Y, Zhao J, Ding S, Sun L. Estimation of Greenhouse Gas Emissions of Taxis and the Nonlinear Influence of Built Environment Considering Spatiotemporal Heterogeneity. Sustainability. 2024; 16(16):7040. https://doi.org/10.3390/su16167040
Chicago/Turabian StyleYuan, Changwei, Ningyuan Ma, Xinhua Mao, Yaxin Duan, Jiannan Zhao, Shengxuan Ding, and Lu Sun. 2024. "Estimation of Greenhouse Gas Emissions of Taxis and the Nonlinear Influence of Built Environment Considering Spatiotemporal Heterogeneity" Sustainability 16, no. 16: 7040. https://doi.org/10.3390/su16167040