The Effects of Land Use and Landform Transformation on the Vertical Distribution of Soil Nitrogen in Small Catchments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Sampling
2.3. Laboratory Analysis
2.4. Statistical Analysis
3. Results
3.1. Vertical Distribution Patterns of Soil N under Different Land Use Types
3.2. Soil N Variation among Different Land Use Types in the Same Soil Layer
3.3. Soil N Variation between Treated and Untreated Catchments
3.4. Vertical Distribution of Soil Moisture and Its Relationship with Soil N
4. Discussion
4.1. Effects of Land Use on Vertical Distribution of Soil N
4.2. Effects of Landform Transformation on Accumulation of Soil N
4.3. The Implications of Land Consolidation on Sustainable Agricultural N Management
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nilsson, P. The role of land use consolidation in improving crop yields among farm households in Rwanda. J. Dev. Stud. 2018, 55, 1726–1740. [Google Scholar] [CrossRef]
- Asiama, K.Q.; Voss, W.; Bennett, R.; Rubanje, I. Lan consolidation activities in Sub-Saharan Africa towards the agenda 2030: A tale of three countries. Land Use Policy 2021, 101, 105140. [Google Scholar] [CrossRef]
- Zeng, S.; Zhu, F.; Chen, F.; Yu, M.; Zhang, S.; Yang, Y. Assessing the impacts of land consolidation on agricultural technical efficiency of producers: A survey from Jiangsu Province, China. Sustainability 2018, 10, 2490. [Google Scholar] [CrossRef]
- Yu, Q.; Zeng, Q.; Yu, G. The influence of land consolidation on biomass and ecologiacl environment. Res. J. App. Sci. Eng. Technol. 2014, 7, 3656–3662. [Google Scholar] [CrossRef]
- Shah, Z.; Shah, S.H.; Peoples, M.B.; Schwenke, G.D.; Herridge, D.F. Crop residue and fertiliser N effects on nitrogen fixation and yields of legume–cereal rotations and soil organic fertility. Field Crop Res. 2003, 83, 1–11. [Google Scholar] [CrossRef]
- Dong, J.; Hengsdijk, H.; Dai, T.B.; Boer, W.D.; Qi, J.; Cao, W.X. Long-Term Effects of Manure and Inorganic Fertilizers on Yield and Soil Fertility for a Winter Wheat-Maize System in Jiangsu, China. Pedosphere 2006, 16, 25–32. [Google Scholar]
- Ding, F.; Hu, Y.-L.; Li, L.-J.; Li, A.; Shi, S.; Lian, P.-Y.; Zeng, D.-H. Changes in soil organic carbon and total nitrogen stocks after conversion of meadow to cropland in Northeast China. Plant Soil 2013, 373, 659–672. [Google Scholar]
- Li, D.; Niu, S.; Luo, Y. Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation: A meta-analysis. New Phytol. 2012, 195, 172–181. [Google Scholar]
- Batjes, N.H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 1996, 47, 151–163. [Google Scholar]
- Jobbágy, E.G.; Jackson, R.B. The Distribution of Soil Nutrients with Depth: Global Patterns and the Imprint of Plants. Biogeochemistry 2001, 53, 51–77. [Google Scholar]
- Tian, L.; Zhao, L.; Wu, X.; Fang, H.; Zhao, Y.; Yue, G.; Liu, G.; Chen, H. Vertical patterns and controls of soil nutrients in alpine grassland: Implications for nutrient uptake. Sci. Total Environ. 2017, 607–608, 855–864. [Google Scholar]
- Zhu, H.; Wu, J.; Guo, S.; Huang, D.; Zhu, Q.; Ge, T.; Lei, T. Land use and topographic position control soil organic C and N accumulation in eroded hilly watershed of the Loess Plateau. Catena 2014, 120, 64–72. [Google Scholar]
- Trudgill, S.T. Soil and Vegetation Systems; Oxford Universtiy Press: New York, NY, USA, 1988. [Google Scholar]
- Fu, X.; Shao, M.; Wei, X.; Horton, R. Soil organic carbon and total nitrogen as affected by vegetation types in Northern Loess Plateau of China. Geoderma 2010, 155, 31–35. [Google Scholar]
- Debela, N.; Gebrekidan, H. Effect of land use changes and soil depth on soil organic matter, total nitrogen and available phosphorus contents of soils in Senbat watershed, western Ethiopia. ARPN J. Agri. Biol. Sci. 2013, 8, 206–212. [Google Scholar]
- Mekonnen, K.; Buresh, R.J.; Coe, R.; Kipleting, K.M. Root length and nitrate under Sesbania sesban: Vertical and horizontal distribution and variability. Agroforest. Syst. 1998, 42, 265–282. [Google Scholar]
- Carter, M.R.; Angers, D.A.; Gregorich, E.G.; Bolinder, M.A. Organic carbon and nitrogen stocks and storage profiles in cool, humid soils of eastern Canada. Can. J. Soil Sci. 1997, 77, 205–210. [Google Scholar]
- Chai, H.; Yu, G.; He, N.; Wen, D.; Li, J.; Fang, J. Vertical distribution of soil carbon, nitrogen, and phosphorus in typical Chinese terrestrial ecosystems. Chin. Geogr. Sci. 2015, 25, 549–560. [Google Scholar]
- Jin, Z.; Zhu, Y.; Li, X.; Dong, Y.; An, Z. Soil N retention and nitrate leaching in three types of dunes in the Mu Us desert of China. Sci. Rep. 2015, 5, 207–216. [Google Scholar]
- Omonode, R.A.; Vyn, T.J. Vertical distribution of soil organic carbon and nitrogen under warm-season native grasses relative to croplands in west-central Indiana, USA. Agric. Ecosyst. Environ. 2006, 117, 159–170. [Google Scholar]
- Yimer, F.; Ledin, S.; Abdelkadir, A. Soil organic carbon and total nitrogen stocks as affected by topographic aspect and vegetation in the Bale Mountains, Ethiopia. Geoderma 2006, 135, 335–344. [Google Scholar]
- Zhou, X.; Dong, H.; Lan, Z.; Bacon, G.; Hao, Y.; Chen, C. Vertical distribution of soil extractable organic C and N contents and total C and N stocks in 78-year-old tree plantations in subtropical Australia. Environ. Sci. Pollut. Res. 2017, 24, 22312–22320. [Google Scholar]
- Wei, X.R.; Shao, M.G.; Fu, X.L.; Horton, R.; Li, Y.; Zhang, X.C. Distribution of soil organic C, N and P in three adjacent land use patterns in the northern Loess Plateau, China. Biogeochemistry 2009, 96, 149–162. [Google Scholar]
- Burt, T.P.; Butcher, D.P. Topographic controls of soil moisture distributions. Eur. J. Soil Sci. 2010, 36, 469–486. [Google Scholar]
- Perakis, S.S.; Tepley, A.J.; Compton, J.E. Disturbance and Topography Shape Nitrogen Availability and δ15N over Long-Term Forest Succession. Ecosystems 2015, 18, 573–588. [Google Scholar]
- Zhu, Q.; Schmidt, J.P.; Lin, H.S.; Sripada, R.P. Hydropedological processes and their implications for nitrogen availability to corn. Geoderma 2009, 154, 111–122. [Google Scholar]
- Kosmas, C.; Danalatos, N.; Cammeraat, L.H.; Chabart, M.; Diamantopoulos, J.; Farand, R.; Gutierrez, L.; Jacob, A.; Marques, H.; Martinez-Fernandez, J.; et al. The effect of land use on runoff and soil erosion rates under Mediterranean conditions. Catena 1997, 29, 45–59. [Google Scholar]
- Xue, Z.; Cheng, M.; An, S. Soil nitrogen distributions for different land uses and landscape positions in a small watershed on Loess Plateau, China. Ecol. Eng. 2013, 60, 204–213. [Google Scholar]
- Elwell, H.A.; Stocking, M.A. Vegetal cover to estimate soil erosion hazard in Rhodesia. Geoderma 1976, 15, 61–70. [Google Scholar]
- Francis, C.F.; Thornes, J.B. Runoff hydrographs from three Mediterranean vegetation cover types. Veg. Erosion: Process Environ. 1990, 363–384. [Google Scholar]
- Chen, Y.; Wang, K.; Lin, Y.; Shi, W.; Song, Y.; He, X. Balancing green and grain trade. Nat. Geosci. 2015, 8, 739–741. [Google Scholar]
- Liu, Q.; Wang, Y.; Zhang, J.; Chen, Y. Filling gullies to create farmland on the loess plateau. Environ. Sci. Technol. 2013, 47, 7589–7590. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.B.; Jin, Z. Gully land consolidation project in Yan’an is inheritance and development of wrap land dam project on the Loess Plateau. J. Earth Environ. 2015, 6, 251–264. (In Chinese) [Google Scholar]
- Li, X.; Jin, Z.; Zhang, X.B.; Zhou, W.J. Analysis of ecosystem management of the Loess Plateau during the past 60 years and suggestions for the future development. J. Earth Environ. 2015, 6, 248–254. (In Chinese) [Google Scholar]
- Liu, Y.; Guo, Y.; Li, Y.; Li, Y. GIS-based effect assessment of soil erosion before and after gully land consolidation: A case study of Wangjiagou project region, Loess Plateau. Chin. Geogr. Sci. 2015, 25, 137–146. [Google Scholar]
- Wu, G.; Fu, S.H.; Zhou, G.Y.; Yin, B. Effect of the gully land consolidation project on soil erosion and sediment yield on the Loess Plateau, China. Land Degrad. Dev. 2023, 34, 1464–1476. [Google Scholar]
- WRB, I.W.G. World Reference Base for Soil Resources, 2nd ed.; FAO: Rome, Italy, 2006; p. 127. [Google Scholar]
- Zhao, Y.; Wang, Y.; Wang, L.; Zhang, X.; Yu, Y.; Jin, Z.; Lin, H.; Chen, Y.; Zhou, W.; An, Z. Exploring the role of land restoration in the spatial patterns of deep soil water at watershed scales. Catena 2019, 172, 387–396. [Google Scholar] [CrossRef]
- Wang, Y.; Shao, M.a.; Liu, Z. Large-scale spatial variability of dried soil layers and related factors across the entire Loess Plateau of China. Geoderma 2010, 159, 99–108. [Google Scholar]
- Keeney, D.R.; Nelson, D.W. Nitrogen-Inorganic Forms, in Methods of Soil Analysis, 2nd ed.; ASA and SSSA: Madison, WI, USA, 1982; pp. 643–698. [Google Scholar]
- Bremner, J.M.; Tabatabai, M.A. Use of an ammonia electrode for determination of ammonium in Kjeldahl analysis of soils. Commun. Soil Sci. Plant Anal. 1972, 3, 159–165. [Google Scholar]
- Neilen, A.D.; Chen, C.R.; Parker, B.M.; Faggotter, S.J.; Burford, M.A. Differences in nitrate and phosphorus export between wooded and grassed riparian zones from farmland to receiving waterways under varying rainfall conditions. Sci. Total Environ. 2017, 598, 188–197. [Google Scholar]
- Yu, Z.; Li, C.; Wang, M. National-Scale Meta-Analysis of Soil Carbon and Nitrogen Accumulation Potential in China’s Grain for Green Program. Eur. Soil Sci. 2020, 53, 892–901. [Google Scholar]
- Chang, R.; Jin, T.; Lü, Y.; Liu, G.; Fu, B. Soil Carbon and Nitrogen Changes following Afforestation of Marginal Cropland across a Precipitation Gradient in Loess Plateau of China. PLoS ONE 2014, 9, e85426. [Google Scholar]
- Liu, W.; Chen, S.; Qin, X.; Baumann, F.; Scholten, T.; Zhou, Z.; Sun, W.; Zhang, T.; Ren, J.; Qin, D. Storage, patterns, and control of soil organic carbon and nitrogen in the northeastern margin of the Qinghai-Tibetan Plateau. Environ. Res. Lett. 2012, 7, 35401–35412. [Google Scholar]
- Owen, A.G.; Jones, D.L. Competition for amino acids between wheat roots and rhizosphere microorganisms and the role of amino acids in plant N acquisition. Soil Biol. Biochem. 2001, 33, 651–657. [Google Scholar]
- Gherardi, L.A.; Yahdjian, L. Preference for different inorganic nitrogen forms among plant functional types and species of the Patagonian steppe. Oecologia 2013, 173, 1075–1081. [Google Scholar] [PubMed]
- Makarov, M.I.; Malysheva, T.I.; Menyailo, O.V. Isotopic Composition of Nitrogen and Transformation of Nitrogen Compounds in Meadow-Alpine Soils. Eur. Soil Sci. 2019, 52, 1028–1037. [Google Scholar]
- Francaviglia, R.; Benedetti, A.; Doro, L.; Madrau, S.; Ledda, L. Influence of land use on soil quality and stratification ratios under agro-silvo-pastoral Mediterranean management systems. Agric. Ecosys. Environ. 2014, 183, 86–92. [Google Scholar]
- Mayes, M.T.; Marinspiotta, E.; Ozdogan, M.; Erdogan, M.A. A landscape-scale study of land use and parent material effects on soil organic carbon and total nitrogen in the Konya Basin, Turkey. In Proceedings of the American Geophysical Union, Fall Meeting 2011, San Francisco, CA, USA, 5–9 December 2011. [Google Scholar]
- Soon, Y.K.; Malhi, S.S. Soil nitrogen dynamics as affected by landscape position and nitrogen fertilizer. Can. J. Soil Sci. 2005, 85, 579–587. [Google Scholar]
- Tan, X.; Shao, D.; Liu, H.; Yang, F.; Xiao, C.; Yang, H. Effects of alternate wetting and drying irrigation on percolation and nitrogen leaching in paddy fields. Paddy Water Environ. 2013, 11, 381–395. [Google Scholar]
- Yu, Y.; Jin, Z.; Lin, H.; Wang, Y.; Zhao, Y.; Chu, G.; Zhang, J.; Song, Y.; Zheng, H. Spatial variation and soil nitrogen potential hotspots in a mixed land cover catchment on the Chinese Loess Plateau. J. Mt. Sci. 2019, 16, 1353–1366. [Google Scholar] [CrossRef]
- Yu, Y.; Jin, Z.; Chu, G.; Zhang, J.; Wang, Y.; Zhao, Y. Effects of valley reshaping and damming on surface and groundwater nitrate on the Chinese Loess Plateau. J. Hydrol. 2020, 584, 124702. [Google Scholar]
- Sun, P. Simulation of the Effects of Gully Land Consolidation on Precipitation Transformation; The Northwest A & F University: Yangling, China, 2017. (In Chinese) [Google Scholar]
- Sun, P.C.; Gao, J.E.; Han, S.Q.; Yin, Y.; Zhou, M.F.; Han, J.Q. Simulation study on the effects of typical gully land consolidation on runoff-sediment-nitrogen emissions in the loess hilly-gully region. J. Agro-Environ. Sci. 2017, 36, 1177–1185. (In Chinese) [Google Scholar]
- Lou, X.Y.; Gao, J.E.; Han, S.Q.; Guo, Z.H.; Yin, Y. Influence of Land Consolidation Engineering of Gully Channel on Watershed Runoff Yield and Concentration in Loess Hilly and Gully Region. Water Resour. Power. 2016, 34, 23–27. (In Chinese) [Google Scholar]
- Vernimmen, R.R.E.; Verhoef, H.A.; Verstraten, J.M.; Bruijnzeel, L.A.; Klomp, N.S.; Zoomer, H.R.; Wartenbergh, P.E. Nitrogen mineralization, nitrification and denitrification potential in contrasting lowland rain forest types in Central Kalimantan, Indonesia. Soil Biol. Biochem. 2007, 39, 2992–3003. [Google Scholar] [CrossRef]
- Rui, Z.; Wienhold, B.J. The effect of soil moisture on mineral nitrogen, soil electrical conductivity, and pH. Nutr. Cycl. Agroecosys. 2002, 63, 251–254. [Google Scholar]
- Jackson-Blake, L.; Helliwell, R.C.; Britton, A.J.; Gibbs, S.; Coull, M.C.; Dawson, L. Controls on soil solution nitrogen along an altitudinal gradient in the Scottish uplands. Sci. Total Environ. 2012, 431, 100–108. [Google Scholar] [CrossRef]
- Janus, J.; Łopacka, M.; John, E.J.G. Land consolidation in mountain areas. Case study from southern Poland. Geod. Cartog. 2017, 66, 241–251. [Google Scholar] [CrossRef]
- Janečková Molnárová, K.; Sklenička, P.; Bohnet, I.C.; Lowther-Harris, F.; van den Brink, A.; Movahhed Moghaddam, S.; Fanta, V.; Zástěra, V.; Azadi, H. Impacts of land consolidation on land degradation: A systematic review. J. Environ. Manag. 2023, 329, 117026. [Google Scholar] [CrossRef]
- Ramírez del Palacio, Ó.; Hernández-Navarro, S.; Sánchez-Sastre, L.F.; Fernández-Coppel, I.A.; Pando-Fernández, V. Assessment of Land Consolidation Processes from an Environmental Approach: Considerations Related to the Type of Intervention and the Structure of Farms. Agronomy 2022, 12, 1424. [Google Scholar] [CrossRef]
- Huddell, A.M.; Galford, G.L.; Tully, K.L.; Crowley, C.; Palm, C.A.; Neill, C.; Hickman, J.E.; Menge, D.N.L. Meta-analysis on the potential for increasing nitrogen losses from intensifying tropical agriculture. Glob. Chang. Biol. 2020, 26, 1668–1680. [Google Scholar] [CrossRef]
- Sishodia, R.P.; Ray, R.L.; Singh, S.K. Applications of Remote Sensing in Precision Agriculture: A Review. Remote Sens. 2020, 12, 3136. [Google Scholar] [CrossRef]
- Toriyama, K.; Sadaki, R.; Shibata, Y.; Sugimoto, M.; Chosa, T.; Omine, M.; Saito, J. Development of a site-specific nitrogen management system for paddy rice. Japan Agric. Res. Quat. 2003, 37, 213–218. [Google Scholar]
- Toda, M.; Walder, F.; van der Heijden, M.G.A. Organic management and soil health promote nutrient use efficiency. J. Sustain. Agric. Environ. 2023, 2, 215–224. [Google Scholar]
- Bargaz, A.; Lyamlouli, K.; Chtouki, M.; Zeroual, Y.; Dhiba, D. Soil microbial resources for improving fertilizers efficiency in an integrated plant nutrient management system. Front. Microbiol. 2018, 9, 1606. [Google Scholar]
Catchment | Land Use | Number of Sample Sites | Catchment | Land Use | Number of Sample Sites |
---|---|---|---|---|---|
Treated (S1) | Forestland (67.9%) | 47 | Untreated (S2) | Forestland (33.2%) | 24 |
Shrubland (5.6%) | 3 | Shrubland (34.0%) | 4 | ||
Grassland (15.0%) | 13 | Grassland (30.2%) | 32 | ||
Cropland (8.4%) | 17 | Wasteland (1.2%) | 12 | ||
Others (3.1%) | - | Others (1.4%) | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Wang, S.; Qiu, J. The Effects of Land Use and Landform Transformation on the Vertical Distribution of Soil Nitrogen in Small Catchments. Sustainability 2024, 16, 7590. https://doi.org/10.3390/su16177590
Yu Y, Wang S, Qiu J. The Effects of Land Use and Landform Transformation on the Vertical Distribution of Soil Nitrogen in Small Catchments. Sustainability. 2024; 16(17):7590. https://doi.org/10.3390/su16177590
Chicago/Turabian StyleYu, Yunlong, Shanshan Wang, and Junping Qiu. 2024. "The Effects of Land Use and Landform Transformation on the Vertical Distribution of Soil Nitrogen in Small Catchments" Sustainability 16, no. 17: 7590. https://doi.org/10.3390/su16177590