Will Green Credit Affect the Cash Flow of Heavily Polluting Enterprises?
Abstract
:1. Introduction
2. Literature Review
3. Theoretical Analysis and Research Hypotheses
3.1. The Impact of Green Credit Policies on the Cash Flow of Heavily Polluting Enterprises
3.2. The Heterogeneity of the Impact of Green Credit Policies on the Cash Flow of Heavily Polluting Enterprises
3.2.1. State-Owned and Non-State-Owned Enterprises
3.2.2. High- and Low-Emission Areas
4. Research Design
4.1. Samples and Data
4.2. Difference-in-Differences Model
4.3. Variables
5. Empirical Results
5.1. Parallel Trends Analysis
5.2. The Temporal Trend of the Enterprises’ Cash Flow
5.3. Descriptive Statistics
5.4. Regression Analysis of the Impact of the GCGs on Enterprises’ Cash Flow
5.5. The Dynamic Effect of the GCGs on the Cash Flow of Enterprises
6. Mechanism Analysis
7. Robustness Test
7.1. Placebo Test
7.2. Controlling for Macroeconomic Factors
7.3. PSM-DID
8. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- He, F.; Duan, L.; Cao, Y.; Wen, S. Green credit policy and corporate climate risk exposure. Energy Econ. 2024, 133, 107509. [Google Scholar] [CrossRef]
- Yang, Z.; Xiong, Z.; Wang, L.; Xue, W. Can PM2.5 concentration reduce by China’s environmental protection tax? Sci. Total Environ. 2024, 937, 173499. [Google Scholar] [CrossRef] [PubMed]
- Pankratz, N.; Bauer, R.; Derwall, J. Climate change, firm performance, and investor surprises. Manag. Sci. 2023, 69, 7352–7398. [Google Scholar] [CrossRef]
- Qin, M.; Su, A.; Li, R.; Su, C. Speculation, climate or pandemic: Who drives the Chinese herbal medicine bubbles? China Econ. Rev. 2024, 87, 102213. [Google Scholar] [CrossRef]
- Wang, K.; Wen, C.; Xu, B.; Li, X. Receiver or transmitter? Unlocking the role of green technology innovation in sustainable development, energy, and carbon markets. Technol. Soc. 2024, 79, 102703. [Google Scholar] [CrossRef]
- Nguyen, J.H.; Phan, H.V. Carbon risk and corporate capital structure. J. Corp. Financ. 2020, 64, 101713. [Google Scholar] [CrossRef]
- Li, X.; Wang, R.; Shen, Z.; Song, M. Green credit and corporate energy efficiency: Enterprise pollution transfer or green transformation. Energy 2023, 285, 129345. [Google Scholar] [CrossRef]
- Zhang, R.; Ying, W.; Wu, K.; Sun, H. The impact of innovative human capital agglomeration on urban green development efficiency: Based on panel data of 278 Cities in China. Sustain. Cities Soc. 2024, 111, 105566. [Google Scholar] [CrossRef]
- Fan, H.; Peng, Y.; Wang, H.; Xu, Z. Greening through finance? J. Dev. Econ. 2021, 152, 102683. [Google Scholar] [CrossRef]
- Zhang, K.; Li, Y.; Qi, Y.; Shao, S. Can green credit policy improve environmental quality? Evidence from China. J. Environ. Manag. 2021, 298, 113445. [Google Scholar] [CrossRef]
- Hu, G.; Wang, X.; Wang, Y. Can the green credit policy stimulate green innovation in heavily polluting enterprises? Evidence from a quasi-natural experiment in China. Energy Econ. 2021, 98, 105134. [Google Scholar] [CrossRef]
- Huang, J.; Li, Y. Green innovation and performance: The view of organizational capability and social reciprocity. J. Bus. Ethics 2017, 145, 309–324. [Google Scholar] [CrossRef]
- Fazzari, S.M.; Hubbard, R.G.; Petersen, B.C. Financing constraints and corporate investment. Brook. Pap. Econ. Act. 1988, 1, 141–206. [Google Scholar] [CrossRef]
- Chien, C.; Chen, S.; Chang, M. Financial constraints on credit ratings and cash-flow sensitivity. Int. Rev. Financ. Anal. 2023, 88, 102630. [Google Scholar] [CrossRef]
- Liu, H.; Liu, Z.; Zhang, C.; Li, T. Transformational insurance and green credit incentive policies as financial mechanisms for green energy transitions and low-carbon economic development. Energy Econ. 2023, 126, 107016. [Google Scholar] [CrossRef]
- Keynes, J.M. The general theory of employment. Q. J. Econ. 1937, 51, 209–223. [Google Scholar] [CrossRef]
- Baum, C.F.; Caglayan, M.; Stephan, A.; Talavera, O. Uncertainty determinants of corporate liquidity. Econ. Model. 2008, 25, 833–849. [Google Scholar] [CrossRef]
- Yuan, N.; Gao, Y.; Chan, K.; Rhee, S.G. Does green credit policy impact corporate cash holdings? Pac.-Basin Financ. J. 2022, 75, 101850. [Google Scholar] [CrossRef]
- Dickinson, V. Cash flow patterns as a proxy for firm life cycle. Account. Rev. 2011, 86, 1969–1994. [Google Scholar] [CrossRef]
- Liu, X.; Wang, E.; Cai, D. Green credit policy, property rights and debt financing: Quasi-natural experimental evidence from China. Financ. Res. Lett. 2019, 29, 129–135. [Google Scholar] [CrossRef]
- Huang, Z.; Gao, N.; Jia, M. Green credit and its obstacles: Evidence from China’s green credit guidelines. J. Corp. Financ. 2023, 82, 102441. [Google Scholar] [CrossRef]
- Harris, C.; Roark, S. Cash flow risk and capital structure decisions. Financ. Res. Lett. 2019, 29, 393–397. [Google Scholar] [CrossRef]
- Huang, R.; Ritter, J.R. Corporate cash shortfalls and financing decisions. Rev. Financ. Stud. 2021, 34, 1789–1833. [Google Scholar] [CrossRef]
- Lai, J.; Liu, X.; Yuan, L. Can green credit policy increase corporate pollution abatement efforts? Evidence from China. Int. Rev. Econ. Financ. 2024, 93, 797–813. [Google Scholar] [CrossRef]
- Ehlers, T.; Packer, F.; De Greiff, K. The pricing of carbon risk in syndicated loans: Which risks are priced and why? J. Bank. Financ. 2022, 136, 106180. [Google Scholar] [CrossRef]
- Degryse, H.; Goncharenko, R.; Theunisz, C.; Vadasz, T. When green meets green. J. Corp. Financ. 2023, 78, 102355. [Google Scholar] [CrossRef]
- Chava, S. Environmental externalities and cost of capital. Manag. Sci. 2014, 60, 2223–2247. [Google Scholar] [CrossRef]
- Qiu, Y.; Shen, T. Organized labor and loan pricing: A regression discontinuity design analysis. J. Corp. Financ. 2017, 43, 407–428. [Google Scholar] [CrossRef]
- Lv, C.; Fan, J.; Lee, C. Can green credit policies improve corporate green production efficiency? J. Clean. Prod. 2023, 397, 136573. [Google Scholar] [CrossRef]
- Song, M.; Xie, Q.; Shen, Z. Impact of green credit on high-efficiency utilization of energy in China considering environmental constraints. Energy Policy 2021, 153, 112267. [Google Scholar] [CrossRef]
- Cui, X.; Wang, C.; Liao, J.; Fang, Z.; Cheng, F. Economic Policy Uncertainty Exposure and Corporate Innovation Investment: Evidence from China. Pac.-Basin Financ. 2021, 67, 101533. [Google Scholar] [CrossRef]
- Feng, Y.; Pan, Y.; Sun, C.; Niu, J. Assessing the effect of green credit on risk-taking of commercial banks in China: Further analysis on the two-way Granger causality. J. Clean. Prod. 2024, 437, 140698. [Google Scholar] [CrossRef]
- Li, B.; Tang, K. Green credit policy and bankruptcy risk of heavily polluting enterprises. Financ. Res. Lett. 2024, 67, 105897. [Google Scholar] [CrossRef]
- Chai, S.; Zhang, K.; Wei, W.; Ma, W.; Abedin, M.Z. The Impact of Green Credit Policy on Enterprises’ Financing Behavior: Evidence from Chinese Heavily-polluting Listed Companies. J. Clean. Prod. 2022, 363, 132458. [Google Scholar] [CrossRef]
- Qiu, Q.; Yu, J. Green credit policy and default risk of the heavy polluting corporations. J. Clean. Prod. 2014, 455, 142291. [Google Scholar] [CrossRef]
- Wang, M. Effects of the Green Finance Policy on the Green Innovation Efficiency of the Manufacturing Industry: A Difference-in-difference Model. Technol. Forecast. Soc. Change 2023, 189, 122333. [Google Scholar] [CrossRef]
- Chen, H.; Deng, J.; Lu, M.; Zhang, P.; Zhang, Q. Government environmental attention, credit supply and firms’ green investment. Energy Econ. 2024, 134, 107547. [Google Scholar] [CrossRef]
- Li, W.; Cui, G.; Zheng, M. Does green credit policy affect corporate debt financing? Evidence from China. Environ. Sci. Pollut. Res. 2022, 29, 5162–5171. [Google Scholar] [CrossRef]
- Lee, C.; Wang, C.; Liu, F. Does green credit promote the performance of new energy companies and how? The role of R&D investment and financial development. Renew. Energy 2024, 235, 121301. [Google Scholar]
- Hu, Y.; Jiang, H.; Zhong, Z. Impact of green credit on industrial structure in China: Theoretical mechanism and empirical analysis. Environ. Sci. Pollut. Res. 2020, 27, 10506–10519. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Luo, Y. Green credit and regional industrial structure upgrading: Evidence from China. Financ. Res. Lett. 2024, 65, 105472. [Google Scholar] [CrossRef]
- Xu, B.; Lin, B. Green credit and green technology innovation: Impact mechanism and nonlinear effect test. Environ. Impact Assess. Rev. 2025, 110, 107652. [Google Scholar] [CrossRef]
- Gao, W.; Liu, Z. Green credit and corporate ESG performance: Evidence from China. Financ. Res. Lett. 2023, 55, 103940. [Google Scholar] [CrossRef]
- Zeng, S.; Liu, Y.; Liu, C.; Nan, X. A review of renewable energy investment in the BRICS countries: History, models, problems and solutions. Renew. Sustain. Energy Rev. 2017, 74, 860–872. [Google Scholar] [CrossRef]
- Li, S.; Liu, Q.; Lu, L.; Zheng, K. Green Policy and Corporate Social Responsibility: Empirical Analysis of the Green Credit Guidelines in China. J. Asian Econ. 2022, 82, 101531. [Google Scholar] [CrossRef]
- Aghion, P.; Askenazy, P.; Berman, N.; Cette, G.; Eymard, L. Credit constraints and the cyclicality of R&D investment: Evidence from France. J. Eur. Econ. Assoc. 2012, 10, 1001–1024. [Google Scholar]
- Andrén, N.; Jankensgård, H. Wall of cash: The investment-cash flow sensitivity when capital becomes abundant. J. Bank. Financ. 2015, 50, 204–213. [Google Scholar] [CrossRef]
- Attig, N.; Cleary, S.; El Ghoul, S.; Guedhami, O. Institutional investment horizon and investment–cash flow sensitivity. J. Bank. Financ. 2012, 36, 1164–1180. [Google Scholar] [CrossRef]
- Bond, S.; Elston, J.A.; Mairesse, J.; Mulkay, B. Financial factors and investment in Belgium, France, Germany, and the United Kingdom: A comparison using company panel data. Rev. Econ. Stat. 2003, 85, 153–165. [Google Scholar] [CrossRef]
- Mulier, K.; Schoors, K.; Merlevede, B. Investment-cash flow sensitivity and financial constraints: Evidence from unquoted European SMEs. J. Bank. Financ. 2016, 73, 182–197. [Google Scholar] [CrossRef]
- Xing, C.; Zhang, Y.; Tripe, D. Green credit policy and corporate access to bank loans in China: The role of environmental disclosure and green innovation. Int. Rev. Financ. Anal. 2021, 77, 101838. [Google Scholar] [CrossRef]
- Hojnik, J.; Ruzzier, M. What drives eco-innovation? A review of an emerging literature. Environ. Innov. Soc. Transit. 2016, 19, 31–41. [Google Scholar] [CrossRef]
- Xu, X.K.; Li, J.S. Asymmetric impacts of the policy and development of green credit on the debt financing cost and maturity of different types of enterprises in China. J. Clean. Prod. 2020, 268, 121574. [Google Scholar] [CrossRef]
- Zhang, W.; Luo, Q.; Zhang, Y.; Yu, A. Does green credit policy matter for corporate exploratory innovation? Evidence from Chinese enterprises. Econ. Anal. Policy 2023, 80, 820–834. [Google Scholar] [CrossRef]
- Li, L.; Qiu, L.; Xu, F.; Zheng, X. The impact of green credit on firms’ green investment efficiency: Evidence from China. Pac.-Basin Financ. J. 2023, 79, 101995. [Google Scholar] [CrossRef]
- Shen, C.; Li, S.; Wang, X.; Liao, Z. The effect of environmental policy tools on regional green innovation: Evidence from China. J. Clean. Prod. 2022, 254, 120122. [Google Scholar] [CrossRef]
- Liu, S.; Xu, R.; Chen, X. Does green credit affect the green innovation performance of high-polluting and energy-intensive enterprises? Evidence from a quasi-natural experiment. Environ. Sci. Pollut. Res. 2021, 28, 65265–65277. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Huang, J.; Liu, F. Green credit policy and investment-cash flow sensitivity: Evidence from a quasi-natural experiment. Financ. Res. Lett. 2023, 52, 103502. [Google Scholar] [CrossRef]
- Li, Y.; Chen, R.; Xiang, E. Corporate social responsibility, green financial system guidelines, and cost of debt financing: Evidence from pollution-intensive industries in China. Corp. Soc. Responsib. Environ. Manag. 2022, 29, 593–608. [Google Scholar] [CrossRef]
- Brunnermeier, M.K.; Yogo, M. A note on liquidity risk management. Am. Econ. Rev. 2009, 99, 578–583. [Google Scholar] [CrossRef]
- Colonnello, S.; Curatola, G.; Hoang, N.G. Direct and indirect risk-taking incentives of inside debt. J. Corp. Financ. 2017, 45, 428–466. [Google Scholar] [CrossRef]
- Freeman, R.E. Strategic Management: A Stakeholder Approach; M. Pitman: Boston, MA, USA, 1984. [Google Scholar]
- Garcia, A.S.; Orsato, R.J. Testing the institutional difference hypothesis: A study about environmental, social, governance and financial performance. Bus. Strategy Environ. 2020, 29, 3261–3272. [Google Scholar] [CrossRef]
- Godfrey, P.C.; Merrill, C.B.; Hansen, J.M. The relationship between corporate social responsibility and shareholder value: An empirical test of the risk management hypothesis. Strateg. Manag. J. 2009, 30, 425–445. [Google Scholar] [CrossRef]
- Okhmatovskiy, I.; Shin, D. Changing corporate governance in response to negative media reports. Br. J. Manag. 2019, 30, 169–187. [Google Scholar] [CrossRef]
- Akbari, M.; Nazarian, A.; Foroudi, P.; Seyyed Amiri, N.; Ezatabadipoor, E. How corporate social responsibility contributes to strengthening brand loyalty, hotel positioning and intention to revisit? Curr. Issues Tour. 2021, 24, 1897–1917. [Google Scholar] [CrossRef]
- Ioannis, I.; George, S. The impact of corporate social responsibility on investment recommendations: Analysts’ perceptions and shifting institutional logics. Strateg. Manag. J. 2015, 36, 1053–1081. [Google Scholar]
- Larkin, Y. Brand perception, cash flow stability, and financial policy. J. Financ. Econ. 2013, 110, 232–253. [Google Scholar] [CrossRef]
- Ellen, P.Y.; Bac, V.L. International variations in ESG disclosure–do cross-listed companies care more? Int. Rev. Financ. Anal. 2021, 75, 101731. [Google Scholar]
- Ghanbarpour, T.; Gustafsson, A. How do corporate social responsibility (CSR) and innovativeness increase financial gains? A customer perspective analysis. J. Bus. Res. 2022, 140, 471–481. [Google Scholar] [CrossRef]
- Cheng, X.; Feng, C. Does environmental information disclosure affect corporate cash flow? An analysis by taking media attentions into consideration. J. Environ. Manag. 2023, 342, 118295. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Epetia, M.C.F.; Cheng, Y. “Subsidies” or “taxes”? Corporate credit misallocation induced by the nexus of state-owned enterprises and state-owned banks. J. Asian Econ. 2021, 76, 101346. [Google Scholar] [CrossRef]
- Lu, D.; Thangavelu, S.M.; Qing, H. Biased lending and non-performing loans in China’s banking sector. J. Dev. Stud. 2005, 41, 1071–1091. [Google Scholar] [CrossRef]
- Shailer, G.; Wang, K. Government ownership and the cost of debt for chinese listed corporations. Emerg. Mark. Rev. 2015, 22, 1–17. [Google Scholar] [CrossRef]
- International Monetary Fund (IMF). Resolving China’s Corporate Debt Problem; IMF Working Paper, WP/16/203; International Monetary Fund (IMF): Washington, DC, USA, 2016. [Google Scholar]
- Wen, H.; Lee, C.; Zhou, F. Green credit policy, credit allocation efficiency and upgrade of energy-intensive enterprises. Energy Econ. 2021, 94, 105099. [Google Scholar] [CrossRef]
The Variable Name | Variable Measures | |
---|---|---|
Explained variables | Operating cash flow (CFO) | Net operating cash flow/total assets × 100 |
Investing cash flow (CFI) | Net investing cash flow/total assets × 100 | |
Explanatory variable | DID variable | Treated × after |
Mechanism variable | Financing costs (COST) | Interest expense/liabilities × 100 |
Control variables | Size (SIZE) | The size of the enterprise’s assets (the natural logarithm of total assets). |
Return on assets (ROA) | Net profit/average total assets | |
Degree of profit volatility (STD) | The standard deviation of the return on assets from t-2 to t | |
Age (AGE) | The number of years the enterprise has been established | |
Proportion of tangible assets (TAR) | Total tangible assets/total assets | |
Equity concentration (LARGEST) | The shareholding ratio of the largest shareholder | |
Tobin’s Q(TQ) | Market capitalization/(total assets − net intangible assets − net goodwill). | |
Gearing ratio (LEV) | Total liabilities/total assets | |
Stock yield (RET) | Annual individual stock returns | |
Robustness test variables | Real M2 growth rate (M2R) | Actual M2 increase/Actual M2 at the beginning of the period |
GDP Growth Index (GDPR) | GDP index, which stood at 100 in the same period last year |
Variables | N | Mean | SD | Min | Max |
---|---|---|---|---|---|
CFO | 7410 | 6.01 | 6.79 | −11.78 | 26.41 |
CFI | 7410 | −5.15 | 6.54 | −26.53 | 13.11 |
SIZE | 7410 | 22.61 | 1.32 | 20.08 | 26.22 |
ROA | 7410 | 0.04 | 0.06 | −0.14 | 0.24 |
STD | 7410 | 0.02 | 0.02 | 0.00 | 0.13 |
AGE | 7410 | 18.06 | 5.56 | 7.00 | 32.00 |
TAR | 7410 | 0.95 | 0.05 | 0.70 | 1.00 |
LARGEST | 7410 | 35.24 | 15.01 | 8.45 | 75.05 |
TQ | 7410 | 2.05 | 1.31 | 0.88 | 8.28 |
LEV | 7410 | 0.49 | 0.18 | 0.08 | 0.88 |
RET | 7410 | 0.28 | 0.77 | −0.72 | 3.36 |
GDPR | 7410 | 108.00 | 2.50 | 102.30 | 114.20 |
M2R | 7410 | 0.14 | 0.05 | 0.08 | 0.28 |
COST | 7410 | 2.14 | 1.57 | 0.00 | 6.29 |
Variables | Full Sample | Stated- Owned | Non-State- Owned | High Emissions | Low Emissions |
---|---|---|---|---|---|
DID | −0.79 ** | −0.58 | −1.09 * | −1.43 *** | 0.42 |
(−2.24) | (−1.33) | (−1.77) | (−3.31) | (−0.70) | |
SIZE | −0.56 ** | −0.75 ** | −0.26 | −0.66 ** | −0.49 |
(−2.43) | (−2.54) | (−0.69) | (−2.35) | (−1.20) | |
ROA | 42.75 *** | 45.07 *** | 39.56 *** | 40.88 *** | 46.91 *** |
(−16.52) | (−13.42) | (−9.98) | (−13.30) | (−10.04) | |
STD | 9.49 ** | 9.60 * | 10.07 | 8.15 | 12.26 |
(−2.26) | (−1.68) | (−1.57) | (−1.65) | (−1.51) | |
AGE | 0.49 | 0.60 * | −0.53 | 0.70 ** | −1.90 *** |
(−1.42) | (−1.82) | (−0.85) | (−2.56) | (−3.29) | |
TAR | −1.05 | −2.89 | 1.31 | −1.01 | −1.76 |
(−0.43) | (−0.94) | (−0.35) | (−0.33) | (−0.46) | |
LARGEST | 0.02 | 0.02 | 0.01 | 0.02 | 0.01 |
(−1.17) | (−1.21) | (−0.54) | (−1.42) | (−0.34) | |
TQ | 0.24 ** | 0.03 | 0.56 *** | 0.25 * | 0.23 |
(−2.03) | (−0.19) | (−3.33) | (−1.73) | (−1.18) | |
LEV | −0.87 | −0.18 | −1.57 | −0.69 | −1.28 |
(−0.89) | (−0.14) | (−1.09) | (−0.60) | (−0.70) | |
RET | 0.43 ** | 0.66 *** | −0.01 | 0.67 *** | −0.09 |
(−2.52) | (−3.22) | (−0.03) | (−3.19) | (−0.32) | |
Observations | 7410 | 4875 | 2535 | 4995 | 2415 |
R-squared | 0.16 | 0.15 | 0.18 | 0.16 | 0.18 |
Number of id | 494 | 325 | 169 | 333 | 161 |
Variables | Full Sample | Stated- Owned | Non-State- Owned | High Emissions | Low Emissions |
---|---|---|---|---|---|
DID | 1.23 *** | 2.01 *** | −0.34 | 1.17 ** | 1.50 ** |
(−3.08) | (−4.23) | (−0.51) | (−2.41) | (−2.12) | |
SIZE | −1.61 *** | −1.25 *** | −2.01 *** | −1.63 *** | −1.89 *** |
(−5.88) | (−3.57) | (−4.67) | (−4.93) | (−3.84) | |
ROA | −8.53 *** | −9.64 *** | −5.69 | −6.46 ** | −12.42 *** |
(−3.40) | (−3.05) | (−1.38) | (−2.04) | (−3.34) | |
STD | 27.10 *** | 27.73 *** | 24.37 *** | 28.49 *** | 19.70 * |
(−6.04) | (−5.46) | (−3.04) | (−5.85) | (−1.96) | |
AGE | −0.47 | −0.24 | −2.38 *** | −0.38 | −0.94 * |
(−1.30) | (−0.64) | (−2.64) | (−1.01) | (−1.77) | |
TAR | 8.86 *** | 2.56 | 14.19 *** | 5.19 | 16.97 *** |
(−2.89) | (−0.60) | (−3.50) | (−1.33) | (−3.70) | |
LARGEST | −0.02 | 0 | −0.06 ** | −0.05 ** | 0.05 |
(−1.36) | (0) | (−2.36) | (−2.57) | (−1.47) | |
TQ | −0.46 *** | −0.45 *** | −0.47 ** | −0.56 *** | −0.34 |
(−3.69) | (−2.90) | (−2.41) | (−3.59) | (−1.65) | |
LEV | 1.31 | 1.28 | 0.27 | 2.66 * | −2.19 |
(−1.21) | (−0.93) | (−0.15) | (−1.96) | (−1.35) | |
RET | 0.32 * | 0.43 * | 0.08 | 0.17 | 0.65 * |
(−1.69) | (−1.91) | (−0.24) | (−0.79) | (−1.72) | |
Observations | 7410 | 4875 | 2535 | 4995 | 2415 |
R-squared | 0.08 | 0.10 | 0.08 | 0.09 | 0.08 |
Number of id | 494 | 325 | 169 | 333 | 161 |
Variables | CFO | CFI |
---|---|---|
CURRENT | −1.22 ** | 0.30 |
(−2.28) | (0.61) | |
DID_2013 | −1.19 ** | 0.65 |
(−2.20) | (1.10) | |
DID_2014 | −1.01 * | 1.56 ** |
(−1.85) | (2.50) | |
DID_2015 | −1.59 *** | 1.82 *** |
(−2.74) | (2.80) | |
DID_2016 | −0.41 | 1.54 ** |
(−0.78) | (2.30) | |
DID_2017 | −0.56 | 2.31 *** |
(−0.10) | (3.35) | |
DID_2018 | 0.08 | 2.03 *** |
(0.15) | (3.49) | |
DID_2019 | −0.72 | 1.16 * |
(−1.29) | (1.88) | |
DID_2020 | −1.09 * | −0.17 |
(−1.83) | (−0.27) | |
DID_2021 | −0.18 | 1.21 * |
(−0.33) | (1.81) | |
Observations | 7410 | 7410 |
R-squared | 0.16 | 0.08 |
Number of id | 494 | 494 |
Variables | CFO | CFI | COST |
---|---|---|---|
DID | −0.80 ** | 1.23 *** | 0.21 ** |
(−2.24) | (−3.08) | (−2.18) | |
SIZE | −0.56 ** | −1.61 *** | −0.03 |
(−2.43) | (−5.88) | (−0.35) | |
ROA | 42.75 *** | −8.53 *** | −2.22 *** |
(−16.52) | (−3.40) | (−4.73) | |
STD | 9.49 ** | 27.10 *** | 1.23 |
(−2.26) | (−6.04) | (−1.25) | |
AGE | 0.49 | −0.47 | −0.17 *** |
(−1.42) | (−1.30) | (−4.31) | |
TAR | −1.05 | 8.86 *** | −1.26 * |
(−0.43) | (−2.89) | (−1.76) | |
LARGEST | 0.02 | −0.02 | −0.00 |
(−1.17) | (−1.36) | (−1.08) | |
TQ | 0.24 ** | −0.46 *** | −0.03 |
(−2.03) | (−3.69) | (−1.21) | |
LEV | −0.87 | 1.31 | 1.37 *** |
(−0.89) | (−1.21) | (−5.37) | |
RET | 0.43 ** | 0.32 * | 0.06 * |
(−2.52) | (−1.69) | (−1.68) | |
Observations | 7410 | 7410 | 7410 |
Number of id | 494 | 494 | 494 |
Adjusted R-squared | 0.16 | 0.08 | 0.14 |
Variables | Placebo | Placebo |
---|---|---|
FDID | −0.52 | |
(−1.38) | ||
SIZE | −0.56 ** | −0.56 ** |
(−2.42) | (−2.42) | |
ROA | 42.72 *** | 42.71 *** |
(16.53) | (16.53) | |
STD | 9.32 ** | 9.27 ** |
(2.22) | (2.21) | |
AGE | 0.49 | 0.49 |
(1.40) | (1.39) | |
TAR | −1.05 | −1.08 |
(−0.43) | (−0.44) | |
LARGEST | 0.02 | 0.02 |
(1.14) | (1.14) | |
TQ | 0.25 ** | 0.25 ** |
(2.10) | (2.11) | |
LEV | −0.80 | −0.79 |
(−0.82) | (−0.81) | |
RET | 0.43 ** | 0.42 ** |
(2.52) | (2.49) | |
F2DID | −0.58 | |
(−1.51) | ||
Observations | 7410 | 7410 |
R-squared | 0.16 | 0.16 |
Number of id | 494 | 494 |
Variables | Full Sample | Stated- Owned | Non-State- Owned | High Emissions | Low Emissions |
---|---|---|---|---|---|
DID | −0.79 ** | −0.58 | −1.09 * | −1.43 *** | 0.42 |
(−2.24) | (−1.33) | (−1.77) | (−3.31) | (−0.70) | |
SIZE | −0.56 ** | −0.75 ** | −0.26 | −0.66 ** | −0.49 |
(−2.43) | (−2.54) | (−0.69) | (−2.35) | (−1.20) | |
ROA | 42.75 *** | 45.07 *** | 39.56 *** | 40.88 *** | 46.91 *** |
(−16.52) | (−13.42) | (−9.98) | (−13.30) | (−10.04) | |
STD | 9.49 ** | 9.60 * | 10.07 | 8.15 | 12.26 |
(−2.26) | (−1.68) | (−1.57) | (−1.65) | (−1.51) | |
AGE | 0.49 | 0.60 * | −0.53 | 0.69 ** | −1.90 *** |
(−1.42) | (−1.82) | (−0.85) | (−2.56) | (−3.29) | |
TAR | −1.05 | −2.89 | 1.31 | −1.01 | −1.76 |
(−0.43) | (−0.94) | (−0.35) | (−0.33) | (−0.46) | |
LARGEST | 0.02 | 0.02 | 0.01 | 0.02 | 0.01 |
(−1.17) | (−1.21) | (−0.54) | (−1.42) | (−0.34) | |
TQ | 0.24 ** | 0.03 | 0.56 *** | 0.25 * | 0.23 |
(−2.03) | (−0.19) | (−3.33) | (−1.73) | (−1.18) | |
LEV | −0.87 | −0.18 | −1.57 | −0.69 | −1.28 |
(−0.89) | (−0.14) | (−1.09) | (−0.60) | (−0.70) | |
RET | 0.43 ** | 0.66 *** | −0.01 | 0.67 *** | −0.09 |
(−2.52) | (−3.22) | (−0.03) | (−3.19) | (−0.32) | |
GDPR | −0.08 | 0.01 | −0.36 *** | −0.06 | −0.41 *** |
(−1.12) | (−0.13) | (−3.16) | (−0.82) | (−3.86) | |
M2R | 49.99 | 55.49 | −96.09 | 71.43 | −330.15 *** |
(−0.86) | (−1.00) | (−0.93) | (−1.57) | (−3.38) | |
Observations | 7410 | 4875 | 2535 | 4995 | 2415 |
R-squared | 0.16 | 0.15 | 0.18 | 0.16 | 0.18 |
Number of id | 494 | 325 | 169 | 333 | 161 |
Variables | DID1 | DID2 | PSM-DID1 | PSM-DID2 |
---|---|---|---|---|
DID | −0.56 | −0.80 ** | −0.81 *** | −0.80 *** |
(0.39) | (0.35) | (0.27) | (0.26) | |
SIZE | −0.56 ** | −0.57 *** | −0.57 *** | |
(0.23) | (0.17) | (0.17) | ||
ROA | 42.75 *** | 43.01 *** | 43.02 *** | |
(2.59) | (1.57) | (1.57) | ||
STD | 9.49 ** | 9.88 *** | 9.76 *** | |
(4.21) | (3.12) | (3.12) | ||
AGE | 0.49 | 0.51 ** | 0.50 ** | |
(0.35) | (0.22) | (0.22) | ||
TAR | −1.05 | −1.35 | −1.30 | |
(2.43) | (1.82) | (1.82) | ||
LARGEST | 0.02 | 0.02 | 0.02 | |
(0.01) | (0.01) | (0.01) | ||
TQ | 0.24 ** | 0.23 *** | 0.23 *** | |
(0.12) | (0.09) | (0.09) | ||
LEV | −0.87 | −0.93 | −0.88 | |
(0.97) | (0.70) | (0.70) | ||
RET | 0.43 ** | 0.43 *** | 0.43 *** | |
(0.17) | (0.15) | (0.15) | ||
M2R | 50.63 | |||
(37.51) | ||||
GDPR | −0.08 | |||
(0.06) | ||||
Observations | 7410 | 7410 | 7406 | 7406 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Zhu, Y.; Li, C.; Wang, K. Will Green Credit Affect the Cash Flow of Heavily Polluting Enterprises? Sustainability 2025, 17, 311. https://doi.org/10.3390/su17010311
Sun Y, Zhu Y, Li C, Wang K. Will Green Credit Affect the Cash Flow of Heavily Polluting Enterprises? Sustainability. 2025; 17(1):311. https://doi.org/10.3390/su17010311
Chicago/Turabian StyleSun, Yi, Yiwen Zhu, Cong Li, and Kaihua Wang. 2025. "Will Green Credit Affect the Cash Flow of Heavily Polluting Enterprises?" Sustainability 17, no. 1: 311. https://doi.org/10.3390/su17010311
APA StyleSun, Y., Zhu, Y., Li, C., & Wang, K. (2025). Will Green Credit Affect the Cash Flow of Heavily Polluting Enterprises? Sustainability, 17(1), 311. https://doi.org/10.3390/su17010311