Estimation of the Water Footprint of Wood Construction in Chile Using a Streamlined Input–Output-Based Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Modifications Performed on the National Input–Output Matrix
2.2. Construction of the Matrix of Direct Water Consumption
2.3. Scenario Definition
2.4. Contribution Analysis
3. Results and Discussion
3.1. Comparison of the Water Footprint of Conventional Construction and Wood Construction
3.2. Influence of Timber Construction Development on the Water Footprint of the Residential Building Sector
3.3. Analysis of the Contributions to the Water Footprint
3.4. Limitations of This Study and Future Challenges
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sistema Nacional de Inventarios de Gases de Efecto Invernadero (SIN). Tendencia Nacional. Available online: https://snichile.mma.gob.cl/resultados-principales/ (accessed on 26 November 2024).
- Ministerio del Medio Ambiente. Plan de Acción Nacional de Cambio Climático 2017–2022. Available online: https://mma.gob.cl/wp-content/uploads/2017/07/plan_nacional_climatico_2017_2.pdf (accessed on 26 November 2024).
- Biblioteca del Congreso Nacional de Chile. Ley Marco de Cambio Climático. Available online: https://www.bcn.cl/leychile/navegar?idNorma=1177286 (accessed on 26 November 2024).
- Cambio Climático. Estrategia Climática de Largo Plazo. Available online: https://cambioclimatico.mma.gob.cl/wp-content/uploads/2021/11/ECLP-LIVIANO.pdf (accessed on 26 November 2024).
- Wang, L.; Toppinen, A.; Juslin, H. Use of wood in green building: A study of expert perspectives from the UK. J. Clean. Prod. 2014, 65, 350–361. [Google Scholar] [CrossRef]
- Robertson, A.B.; Lam, F.C.F.; Cole, R.J. A Comparative Cradle-to-Gate Life Cycle Assessment of Mid-Rise Office Building Construction Alternatives: Laminated Timber or Reinforced Concrete. Buildings 2012, 2, 245–270. [Google Scholar] [CrossRef]
- Crespo, S.A.; Lavergne, C.; Fernandoy, F.; Muñoz, A.A.; Cara, L.; Olfos-Vargas, S. Where Does the Chilean Aconcagua River Come from? Use of Natural Tracers for Water Genesis Characterization in Glacial and Periglacial Environments. Water 2020, 12, 2630. [Google Scholar] [CrossRef]
- Khahro, S.H.; Memon, A.H.; Memon, N.A.; Arsal, A.; Ali, T.H. Modeling the Factors Enhancing the Implementation of Green Procurement in the Pakistani Construction Industry. Sustainability 2021, 13, 7248. [Google Scholar] [CrossRef]
- Anand, C.K.; Amor, B. Recent developments, future challenges and new research directions in LCA of buildings: A critical review. Renew. Sustain. Energy Rev. 2017, 67, 408–416. [Google Scholar] [CrossRef]
- Pittau, F.; Dotelli, G.; Arrigoni, A.; Habert, G.; Iannaccone, G. Massive timber building vs. conventional masonry building. A comparative life cycle assessment of an Italian case study. IOP Conf. Ser. Earth Environ. Sci. 2019, 323, 012016. [Google Scholar] [CrossRef]
- Ward, H.; Wenz, L.; Steckel, J.C.; Minx, J.C. Truncation Error Estimates in Process Life Cycle Assessment Using Input-Output Analysis. J. Ind. Ecol. 2017, 22, 1080–1091. [Google Scholar] [CrossRef]
- Hoekstra, A.Y. Water Footprint Assessment: Evolvement of a New Research Field. Water Resour. Manag. 2017, 31, 3061–3081. [Google Scholar] [CrossRef]
- Moratilla, F.; Molina, M.; Férnandez, B. La huella hídrica en España (No. 3514). Rev. De Obras Públicas. 2010, 157, 21–38. [Google Scholar]
- Vanham, D.; Gawlik, B.; Bidoglio, G. Cities as hotspots of indirect water consumption: The case study of Hong Kong. J. Hydrol. 2017, 573, 1075–1086. [Google Scholar] [CrossRef]
- Miller, R.; Blair, P. Input-Output Analysis: Foundations and Extensions, 3rd ed.; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Avilés-Lucero, F.; Peraita, G.; Valladares, C. Estudios Económicos Estadísticos: Huella de Carbono para la Economía Chilena 2017 del Banco Central de Chile. Available online: https://www.bcentral.cl/documents/33528/133329/EEE_135.pdf/26a20f08-82d7-3cd8-d01d-b4f2a1250415?t=1693312832053 (accessed on 28 December 2024).
- Soust-Verdaguer, B.; Llatas, C.; Moya, L. Comparative BIM-based Life Cycle Assessment of Uruguayan timber and concrete-masonry single-family houses in design stage. J. Clean. Prod. 2020, 277, 121958. [Google Scholar] [CrossRef]
- Instituto Forestal. Material Madera Representa la Mayor Superficie Construida de Casas en Chile. Available online: https://wef.infor.cl/index.php/destacados/construccion-en-madera/material-madera-representa-la-mayor-superficie-construida-de-casas-en-chile (accessed on 28 December 2024).
- Tchobanoglous, G.; Stensel, D.; Tsuchihashi, R.; Burton, F. Wastewater Engineering: Treatment and Resource Recovery, 5th ed.; McGraw-Hill Education: New York, NY, USA, 2014. [Google Scholar]
- Servicio de Impuestos Internos de Chile. Estadísticas de Empresas. Available online: https://www.sii.cl/sobre_el_sii/estadisticas_de_empresas.html (accessed on 26 November 2024).
- Aldaya, M.M.; Chapagain, A.K.; Hoekstra, A.Y.; Mekonnen, M.M. The Water Footprint Assessment Manua, 1st ed.; Routledge: London, UK, 2012. [Google Scholar]
- Instituto de Investigaciones Agropecuarias. Agrometeorología. Available online: https://agrometeorologia.cl/evapotranspiracion/ (accessed on 26 November 2024).
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Evapotranspiración del Cultivo: Guías Para la Determinación de los Requerimientos de Agua de los Cultivos; Food and Agriculture Organization of the United Nations: Roma, Italy, 2006; ISBN 92-5-304219-2. [Google Scholar]
- Muratoglu, A.; Bilgen, G.K.; Angin, I.; Kodal, S. Performance analyses of effective rainfall estimation methods for accurate quantification of agricultural water footprint. Water Res. 2023, 238, 120011. [Google Scholar] [CrossRef] [PubMed]
- Oficina de Estudios y Políticas Agrarias. Estadísticas Productivas. Available online: https://www.odepa.gob.cl/estadisticas-del-sector/estadisticas-productivas (accessed on 26 November 2024).
- Chenoweth, J.; Hadjikakou, M.; Zoumides, C. Quantifying the human impact on water resources: A critical review of the water footprint concept. Hydrol. Earth Syst. Sci. 2014, 18, 2325–2342. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, H.; Ma, L.; Wang, J.; Wang, J.; Wang, Z.; Yue, Q. Structural path decomposition analysis of resource utilization in China, 1997–2017. J. Clean. Prod. 2021, 322, 129006. [Google Scholar] [CrossRef]
- Tepper-García, T.; Murray, J.; Malik, A.; Geshke, A. spaJS: A Visual Interactive Online Tool to Conduct Structural Path Analysis. 50th Issue of the International Input-Output Association Newsletter. Available online: http://www.physics.usyd.edu.au/spajs/ (accessed on 26 November 2024).
- Mannan, M.; Al-Ghamdi, S.G. Environmental impact of water-use in buildings: Latest developments from a life-cycle assessment perspective. J. Environ. Manag. 2020, 261, 110198. [Google Scholar] [CrossRef]
- Mora-González, A.; Cruz-Zuñiga, N. Huella hídrica en el proceso constructivo como indicador de sostenibilidad: Un estudio de caso para Costa Rica. Tecnol. En Marcha 2024, 37, 36–48. [Google Scholar] [CrossRef]
- Sultana, R.; Rashedi, A.; Khanam, T.; Jeong, B.; Hosseinzadeh-Bandbafha, H.; Hussain, M. Life Cycle Environmental Sustainability and Energy Assessment of Timber Wall Construction: A Comprehensive Overview. Sustainability 2022, 14, 4161. [Google Scholar] [CrossRef]
- Duan, Z.; Huang, Q.; Zhang, Q. Life cycle assessment of mass timber construction: A review. Build. Environ. 2022, 221, 109320. [Google Scholar] [CrossRef]
- Kumar, V.; Ricco, M.L.; Bergman, R.D.; Nepal, P.; Poudyal, N.C. Environmental impact assessment of mass timber, structural steel, and reinforced concrete buildings based on the 2021 international building code provisions. Build. Environ. 2024, 251, 111195. [Google Scholar] [CrossRef]
- Jara, M.P. Comparación de la Huella de Carbono en la Construcción de Edificaciones de Hormigón Armado y Madera Sólida Contra Laminada. Master’s Thesis, Universidad del Bío-Bío, Concepción, Chile, 1 June 2015. [Google Scholar]
- Banco Central de Chile. Cuentas Nacionales Anuales (In Spanish). 2024. Available online: https://www.bcentral.cl/web/banco-central/cuentas-nacionales-anuales-excel (accessed on 19 November 2024).
- Heravi, G.; Abdolvand, M.M. Assessment of water consumption during production of material and construction phases of residential building projects. Sustain. Cities Soc. 2019, 51, 101785. [Google Scholar] [CrossRef]
Scenarios | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |
---|---|---|---|---|---|---|---|---|
S0 | CC | 5904.0 | 6256.7 | 6631.4 | 7028.5 | 7449.4 | 7895.5 | 8368.3 |
WC | 0.0 | 74.1 | 78.5 | 83.2 | 88.2 | 93.5 | 99.1 | |
S1 | CC | - | 6200.0 | 6565.5 | 6952.2 | 7361.5 | 7794.6 | 8252.8 |
WC | - | 130.8 | 144.4 | 159.5 | 176.1 | 194.4 | 214.6 | |
S2 | CC | - | 6048.0 | 6379.1 | 6693.1 | 7028.3 | 7369.4 | 7713.6 |
WC | - | 282.8 | 330.8 | 418.6 | 509.3 | 619.6 | 753.8 | |
S3 | CC | - | 5873.0 | 6097.3 | 6292.0 | 6440.6 | 6520.9 | 6502.8 |
WC | - | 457.7 | 612.6 | 819.8 | 1097.0 | 1468.1 | 1964.6 |
Scenarios | 2020 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WFN | NG | WFN | NG | WFN | NG | WFN | NG | WFN | NG | WFN | NG | WFN | NG | |
S0 | 74.4% | 65.4% | 73.7% | 64.7% | 73.7% | 64.7% | 73.7% | 64.7% | 73.7% | 64.7% | 73.7% | 64.7% | 73.7% | 64.7% |
S1 | - | - | 73.9% | 64.8% | 73.9% | 64.9% | 73.9% | 64.9% | 73.9% | 64.9% | 74.0% | 64.9% | 74.0% | 64.9% |
S2 | - | - | 74.3% | 65.3% | 74.4% | 65.4% | 74.5% | 65.6% | 74.6% | 65.7% | 74.8% | 65.9% | 75.0% | 66.1% |
S3 | - | - | 74.7% | 65.8% | 75.0% | 66.1% | 75.3% | 66.5% | 75.7% | 67.0% | 76.1% | 67.5% | 76.7% | 68.2% |
Sector/Level | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | TOTAL |
---|---|---|---|---|---|---|---|---|---|---|
Sawmills and wood products | 39.69 | 6.00 | 1.03 | 0.03 | 0.02 | 0 | 0 | 0 | 0 | 46.77 |
Fishing and aquaculture | 0.03 | 7.06 | 7.6 | 4.32 | 4.63 | 1.70 | 0.58 | 0.16 | 0.04 | 26.12 |
Agriculture | 0.01 | 0.95 | 3.48 | 0.91 | 2.51 | 0.24 | 0.06 | 0.01 | 0 | 8.17 |
Paper and cardboard | 0.84 | 2.21 | 1.25 | 0.06 | 0.39 | 0.01 | 0 | 0 | 0 | 4.76 |
Electricity | 0.96 | 0.94 | 0.38 | 0.01 | 0.09 | 0 | 0 | 0 | 0 | 2.38 |
Paintings | 1.89 | 0.17 | 0.05 | 0 | 0.01 | 0 | 0 | 0 | 0 | 2.12 |
Commerce | 1.05 | 0.72 | 0.24 | 0.01 | 0.06 | 0 | 0 | 0 | 0 | 2.08 |
Pharmaceutical products | 0.28 | 0.96 | 0.13 | 0 | 0.02 | 0 | 0 | 0 | 0 | 1.39 |
Metals | 0.18 | 0.72 | 0.16 | 0 | 0.03 | 0 | 0 | 0 | 0 | 1.09 |
Agroindustry | 0.14 | 0.14 | 0.08 | 0.03 | 0.08 | 0.01 | 0 | 0 | 0 | 0.48 |
TOTAL | 45.07 | 19.87 | 14.4 | 5.37 | 7.841 | 1.96 | 0.64 | 0.17 | 0.04 | 95.36 |
Sector/Level | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | TOTAL |
---|---|---|---|---|---|---|---|---|---|---|
Fishing and aquaculture | 0.05 | 12.6 | 10.42 | 4.26 | 6.78 | 1.68 | 0.51 | 0.12 | 0.02 | 36.44 |
Sawmills and wood products | 21.76 | 6.11 | 1.32 | 0.03 | 0.28 | 0 | 0 | 0 | 0 | 29.5 |
Agriculture | 0.02 | 1.69 | 2.97 | 0.8 | 2.1 | 0.21 | 0.04 | 0 | 0 | 7.83 |
Paper and cardboard | 1.5 | 3.15 | 1.67 | 0.07 | 0.5 | 0 | 0 | 0 | 0 | 6.89 |
Electricity | 1.7 | 1.08 | 0.54 | 0.01 | 0.13 | 0 | 0 | 0 | 0 | 3.46 |
Metals | 2.03 | 1.14 | 0.25 | 0 | 0.04 | 0 | 0 | 0 | 0 | 3.46 |
Commerce | 1.87 | 0.93 | 0.33 | 0.01 | 0.08 | 0 | 0 | 0 | 0 | 3.22 |
Pharmaceutical products | 0.5 | 0.75 | 0.17 | 0 | 0.03 | 0 | 0 | 0 | 0 | 1.45 |
Agroindustry | 0.26 | 0.18 | 0.12 | 0.03 | 0.07 | 0.01 | 0 | 0 | 0 | 0.67 |
Professional services | 0.22 | 0.1 | 0.04 | 0 | 0.01 | 0 | 0 | 0 | 0 | 0.37 |
TOTAL | 29.91 | 27.73 | 17.83 | 5.21 | 10.02 | 1.9 | 0.55 | 0.12 | 0.02 | 93.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vallejos, X.; Hidalgo, S.; González, B.; Neumann, P. Estimation of the Water Footprint of Wood Construction in Chile Using a Streamlined Input–Output-Based Model. Sustainability 2025, 17, 1061. https://doi.org/10.3390/su17031061
Vallejos X, Hidalgo S, González B, Neumann P. Estimation of the Water Footprint of Wood Construction in Chile Using a Streamlined Input–Output-Based Model. Sustainability. 2025; 17(3):1061. https://doi.org/10.3390/su17031061
Chicago/Turabian StyleVallejos, Ximena, Steven Hidalgo, Belén González, and Patricio Neumann. 2025. "Estimation of the Water Footprint of Wood Construction in Chile Using a Streamlined Input–Output-Based Model" Sustainability 17, no. 3: 1061. https://doi.org/10.3390/su17031061
APA StyleVallejos, X., Hidalgo, S., González, B., & Neumann, P. (2025). Estimation of the Water Footprint of Wood Construction in Chile Using a Streamlined Input–Output-Based Model. Sustainability, 17(3), 1061. https://doi.org/10.3390/su17031061